

Rare-earth photoluminescence in sol-gel derived confined glass structures

An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference

Rui M. Almeida* and Ana C. Marques

Departamento de Engenharia de Materiais / ICEMS, Instituto Superior Técnico Av. Rovisco Pais, 1049-001 Lisboa, Portugal

rui.almeida@ist.utl.pt

* Presently on sabbatical leave at Lehigh University, PA.

Outline

- Er³⁺ doped sol-gel (SG) planar waveguides
 - Silicate glasses as Er³⁺ hosts: effects of TiO₂ and HfO₂ additions on the structure and photoluminescence (PL) spectra
 - Effects of Ag^o nanoparticles on the Er³⁺ PL intensity
- Er³⁺/ Yb³⁺ doped Fabry Perot microcavities (by SG)
- Conclusions

Possible RE ion (active) dopants for glassy hosts

M. Clara Gonçalves et al. / C. R. Chimie 5 (2002) 845-854 3-level

The Erbium Doped Fiber Amplifier (EDFA) operates as a 3- level system when pumped at 980 nm and as a quasi 2-level system when pumped at 1480 nm to the long-lived (metastable) ${}^{4}I_{13/2}$ level.

The signal photons at ~ 1.5 μ m stimulate emission of Er³⁺ at ~ 1520-1620 nm, amplifying the original signal, while maintaining its frequency and phase.

Electronic energy levels of Er³⁺

(Adapted from: Introduction to DWDM Technology, S.V. Kartalopoulos, IEEE Press, 2000)

Er³⁺ PL spectrum @ ~ 1.5 μm

The ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ emission of Er³⁺ spans the **third window** of fiberoptic communications. In the case of Al/P doped silica glass fibers, it fully covers the C band, from 1530-1565 nm. (FWHM ~ 50 nm).

The Dense Wavelength Division Multiplexing (DWDM) systems also include the S (short, 1450-1530 nm) and L (long, 1560-1620 nm) wavelength ranges.

(Adapted from: Rare earth doped fiber lasers and amplifiers, ed. M.J.F. Digonnet, Marcel Dekker, 1993)

Planar waveguides

A planar dielectric waveguide has a central rectangular region of higher refractive index n_1 than the surrounding region which has a refractive index n_2 . It is assumed that the waveguide is infinitely wide and the central region is of thickness 2a. It is illuminated at one end by a monochromatic light source.

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Modes in an optical planar waveguide, propagating along the z direction.

There is **confinement** only **along** the **y direction**, only.

The electric field patterns of the first three modes (m = 0, 1, 2) traveling wave along the guide. Notice different extents of field penetration into the cladding. (Evanescent field increases with mode order and λ). © 1999 S.O. Kasap, Opticelectronics (Prentice Hall)

Silicate glasses as Er³⁺ hosts

 Incorporation of Er³⁺ ions in silica-based sol-gel planar waveguides, for integrated optical amplification @ 1.5 μm:

Er³⁺ can also act as a **sensitive probe** of the structure of the host material:

 the disordered structure of glass and amorphous films leads to site-to-site variations in the local bonding

inhomogeneous broadening of spectral features

 possible splitting of Stark components when Er³⁺ is in the neighborhood of crystallites within the glass matrix (*Strohhofer et al. 1998*)

Transitions between individual **Stark components of** different **J multiplets** can be observed as discrete lines in RE-doped crystals, but not in glasses. Crystalline hosts provide high cross sections at nearly discrete wavelengths; glass hosts have lower cross sections over a broad range of wavelengths.

