

FIAT

An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference

Novel Applications of Hollow Glass Microspheres

Matthew M. Hall and James E. Shelby

Alfred University

School of Engineering 2 Pine Street Alfred, NY 14802

June 27, 2005

Traditional Applications for HGMS

Low density fillers for composites with polymers and concrete Thermally insulating paint Thermally insulating tapes Syntactic foams for submersibles Targets for laser fusion systems (D/T filled)

Modern Applications for Hydrogen-Filled HGMS Hydrogen storage Hydrogen separation and purification Radiation shielding for manned space flight

HOLLOW GLASS MICROSPHERES (DOE)

HYDROGEN-FILLED HOLLOW GLASS MICROSPHERE

ADVANTAGES:

- Cheap, plentiful raw materials
- Established technology
- Readily recycled
- Light-weight
- High strength
- Safety
- Flow properties

DISADVANTAGE:

• Slow hydrogen release rate

Flame spraying method for producing microspheres

HOLLOW GLASS MICROSPHERES

Photo-Enhanced Outgassing

Data shown are for 0.5 wt% Fe₃O₄ doped CGW 7070 glass

Photo-Enhanced Outgassing

Data shown are for 2.0 wt% Fe₃O₄ doped CGW 7070 glass

IDENTIFYING THE CRITICAL PARAMETERS

- Glass membrane composition
- Glass dopant identity
- Glass dopant concentration
- Illumination intensity
- Illumination wavelength

Data shown are for glasses doped with 2.0 wt% Fe₃O₄

Data shown are for doped CGW 7070 glass

OPTICALLY-INDUCED OUTGASSING

Comparison of Outgassing Rates from Glasses Doped with Nickel and Iron Oxides.

DOPANT CONCENTRATION

Data shown are for doped CGW 7070 glass

Data shown are for 0.5 wt% Fe₃O₄ doped CGW 7070

ACTIVE WAVELENGTH RANGE

Data shown are for 2.0 wt% Fe₃O₄ doped CGW 7070 glass

ACTIVE WAVELENGTH RANGE

PVT Measurement System

Helium Outgassing Curves for Borosilicate HGMS

- Produce hollow glass microspheres doped with transitional metal of choice
- Demonstrate optically-induced outgassing of hydrogen from hollow glass microspheres
- Evaluate designs for integrating hollow glass microspheres into a complete storage system

SUMMARY

- Hollow glass microspheres have many attractive features as a hydrogen storage medium
- Optically-induced outgassing of hydrogen from glass is significantly faster than conventional heating
- Current work seeks to demonstrate feasibility using hollow glass microspheres

HYDROGEN SEPARATION and PURIFICATION

Flow mixed gases through a bed of HGMS at elevated temperatures/pressures

Hydrogen will diffuse through glass, but CO, CO_2 , H_2O , H_2S , etc. will not

When H₂ appears in exit stream, stop flow

Evacuate bed, capture hydrogen released at temperature, or

Cool, "freeze in" hydrogen, remove HGMS

Hydrogen will be retained and then released when surrounding atmosphere has lower partial pressure of hydrogen than is present in HGMS

Transport filled HGMS to use site

Reheat to release hydrogen, or

If doped, use photo-enhanced diffusion to release hydrogen

Return empty HGMS for reuse

Status of Separation/Purification Studies

Conceptural at present, but all known behavior of gas permeation in glasses indicates that this will work with existing technology and commercially available HGMS

Testing will use PVT system used for hydrogen storage studies, which is operational

Studies will be carried out during next 12 months

After that, just needs someone with money to commercialize!

RADIATION SHIELDING (NASA)

Outer space has "Galactic Radiation Spectrum"

High energy particles, neutrons, protons, alpha particles, gamma rays, x-rays, etc.

⁵⁶Fe is most favored of high energy nuclei and is very damaging to humans and spacecraft

Other "high-energy, high-Z" radiation includes ¹⁶O, ²⁸Si, and ¹²C

Radiation Spectrum

Distribution of HZE particles produced by the sun

Shielding Criteria

Hydrogen is most effective shield against Fe nuclei

Currently use high density polyethelene (≈2 gm/cm³)

Composite of PE/HGMS would be much lower density ≈0.5 to 0.7 gm/cm³

HGMS filled with high pressure hydrogen will yield comparable hydrogen density, with lower bulk density

Glass can contain B, Li, Cd, Sm, and/or Gd for neutron absorption as well, i.e. multipurpose shielding

Status of Shielding Studies

Composites are being made using commercial HGMS, yield of good material is improving

Need stronger HGMS or lower stress process

Developing lithium aluminoborate glasses for producing HGMS

Radiation testing will occur during FY06

Posters presented at this conference covering several aspects of this work

Acknowledgments

Current Students

Melissann Ashton-Patton (NASA) Aladdin Geliel (NASA) Michelene Miller (DOE) Fabienne Raszewski (DOE) Melodie Schmitt (CEER/EPA) Josh Snyder (DOE)

Prior Students

Brian Kenyon (Praxair/CGR) Doug Rapp (CEER/EPA)