<u>Thermochemical Effects at</u> <u>Multicomponent Glass Surfaces</u>

Carlo G Pantano Department of Materials Science and Engineering Materials Research Institute The Pennsylvania State University

> Acknowledgements: Bob Hengstebeck Justin Wood CQ Shen Elam Leed Rob Schaut Prof Karl Mueller NSF Center for Glass Research

PENN<u>State</u>

Materials Research Institute

<u>outline</u>

- surface composition changes during fiberglass processing
- surface segregation during the fabrication of micro-sheet for display glass
- composition <<>> structure effects at surfaces.... BORON-OXIDE
- surface atomic structure models and their validation by adsorption

Materials Research Institute

crystallized amorphous silicon on various glass substrates....

note interphases

some opportunities for glass surface modification

- controlled electrical conductivity
- 'primed' for adhesion
- 'hardened' for abrasion resistance
- anti-reflective or highly reflective
- soluble or insoluble

Materials Research Institute

the 'surfaces' of most functional glasses come into existence in a temperature range where surface energy can be minimized through composition and/or structure changes, where evaporation of volatile species occurs, and where local redox equilibria can be established through adsorption and/or ion transport

- thermal segregation
- changes in local coordination...B₂O₃
- alkali, alkali borate, etc evaporation
- cation out-diffusion usually faster than O₂ in-diffusion
- redox equilibria drives cation oxidation on cooling

Materials Research Institute

TEM of FA Nano Fibers

TEM of FA Fibers (Glass A)

after leaching \longrightarrow

The thickness of the surface layer is NOT related to the fiber diameter (FA)

'Isothermally' Freezing in the Surface Composition

- after heat-treatment at T_g, the surface is depleted in Si. The concentrations of B, Na, Ba and Ca increase significantly on the surface, especially Ca and Ba.
- At temperatures > 800 °C, the surface is depleted in B and Na.
- The Al/Si ratio does not change over the entire temperature range.

PENN<u>STATE</u>

1855

Materials Research Institute

Glass VII XPS Depth Profiling:

air-fracture surface of glass I, "equilibrated" at 525 °C.

- Sputtering rate ~ 1 Å/s.
- The Si-depleted layer ~200 Å thick.

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

Before: RMS = 0.14 nm

After heat-treatment, features (4-7 nm in height) appear on the surface.

Materials Research Institute

Phenomenological Model for "Phase Segregation/Migration" to the Surface

Network modifier rich region

Before Heat-treatment

After Heat-treatment

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

5X surface segregation of Sb (.5% in the bulk for fining)

Materials Research Institute

Angle Resolved XPS Depth Profiling

$$I = I_0 e^{-z/\lambda \sin \theta}$$

Observed intensity, I, as a function of depth, z where λ is escape depth, θ is takeoff angle (w.r.t. surface plane).

Case 1. Atomically clean surface; no angular effect

Beer-Lambert Law

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA Materials Research Institute

*Heat Treatments were for 10 minutes; samples were then air quenched.

Materials Research Institute

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA

*Heat Treatments were for 10 minutes; samples were then air quenched.

Materials Research Institute

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

<u>Case 2.</u> Thin, uniform layer A of thickness, t, on top of substrate B (where $E_{k, A} = E_{k, B}$)

$$I_{A} = I_{A}^{\infty} \left[1 - \exp^{(-t/\lambda_{A}\sin\theta)} \right]$$
$$I_{B} = I_{B}^{\infty} \exp^{(-t/\lambda_{B}\sin\theta)}$$

Ratio,

$$\frac{I_A}{I_B} = \frac{I_A^{\infty}}{I_B^{\infty}} \frac{\left(1 - \exp^{-t/\lambda_A \sin\theta}\right)}{\left(\exp^{-t/\lambda_B \sin\theta}\right)}$$

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

<u>Case 3.</u> Thin, patched layer A of thickness, t, on top of substrate B where γ is the fractional coverage of A

$$\frac{I_A}{I_B} = \frac{I_A^{\infty}}{I_B^{\infty}} \frac{\gamma \left(1 - \exp^{-t/\lambda_A \sin\theta}\right)}{\left[(1 - \gamma) + \gamma \left(\exp^{-t/\lambda_B \sin\theta}\right)\right]}$$

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

Materials Research Institute

Surface Concentration of Antimony on Etched and Heat Treated Glass by Static SIMS

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

surface composition by FAB SIMS for commercial microsheet glass for FPD

Materials Research Institute

²⁹Si MAS NMR

More Q⁴(4Si) units are observed as the antimony oxide concentration increases.

¹¹B MAS NMR

3 fold boron	4 fold boron	
	5.5% Sb ₂ O ₃	
	4.5% Sb ₂ O ₃	
	3.0% Sb ₂ O ₃	% Sb ₂ O ₃ 0.0
	1.5% Sb ₂ O ₃	0.5 1.5 3.0
	0.5% Sb ₂ O ₃	4.5 5.5
40 20 0	0.0% Sb ₂ O ₃	With an there is a units.
¹¹ B Frequency (p	pm from BF ₃)	

% Sb ₂ O ₃	Ratio of 4/3 Fold Boron
).0	0.45
).5	0.50
.5	0.57
3.0	0.66
4.5	0.62
5 5	0.66

With an increase in Sb_2O_3 concentration, there is an increase in tetrahedral boron units.

Boron-oxide in glass

 $R = \frac{x \ R_2 O}{(1 - x) \ B_2 O_3}$

Surface Tension of Borate Glasses

- $B_2O_3 \sim 80 \text{ dyn/cm} \text{ at } 1000^{\circ}\text{C}$
- positive temperature coefficient
- exhibits boron oxide anomaly
- temperature coefficient is constant up to $20^{\text{m}}/\text{o}$ R₂O

Altogether, these data suggest the segregation and orientation of planar $[BO_3]$ at the surface.

Materials Research Institute

Contact Angles of Borosilicate Glasses on Silicon Carbide

Interfaces in Functional Materials October 10, 2006; Bear Creek, PA **Materials Research Institute**

Boron in the bulk and at surfaces:

XANES vs. EXAFS

XANES is dominated by multiple scattering processes of low kinetic-energy photoelectrons.

EXAFS contains oscillations from scattering by high kinetic energy photoelectrons.

Surface Sensitivity

Boron XANES at mineral surfaces

Peak A: only 3-fold boronPeak B: only 4-fold boronPeak C: contains information from both 3- and 4-fold boron

Solid spectra: FY – bulk measurement Broken spectra: TEY – surface measurement

* Figures borrowed from Fleet and Lui, Phys. Chem. Minerals (2001).

SUMMARY:

opportunities for glass surface modification

- controlled electrical conductivity
- 'primed' for adhesion
- 'hardened' for abrasion resistance
- anti-reflective or highly reflective
- soluble or insoluble

Materials Research Institute