This talk will serve as an introduction to a variation of list coloring on a graph G such that the sizes of the lists assigned to each vertex can be different. Furthermore, rather than giving a proper coloring, in which color classes induce independent subgraphs, we will discuss coloring G such that the color classes induce acyclic subgraphs of G, as is done in finding vertex arboricity. The goal, then, is to minimize the sum of all list sizes such that G is colorable regardless of the particular lists assigned. We will look at how achieving this goal is related to decycling sets, or feedback vertex sets, which leave acyclic graphs when removed. Finally, we will look specifically at achieving this goal for specific cartesian products of a cycle and a path.