We have generated sets of (x,y,z) positions for various times at various given
thermodynamic conditions (N,V,T,P). Today we focus mostly on time dependence !

Correlation functions

and linear response theory

- Mean square displacement and diffusion
- Van Hove correlation functions

- Intermediate scattering functions

- Linear response theory, time correlations
- Applications
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A) MEAN SQUARE DISPLACEMENT AND DIFFUSION

The mean square displacement is defined as

ri(t) — f‘f(o)P)j

N
1 g
- performed in NVE or NVT, (r*(1)) = N_Z (

ai=1

- do not use periodic boundary conditions

Gives a direct description of the dynamics.

A-B Lennard-Jones liquid
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Bauchy et al., PRL 2013 Kob PRE 2000
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More insight into the msd...
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Behavior with temperature

Usually, a gentle Arrhenius behavior : D=exp[-E,/kgT]
$i0,-2Na,0
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Micoulaut et al. PRE 2006
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Behavior of the diffusion constant with other thermodynamic variables

e Dependence onV orP.

T T T T I T | T T T ‘ T T T
* To be comparable with experiment,

should be calculated at P=0. 10

[ ]

* Usually at fixed V (e.g. V,) and P non-zero L |2 l6ooK
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Figure 3 Density dependence of the diffusion coefficient, 0, shown for eight isotherms.
g ly dep g 2 253 3 3.5 4 4.5

The curves from top to bottom correspond to temperatures 7 (in K) of: 400, 350, 320,

300, 280, 260, 240 and 220. The solid lines are fifth-order polynomial fits to the data, and P (g/ch)
are simply guides to the eye. The diffusion coefficient was calculated from the long-time
behaviour of the mean squared displacement of the water molecules, {/(t)), using the Bauchy et al., PRB 2011

Einstein relationship 60 = d{/(f))/dt. .
Errington et al. Nature 2001
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O To go further in correlation study, one can follow correlation both in space and
time. This information is richer, but the price to pay is the calculation of a two-
variable correlation function, at least.

O We introduce these functions because they are also available in experiments,
essentially form neutron scattering.

B) VAN HOVE CORRELATION FUNCTION

We first introduce a density correlation function G(r,r’,t) defined from the local atomic
densities:

pG(r,r';t) = (Z Z S(r' +r —r;(t)d(r —r;(0)))

i=1 j=1

pG(r,v'51) = (p(x' + 1. 8)p(x', 0))

For an homogeneous system, G depends only on the relative distance. Integration gives:

Glrt) = (303 6lr —ri(t) +1,(0)

i=1 j=1

or:
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N N

Glrt) = (303 6(r —ri(t) +1,(0)

i=1 j=1

Att=0,wehave  (G(r,0) = %(Z Z o(r +r;(0) —r;(0)))

= 0(r) + py(r)

Except a singularity at the origin, the Van Hove correlation function is proportional to the
pair correlation function g(r). We can split the function into two parts, self and distinct:

G(r,0) = G4(r,0) + G4(r,0)

which can be established at

non-zero times: Z 5 r + I'z z(t)»
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Physical interpretation:

L The Van Hove function is the probability density of finding a particle i in the
vicinity of r at time t, knowing that a particle j is in the vicinity of the origin at
time t=0.

O The self part G(r,t) is the probability density of finding a particle i at time t
knowing that this particle was at the origin at time 0. Probability that a particle
has moved a distance r in time t (dynamics).

Gulr,) = (32 3((r + 14(0) — ri(0))

O The distinct part G4(r,t) is the probability density of finding a particle j different
from i at time t knowing that the particle | was at the origin at time t=0.
Probability to find at time t a different particle at a distance r from a place at
which at time t=0 there was a particle. And G4(r,0)=g(r).

Ga(r,t) = %Qj 5 +1;(0) — 1;(1)))

]
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Normalization of the functions leads to :

/ drG.(r.t) = 1 / drGa(r.t) = N — 1

Integration over space, G,4(r,t) is able to count the remaining particles

In the long-time limit, the system looses memory of the initial configuration and the
correlation functions become independent of the distance:

: _ 1
i, Goln 1) = fim Galeot) = 57 = 0
N —1
lim Gy(r,t) = lim G4(r,t) ~ —— ~p
r—00 t—00 V
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Examples: Self part in Na silicates
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00 20 | 40 60 80 | 100 1 20 FIG. 4. (Color online) Van Hove function G,(r.t) of the NS3

r [ A] system at 2000 K and fixed time ¢ = f, = 20 ps for various densities

between 2.0 and 4.5 g/cm?. The red and blue curves correspond to

KOb; PRB 2000 2.0 and 4.5 g/cm’, respectively. The insert shows the change in Si
coordination number ng; as a function of density for three selected

temperatures.
Bauchy, PRB 2011
Q At short times, G(r,t) ~9(r) !

