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outline

 surface composition changes during
fiberglass processing

 surface segregation during the fabrication
of micro-sheet for display glass

* composition <<>> structure effects at
surfaces.... BORON-OXIDE

e surface atomic structure models and their
validation by adsorption
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crystallized amorphous
silicon on various
glass substrates....

note interphases




some opportunities for glass surface modification

» controlled electrical conductivity

PENNSTATE

‘primed’ for adhesion
‘hardened’ for abrasion resistance
anti-reflective or highly reflective

soluble or insoluble

Commercial Glass Dielectrics

» Companies are interested

- Large scale processes -
have been developed for
producing thin glass
sheets. A
+ Commercial market is -
growing rapidly for flat
panel displays. ‘ |
rojected glass plate dimensions for
ctive matrix liquid crystal displays
he glass may be an excellent
commodity material for high
temperature capacitors for use in hybrid
lectri icl

in exploring new markets
flat panel glass.
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the ‘surfaces’ of most functional glasses come into existence in a
temperature range where surface energy can be minimized
through composition and/or structure changes, where evaporation
of volatile species occurs, and where local redox equilibria can be
established through adsorption and/or ion transport

» thermal segregation

* changes in local coordination..B,0,

 alkali, alkali borate, etc evaporation

» cation out-diffusion usually faster than O, in-diffusion
» redox equilibria drives cation oxidation on cooling
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Marble Feed

Flame Attenuation Process °

Flame Temperature ~1800 °C

Slower Cooling in the Forming Tube

Fiber Guide
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TEM of FA Nano Fibers




TEM of FA Fibers (Glass A)

after leaching



EELS (and XPS)
confirm that this
surface layer is

depleted in boron.
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The thickness of the surface layer 1s
NOT related to the fiber diameter (FA)
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‘Isothermally’ Freezing in the Surface Composition

Tg soft
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« after heat-treatment at T, the surface is depleted in Si. The
concentrations of B, Na,gBa and Ca increase significantly on the
surface, especially Ca and Ba.

« At temperatures > 800 °C, the surface is depleted in B and Na.

« The Al/Si ratio does not change over the entire temperature range.
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Glass VI

XPS Depth Profiling: - .
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30 nm +

30 nm +

1.0 um
0.8
o4 0.6
0.2
0
After: RMS =0.93 nm

Before: RMS = 0.14 nm

After heat-treatment, features (4-7 nm 1n height) appear on the surface.
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PENNSTATE

Phenomenological Model
for “Phase Segregation/Migration” to the Surface

. Network modifier rich region . Network former rich region

Before Heat-treatment After Heat-treatment
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FIGURE 5.1 The volume-temperature diagram. (After A. K. Varshneya, Fundamentals of Inorganic
Glasses, Fig. 2-1, p. 15, Academic Press, 1994.)
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FUSION PROCESS FOR
MICROSHEET GLASS FABRICATION

Trough

Homogeneous
glass delivered
from melting unit

Sheet drawn downward

5X surface segregation
of Sb (.5% in the bulk for fining)
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Angle Resolved XPS Depth Profiling

I _ I —Z/Asiné
Beer-Lambert Law — Oe

Observed intensity, |, as a function of depth, z where A is escape depth, 8 is

takeoff angle (w.r.t. surface plane).
Angle Resolved Depth Profiling in XPS

Case 1. Atomically clean surface;

no angular effect




Antimony Depth Distribution by Angle-Resolved XPS and FAB-Static SIMS
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Antimony Depth Distribution by Angle-Resolved XPS and FAB-Static SIMS
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Antimony Depth Distribution by Angle-Resolved XPS and FAB-Static SIMS
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*Heat Treatments were for 10 minutes; samples were then air quenched.
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Antimony Depth Distribution by Angle-Resolved XPS and FAB-Static SIMS
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Antimony Depth Distribution by Angle-Resolved XPS and FAB-Static SIMS
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Applications

Case 2. Thin, uniform layer A of thickness, t, on top of substrate B
(where E, , = E, )

|, =17[1—exp

(~t/ A, sine)]

Q™ (—t/Agsin@)
Ratio,
00 —t/Apsin@
12 (1—exp /2
o o0 —t / ﬂ“B Sin 9
s g (GXP )
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Applications

Case 3. Thin, patched layer A of thickness, t, on top of substrate B
where vy is the fractional coverage of A

IOO

IA: A 7/(1—exp ) .
e 17 [a=p)+ylexp ™)

—t//”tAsiné?)
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Reconstructed Angle Resolved XPS Depth Profiles
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FAB-Static SIMS Analysis of Sb segregation versus temperature
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Surface Concentration of Antimony on Etched and Heat Treated Glass by Static SIMS

The graph on the left suggests that
the enrichment of Sb occurs through
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surface composition by FAB SIMS for commercial microsheet glass for FPD
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29Si MAS NMR 6

More Q*(4S1) units
are observed as the
antimony oxide

. .
5.5 concentration increases.

4.5% Sb,0O

-60 -80 -100 -120 -140 -160
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With an increase in Sb,0; concentration,
there 1s an increase in tetrahedral boron

units.
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Boron-oxide in glass
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Surface Tension of Borate Glasses

. B,O; ~ 80 dyn/cm at 1000°C

. positive temperature coefficient

. exhibits boron oxide anomaly

. temperature coefficient is constant up to 20M/o R,O

Altogether, these data suggest the segregation and orientation of
planar [BOs3] at the surface.
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Contact Angles of Borosilicate
Glasses on Silicon Carbide
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Boron in the bulk and at surfaces:

0<x<0.40

xR,0 - (1-x)B,0,
—

Increasing alkali oxide concentration
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XANES vs. EXAFS

Normalized Absorplion
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XANES is dominated by multiple

scattering processes of low

kinetic-energy photoelectrons.

EXAFS contains oscillations
from scattering by high
kinetic energy photoelectrons.




Surface Sensitivity

Incident Total Electron Yield
monochromated X-rays (Surface Sensitive —
photoelectron escape depth)

L Measured as ~60A

Incident X-rays
penetrate several
microns below the
surface

Fluorescent Yield
(Bulk Sensitive —
photon escape depth)

Measured as ~1100A

Transmitted Intensity
(conventional, bulk measurement)



Boron XANES
at mineral surfaces

]
!\,\/\sﬂnhalite
Peak A: only 3-fold boron - BHJE
Peak B: only 4-fold boron | \—\,

Peak C: contains information from both
3- and 4-fold boron

c V'B}D‘I
S
=
Solid tra: 7 E
olid spectra: 8 k«m/é\\&
FY — bulk measurement
Broken spectra: CaB,0,(I)
TEY — surface measurement
-.__.«J / ‘\L\h”'\
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energy (eV)
* Figures borrowed from Fleet and Lui, Phys. Chem. Minerals (2001).



SUMMARY:

opportunities for glass surface modification
 controlled electrical conductivity

* ‘primed’ for adhesion

* ‘hardened’ for abrasion resistance
 anti-reflective or highly reflective
 soluble or insoluble
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