(Adapted from: Rare earth doped fiber lasers and amplifiers, ed. M.J.F. Digonnet, Marcell-Dekker, 1993)

 <u>Nanostructuring of planar waveguides</u> incorporation of Ag^o nanoparticles into Er³⁺-doped silica-based waveguides

surface plasmon resonance of noble metal nanoparticles

Absorption coefficient (10³ cm⁻¹)

5.0

4.0

3.0

2.0

1.0

320

Ag-doped glass R = 110 Å

420

Wavelength (nm)

- enhancement of third-order optical nonlinear susceptibility $(\chi^{(3)})$ of the composite
- increase in local electric field strength at (and near) the metal particles

Local field factor:

(Yamane and Asahara, *Glasses for photonics*)

10-7

10-8

520

χ⁽³⁾| (esu)

Viable systems for 1.5 µm applications:

Er³⁺-doped SiO₂ - TiO₂ \rightarrow long fluorescence lifetimes

(Almeida et al. 1999, Orignac et al. 1999, Almeida et al. 2003)

Er³⁺-doped SiO₂ - HfO₂
$$\rightarrow$$
 intense Er³⁺ PL signal

(Gonçalves et al. 2003)

Both have:

- Significant refractive index contrast (waveguiding)
- x Transparency over a wide wavelength range
- Led to the preparation of good optical quality waveguides

Sol-gel processing of Er³⁺-doped silica-based films and waveguides

Sol-gel processing of Er / Ag-doped, silica-based glasses and waveguides

SUPERIOR

Waveguiding

He-Ne laser light (@ 633 nm) being guided by a SiO₂-TiO₂-Al₂O₃ optical planar waveguide on SOS, by means of prism coupling. Loss ~ 0.2 dB/cm.

Polarized Waveguide Raman Spectroscopy

17th University Conference on Glass Science – June 2005

X-ray diffraction and Er³⁺ photoluminescence (PL)

Pumping of Er³⁺ ions

Absorption spectrum of Er³⁺ in a silicate glass.

(Adapted from: Rare earth doped fiber lasers and amplifiers, ed. M.J.F. Digonnet, Marcel Dekker, 1993)

Effects of Ag^o nanoparticles on the Er³⁺ PL intensity

TEM, visible absorption spectroscopy and Er³⁺ PL of the nanocomposites

Sol-doping of planar waveguides

Transmission electron microscopy

Pore-doping of **bulk silica gels Transmission electron microscopy** bulk silica gel samples treated for 5 h at 900° C Ag° nanocrystallites (2r~10-15 nm)

(Ag-containing sample, Er1Ag2)

Er³⁺-doped bulk silica glass (prepared by pore-doping with a Er(NO₃)₃ solution)

Er³⁺ / Ag^o-doped bulk silica glass (prepared by pore-doping with a Er(NO₃)₃ + AgNO₃ solution)

17th University Conference on Glass Science – June 2005

Ag° optical absorption and Er^{3+} PL intensity at 1.5 μ m (bulk glass samples prepared by pore-doping of gels)

Er³⁺ PL enhancement (~ 11 times) occurs only for resonant excitation (when λ_{exc} is absorbed by the Er³⁺ ions @ 488, 497, 515 and not @ 458, 477 nm) Local electric field enhancement around Er³⁺, due to SPR of Ag^o nanoparticles

Effects of TiO₂ and HfO₂ additions to SiO₂ based optical waveguides, prepared by sol-gel:

Conclusions —

→ The structure and spectroscopic properties of these RE-doped sol-gel materials were found to be strongly connected:

- the appearance of hafnia and hafnia-titania mixed crystals in SiO₂-HfO₂-TiO₂ waveguides led to a significant narrowing of the Er³⁺ PL peak, with the formation of well resolved Stark components.

- Effects of the incorporation of Ag[°] nanoparticles into SiO₂-based sol-gel optical waveguides: Conclusions
- → The presence of ~2-15 nm Ag° nanoparticles in silica glasses and silica-titania planar waveguides caused a significant enhancement of the Er³⁺ PL at 1.5 µm (~ 3-60 X), irrespective of the method used for Ag or Er³⁺ incorporation.
- → The dominant mechanism responsible for the observed PL increase in Ag-containing samples is proposed to involve a local electric field enhancement around the Er³⁺ ions, due to SPR of the Ag[°] nanoparticles.

Rare-earth doped Fabry-Perot microcavities

PHOTONIC BANDGAP STRUCTURES

Also called photonic crystals, the optical analogues of semiconductors.