O Small times: rattling and hopping motion on the length scale of nearest neighbors.
O Spatial extent of the motion is determined by thermodynamic conditions: T
(viscous slowing down) or P (motion blocked by the high density).
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Examples: Distinct part in a binary A-B mixture

L At high temperature, the correlation hole at r=0 is quickly filled up
O At low temperature, correlation hole survives at long time

45 b
4.0 (b)
(@R ]
3.0 I S E: 3.5 71 AA correlation
225 © AA correlation @) « 3.0 ]
3:_‘: : 2.5 -
o 20 2.0
1.5 1.5 7
_ 1.0 _
1.0 — 0.5 -
— 0.0 - I B
0.5+ 0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

Kob and Andersen, PRE 1995
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C) DYNAMIC STRUCTURE FACTOR

Fourier (time) transform of the intermediate scattering function (see next lectures)

0.20 Trrr[rr LI LI LB B
it 15 He (b) q=5.5886 A! -
Sk,w) = /th(k; t)e' /de(k, w) = S(k) "R R
2 0.10 ;ii + 8i-0 -
5 g - 0-0
' - Zo.0sk o ©QQ
Neutron welghted dynamlc structure factor @ -

(similar to static one):

1 o dt _; Ny N iqr (¢) —iqr(0)
S, (q, — ——e ' bb{e 7 e )
L@ N(b ) — o 21 f§1 jzl /
Access to partial dynamic structure factors :
1 o dt _ qr; (t —iq-r;(0) E}
Suplqo)=—me [ 7 L S S (] ) =
\/NaNB ® ﬂ. iCajCp o

O Can be compared to measurements extracted from
coherent inelastic neutron scattering.

Differential cross-section (d?0/dwdQ) proportional to S(q,w)

matthieu.micoulaut@upmec.fr
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D) LINEAR RESPONSE THEORY

L Goal: Having MD generated trajectories at our disposal, we want to compute
- viscosity, electrical or thermal conductivity, mechanical properties, etc.
Use of linear response theory

J General idea (Onsager): Disturbance in a system created by a weak external
perturbation decays in the same way as a spontaneous fluctuation in equilibrium.

O Linear response theory : link between time correlation functions and response to
weak perturbations (Green-Kubo’s fluctuation-dissipation relations)

(] Static response (e.g. polarization, electric current) to a constant weak applied field.

* Property characterized by a dynamic variable A.
* Change in the Hamiltonian H,-AB(pN,q")

* External perturbation brings the system from Ensemble average <A>, to
<A> +<AA>.
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» External perturbation brings the system from Ensemble average <A>, to <A> +<AA>.

e The Ensemble average <A> for this perturbated A is :

. fdl“ exp[~(3(’Ho — AB)JA
(Ao +(AA) = [dl exp[—B(Ho — AB)]

[" is the integration over phase space variables (qV,p")
e <A>can be expressed as a linear Taylor expansion: <A>=<A>,+A(d<A>/dA),_, involving
the quantity:

0 (AA
(H522) = BB~ () (Bl

O Similarly, we can compute the dynamic response
** Preparation of the system under a weak constant perturbation. One thus has
<A>=<A> +<AA>
s At t=0, the perturbation is switched off. Reponse AA decays to zero.
** Ensemble average of AA at time t is given by:

_ [dI exp[—B(Ho — AB)IA(t)
(AA(t) = [ dI" exp[—B(Ho — AB)]

with A(t) the value of A at time t in a system starting at point I".
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_ [ dI exp[—=B(Ho — AB)IA(t)
(AA(Y) = fdl‘ exp[—B(Ho — AB)]

In the limit A=0 (and assuming that <A>,=0), we can simplify to:
[37\de exp[—BHolBA(t)

[dr exp(—BHo]
= BA(B(0)A(t).

(AA(t))

The decay of AA of the system is determined by a time correlation function
describing the decay of spontaneous fluctuations of A in equilibrium under an
external perturbation B.

E) TIME CORRELATION FUNCTION

O Let us consider two time dependent signals A and B. The general time correlation
between them is given by:

C(t) = limlj: A(t,)B(t, +0)dt, = (A(1,)B(t, +1))
5% T 0

A=B: auto-correlation. Otherwise cross-correlation which is the case in linear response
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O At equilibrium, the correlation is invariant under time translation, i.e.
C(t)=CA(ty)B(ty+1t))=CA(ty+s)B(ty+s+1))

NB: Glasses C(t) is not time invariant so that t depends on t,=t,, (waiting time)

O In the limit of no delay time, C(0) is the static correlation function

[ Can be normalized to the value at t,: 1

C(0) = lim = [ A(1) B(t,) dt,
T—0 T Y
C(1) = <A(t02ig;+ 2L = (A(19) B(t5)) =(A4B)
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G) APPLICATIONS-1: ELECTRICAL CONDUCTIVITY

Ny

Hamiltonian of the system with vector potential is given by 4’ — 5
my
1

i=

(pi - %A)Z + Upot.

A being a jauge field.

| remind that from in Classical Electromagnetism, the generalized momentum

p of a particle with mass m and charge g moving at a velocity v in a vector potential
Ais p=mv+eA.

O The vector potential is switched off at t=0. The electrical field is an infinitesimal spike
(delta function) given that:

1. ]
E=—EA Eﬁ)zzAMﬂ

[ At the first order, we can write :
N

i=1

A+ O(A?)

A
= Ho - ?J er "_‘p1
_ oy A dri
= o~ T rj(r), with j(r) the current density
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From the expression of the perturbated Hamiltonian, we obtain the correlation
function: A

H = Ho——Jdr)( )
de‘e (Ho Cde j(r' t)) j
[ dTe=BHo

we can write the average current density as: jJ)) =

and, expanding at small vector A, we have:

A
6(6) = e [ drdr’ (j(r, 0j(r’, 1))

Remember that we have Ohm’s law (j=0E) and for the response function :

t
(AA(t >-L dt'xag (t — t')f(t')

so that (E(t) is a Dirac function): G(t) = J" dt’o(t — t')E(t’)
— O‘(t)-{\-.
c
d finally: 1
and finally ot) = VkBTJdrdr (j(r,0)j(r', 1))
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Example-1: Electrical conductivity in amorphous aluminia

Computation of the current from the atomic velocities: J(f) = 2 ZieV-,g(l‘)

(J(2) - J(0))
(J(0) - J(0))

Normalized current autocorrelation function: ,p( )

(=) T . T T v ' T —
E . a-ALO, Frequency dependent conductivity
-
= -
- 4K GO [
E o) =vr), e
e 00 ’\\’e&&%ﬂﬁeﬁ B
1
= N N [ s s S S S S S S s e e e s e
S a-ALO,
o = — p=3.175 g/cc i »
2 —— =281 glee = {T=300K|] iy
1=
: v
o 08 S S — \t?.
0.0 0.1 0.2 0.3 0.4 0.5 ,-e\
t (ps) S
o
Vashishta et al. JAP 2008 ]
0 40 80 120 160
® (meV)
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Example-2: Electrical conductivity in an aluminosilicate liquid

T 300
E
v 250 mmmmmene 2500 K H .
: Nalsio, |- 3000 K O Plot of o(t) following:
g 200 ——— 4000 K 1
Z 150
; o(t) = drdr’ )j(r',t
g 100 ] VkBTJ (i(r,0)j(r’, 1))
T T e ]
U --.---...-“-_,---.M____
« 1 | - P RS S T
Z 0 == FYEEY
0.0 500.0 Tiln(:;m('fz) 1500.0  2000.0 0 Access to O,
o MD m  Terai (1969) ‘l o0
3.00 olw=0)=
~ 2.00 3 Ionic Conductivity ( ) VkBT J 0 dt J drdr’ (] t))
E 1-0o§— , NaAlSiO,
2
£ o00f . O Behavior with temperature (Arrhenius)
z F [
o |
::o -1.00 E_ (b) l..
= -2.00 .
_3.00-....I....L..LA4....I..‘.
0.0 5.0 10.0 150 20.0 25.0
10000/T (K)

FiGure 4. (a) Ionic conductivity due to Na in NaAlSiO, de-
termined from simulations at four temperatures, calculated ac-
cording to Equations 7 and 8 in text. (b) Ionic conductivity de-
termined in simulations (open squares) in comparison with results
of laboratory measurements by Terai (1969).
Spera et al. JCP 2001
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Example-3: Beyond linear response theory-usefulness of MD

 The computation of a(t) or 0. and successful comparison with

experiment is the starting point (prerequisite) of atomic scale insight of
conductivity.