Structures whose refractive index is periodic on a length scale $\sim \lambda$ in the optical region of the electromagnetic spectrum.

Light is prevented from propagating by Bragg reflection:

$$\lambda = 2d\sqrt{n_{eff}^2 - \sin^2\theta}$$

1-D, 2-D and 3-D photonic crystals

Schematic of 1-, 2-, and 3-D periodic lattices consisting of two materials of different dielectric constants. The lattice constant is denoted **a**.

INSTITUTO SUPERIOR TÉCNICO

Artificial opal prepared by convective self-assembly

SEM micrographs of an opal made of 460 nm diameter PS spheres, by convective self-assembly: (a) top view of {111} plane; (b) cleaved edge showing {100} and {111} planes of the *fcc* structure.

Titania inverted opal

SEM micrographs of a titania / air inverted opal structure, prepared by convective self-assembly of PS templates, at different magnifications.

Interference filter

(also called a Distributed Bragg Reflector, or simply a Bragg mirror)

Schematics of 1-D PBG structures: → (a) microcavity of silica; → (b) coupled microcavities of silica.

TiO₂ layers are gray and SiO₂ layers are the open rectangles.

Microcavity with a TiO₂ defect layer

Cross-section FEG-SEM micrograph of a microcavity, with a **titania defect** layer. (Backscattered electron mode).

Transmittance

Coupled cavities in the Visible region

Coupled cavities in the NIR region

Wavelength (nm)

Comparison between experimental and simulated optical transmission of a coupled microcavity with the structure (LH)2L3/2(LH)L3HLH where L stands for SiO₂ and H for TiO₂.

Antenna (or sensitizing) effect

Energy level diagram of Er³⁺ and Yb³⁺ ions ("antenna" effect).

Doped coupled microcavities

 $[Er^{3+}] = 0.5 \text{ mol}\%$ in SiO₂ $[Yb^{3+}] = 2.0 \text{ mol}\%$ "

(Sample A has 50% more Er³⁺ than B or C)

Transmission of cavity A

"Transmission" (1-R%) spectra of cavity A at different incident angles.

Normalized PL of A, B and C (excited @ 488 nm)

Normalized Er³⁺ photoluminescence spectra of coupled microcavities, excited at 488 nm, at normal incidence.

A: both cavities co-doped with Er³⁺ and Yb³⁺;

B: D1 doped with Yb³⁺ and D2 doped with Er³⁺;

C: only cavity D2 doped with Er^{3+} .

PL of A, B and C (excited @ 514.5 nm)

PL of A, B and C (excited @ 980 nm)

PL of A (excited @ 514.5 nm and 980 nm)

Intensity [arbitrary units]

PL of B (excited @ 514.5 nm and 980 nm)

Comparison of Er³⁺ photoluminescence spectra of coupled **microcavity B**, excited at 514.5 nm and 980 nm (TE).

- 1-D single and coupled Fabry-Perot microcavities can be prepared by sol-gel processing, with Q factors up to 35, using silica and (anatase) titania alternating layers.
- The silica cavity (defect) layers can be doped with Er³⁺ and / or Yb³⁺ ions.
- The presence of Er in both cavity layers of coupled microcavities led to an increase of the PL signal width and intensity, compared to Er present only in one of the cavities (after correcting for the total Er concentration).
- A significant sensitizing ("antenna") effect was observed, when exciting Er^{3+} with 980 nm light in the presence of Yb^{3+} , as long as the two types of ions were present simultaneously in the same cavity.

Acknowledgements

- M. Ferrari, M. Montagna, A. Chiasera and L. Zampedri (Univ. of Trento, Italy).
- M.C. Goncalves and S. Portal.
- Financial support of FCT (Lisboa), under R&D contracts POCTI/CTM/36109, POCTI/CTM/32823 and POCTI/CTM/33307 and FSE/FEDER (EU).
- Support of IMI New Functionality in Glass for sabbatical leave at Lehigh University (RMA, Nov. 04 - July 05).