[ Channel conduction in silicates

041
T 02
- |
g
)
0_
I Si - Na
F NS3
020 v Ly ci v b by L
0 05 1.0 156 2.0
q (A

FIG. 3. Partial structure factors So o(q). Snana(q). Ssina(g) as
obtained by the simulation in glassy and liquid sodium trisili-
cate at experimental densities. Soo(g) + 0.1 for clarity.

Link with static structure factor

Typical distance related to
g=0.9A1

matthieu.micoulaut@upmec.fr
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F) APPLICATIONS-2: THERMAL CONDUCTIVITY

Similar treatment to electrical conductivity.

 Define a heat current J = Z EiV,l; + % Z I‘z'j[F?jj . (Vz' + Vj)]

e>g
. . pairs
with E;, energy of atom i
: : 1 oc
1 Compute the autocorrelation function: f = f < J(1)-J(0) > dt
. 0 \ \
1.2 T 1 T T B , ,
expt (Cahill) oo ’,A
Lo 0 © 00°° ] R § ®
0°° . % % 10.0 % ® T
% 08" . ) % P ®
E g &
i o6l b((:gc))-Greenwood . % VD | ; =
Lt . % g i
X = Jm]
04 |- \ i z St Sio,
5 g 1.0 **
0.2 a'Si ] §v ° *
E * O Simulation (finite size correction)
0.0 | l | A N 2 @Experiment ‘
! 50 100 200 300 400 600 800 = > Simulation (no finite size correction)
Temperature (K) T
FIG. 4. Thermal conductivity vs temperature for amorphous 01, *o 100 1000
silicon. Solid circles are from Allen and Feldman (Ref. 5 and TKI
open circles are from experiment (Ref. 17). Open circles with Jund and Jullien, PRB 1999

error bars are the present calculations. Lee et al., PRB 1991
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F) APPLICATIONS-3: VISCOSITY

L Shear can not be interpreted in terms of an external field acting on all particles.

d Use of a canonical transformation corresponding to uniform shear transforming
linearly the coordinates from r" to r' with ' =h,r; and h;=1+¢;~1

[ This means that we transform the Hamiltonian from :

N
Ho =) pZ/(2mi) +U(xN)
i=1

to: N 1

Mi=) 50=p'c: G pl+uUe™)

i=1
with G the metric tensor definedas: G=h' -h

O Effect of uniform shear, e.g. €, =€ otherwise 0.

O Assume equilibration of the system with Hamiltonian H, (i.e. under shear) and then
switch off € at t=0 (now left with H,).
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d Assume equilibration of the system with Hamiltonian H, (i.e. under shear) and

then switch off € at t=0 (now left with H,).

O The system experiences a d-function spike in the shear rate, i.e. one has:

OVy 5(1)
= —¢€
oy
1 Time-dependent response of the shear stress, g,,(t) to the sudden change from
H, to Hy: 1
Oxy(t)) = —€ Oxy (0)oxy (t)
(09 (1)) = —€ 53 (Oxy (0) oy (1)
where 0, (tensor) can be computed via: l ' S _' 0 A
5 5i0,-2Na,0 " perope
N é —;SDch —
1o [P ea) (i - €9) Ve ] 2000K e
O, == +(qi - €.)(F; - e :
ap V ; [ m; ( )( B) Té% .
Remember (lecture 5) that pressure is : %OA |
N éo.z -
1 p,? z
= -_— _— + . F . 0 oMb e Y
p SV Z [m% ql 1 o N T ””;
0.01 0.1 1 10 100 1000

=1
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t
U Again, remember that:  (AA(t)) = J dt'xas(t —t')f(t")
—00

with f(t’) the d-function of the shear rate.

We find that 00
vy ] J dt (Gry (0) Ty (1))

TV T By T VkeT )

O Then, we remember Newton’s law for viscosity.

Under laminar flow, the force exterted by a fluid in the x-direction is
proportional to the velocity gradient, the constant of proportionality being the
shear viscosity.

: ] . e
[ The shear stress is thus : G4, = nal; and, by identification:

] (o o)
M= VigT Jo 4t (omy Q)0 (1)
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G) APPLICATIONS-3: VISCOSITY

Example-1: Viscosity of a silicate liquid (NS2) and MORB under pressure
NPT (P=0), then NVE

1000 = T T T T I
100 = - ]
= LI I B |‘ EREIREAEANEE ™R S - ., .
= MORB (Villeneuve et al., exp.}) - 3
- ;.' 1 L C _
&l ( i NVE alone o
= = 100 & -
= NS2 (Bockris, exp.) @ 5 - : ’ 3
I~ s - n ./ =
— 1= g — = | -
w =3 4 = - / / -
£ E : A
= C - 10 = ,/ // =
01 NS2 (MD) = o - ’ ‘ 3
= = A C n
& 5 S C ’ ]
B MORB (MD) 7 ~ = 4
0.01— = /
1 ) =
co e b b e Py - ® ® .
2 3 4 5 6 T 8 - .
104T (K1) - [ ] .
0l @ =
Fig. 3. Simulated viscosity of the N52 liquid at zero pressure (filled red squares), com- = PY =
pared to experimental data (red cirdes) from Bockris et al. (1955), together with sim- :. n
ulated viscosity of the MORB liguid at zero pressure ( filled black squares), compared Lo - -
experimental data (broken black curve) from Villeneuve et al. (2008). The dotted line - -
is a high temperature Arrhenius fit for the MORB data whereas the solid line is a TVF fit | | | | | | | | | |
(see text for parameters). 0-012 3 4 5 6 7 g
4 -1
10/T (K )

Bauchy et al. Chem. Geol. 2013
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G) APPLICATIONS-3: VISCOSITY
Example-1: Viscosity of a silicate liquid (NS2) and MORB under pressure

L Checking for empirical relationships

Eyring (1948): ) = kgT /AD

) _ . . .
K With A a jump distance (d, o~ a few A)
; 0.1 | —
¢ ] e Compute (MD) D and n
; . e Valid only at high viscosity
B MORB -
c||||||||||||||||||||||||||||||| - LTS
0.01 - @—@ T=2000 K, change in P
0 10 20 30 20— @—® P=0GPa, change in T |
P (GPa) C ]
Fig. 6. Simulated viscosity of a NS2 liquid at T=2000 K (filled circles) and a MORB liq- . e -
uid at T=2273 K (open circles) as a function of pressure. Red circles correspond to the < B i
simulated viscosity of three selected densified NS2 using the potential of Guillot and < 10 [ ]
Sator (2007a). - -
O Detecting anomalies (minima in viscosity) 5sF NS2 -
B 1 1 IIIIIII 1 L IIIIIII 1 1 IIIIIII 1 L1 11111
0.001 0.01 0.1 1 10

n (Pa.s)
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Example-2: Viscosity of silica

'—108 1 1 1 1 Ll 1 1 1
@ L 20
S o ] ks T/mD [A] 3
.10 - 15 =
= 3 F 10 experiment
10% 4
s N\ i
3 . . . .~ E,=5.19eV g
10° 1 20 25 300 35,7 i
3 10%/T [K] 3
100 _ simulation _
10_2 i""I""I/""I""I"“ ""I“"I"“I"";
1.0 2.0 3.0 4.04 5_.10
10/T [K ]

FIG. 10. Main figure: Arrhenius plot of the shear viscosity from the simulation (filled squares).
The dashed line is a fit with an Arrhenius law to our low-temperature data. The open circles are
experimental data from Urbain et al. [34]. Tnset: Temperature dependence of the left hand side of
Eq. (12) to check the validity of the Stokes-Einstein relation.
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Conclusion:

L Dynamic quantities can be estimated from Molecular Dynamics
Time-dependent structural correlations
Transport coefficients (linear response theory)

O Insight into the glass transition phenomenon (see next lectures)

O Agreement with experiments is less obvious (as compared to structure)

Next time: Force fields and limitations
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