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Self diffusion in mixtures of charged spheres
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Résumé. 2014 On utilise la technique de diffusion Rayleigh forcée pour mesurer les constantes d’autodiffusion
dans une suspension contenant deux espèces de sphères chargées qui interagissent fortement. Lorsque
quelques grandes sphères diffusent au milieu d’un grand nombre de petites sphères, on trouve que leur
constante d’autodiffusion est reliée simplement à la viscosité globale de la suspension par la loi de Stokes. Par
contre les petites sphères se voient comme des particules discrètes et ne suivent pas la loi de Stokes. Dans le cas
opposé où il n’y a que quelques petites spheres dans une suspension de grandes sphères, on trouve que les
coefficients d’autodiffusion des deux espèces sont égaux. Ceci implique que la dynamique des petites sphères
est alors gouvernée par le mouvement des grandes.

Abstract. 2014 We have used the Forced Rayleigh Scattering technique to measure the self diffusion constant of
the two separate species of charged polystyrene spheres mixed in a strongly interacting suspension. For a few
large spheres diffusing in a larger density of smaller spheres, we find that the diffusion constant is simply
related by Stokes law to the total viscosity of the suspension. For the same relative number of spheres the small
spheres see each other as discrete particles and do not follow Stokes law with the total viscosity. In the opposite
limit of a few small spheres in a sea of large spheres, we find that the self diffusion of the two species are equal.
This implies that the dynamics of the small spheres are governed by the motion of the large ones.
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1. Introduction.

Charged particles in suspension diffuse under the
influence of Brownian motion from collisions with
the solvent molecules as well as potential and

hydrodynamic interactions with the other suspended
particles. The self diffusion coefficient in such sys-
tems is a monotonically decreasing function of the
interparticle interactions [1-4]. In systems with a
small volume fraction of particles the hydrodynamic
interaction can be negligible relative to the potential
interactions. In turn by controlling the charge of the
particle and electrolyte concentration of solvent it is
possible to reduce the self diffusion by factor of
order 10 from the free particle diffusion given by
Stokes law (Do=kT/67TTJR), before crystalli-
zation. Although there have been several studies of
the self diffusion of such polyball systems, there is
not a quantitative agreement between theory and
experiment as one leaves the perturbation region
near Dg/Do -1. Nonetheless there have been

phenomenological models which can predict the
behaviour of monodisperse polyball systems [4].

The interaction between the charged spheres
results from the screened Coulomb interaction [5].
The screening is due to the protons solvated from
sulfonic acid groups on the sphere surface. Usually
the polyballs are treated as discrete macroions,
whereas the counterions or microions (protons) are
treated as a continuous charge distribution (i.e. by
using the continuum Boltzmann-Poisson equation).
Recently there have been calculations which take
into account the finite size of the counterion and

have shown interesting and important effects in the
several pair correlation functions (S11 (q), S12(q),
S22 (q ) where 1 refers to the macroions and 2 the

microions) [6]. In order to investigate the diffusion
process in more detail, test the multiple pair interac-
tion ideas and see the relation between diffusion and

viscosity we have prepared binary mixtures of

polyballs of different sizes (more importantly differ-
ent charges) and studied the self diffusion of each
species separately. Previous work on mixtures in-
volved the quasi-elastic light scattering from large
tracer particles in a reasonably dilute suspension of
small charged particles (which do not contribute
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significantly to the light scattering) and found a
significant decrease in the self-diffusion of the large
particles [7].

2. Experimental techniques.

The technique we used was Forced Rayleigh Scat-
tering [8]. The experiment consists of labelling the
particles with a photochromic dye and exciting the
dye with a particular pattern. The pattern is gener-
ated by splitting the beam from an ultraviolet laser
and recombining it on the sample. The difference in
path lengths leads to an interference pattern with
sinusoidal intensity of adjustable wavelength
(2 7T / q). The UV beam is flashed on for - 1 ms and
leaves the particles in the high intensity region dark
while in the low intensity region they remain light.
The dye used in these studies was a spiropirane
derivative. The dying technique and further details
of the experiment are described in reference [4]. The
alternate dark and light regions form a diffraction
grating which is probed by a second (He-Ne) laser.
The intensity of the diffracted spot is monitored by a
photomultiplier tube. As the particles diffuse the
diffraction grating loses contrast and the intensity of
the diffracted spot decays as e-2t/T, T = Dq 2. As
long as the density of dyed spheres is small the
coefficient D is for single labeled particles and

corresponds to the self diffusion of the particles.
This technique is particularly well suited for the

study of mixtures since each of the species can
separately be dyed and studied.

In the present study we use 0.091 u and 0.038 u
polystyrene spheres purchased from Dow Diagnos-
tics. The effective charge Z* of the 0.091 spheres
(which determine the strength of their screened
Coulomb interaction using a Debye-Huckel approxi-
mation) [9] is easily determined since they crystallize
at volume fractions above - 0.2 % and their shear
modulus can be measured and related to the inter-

particle interactions [10]. The effective charge is
Z * - 300 e. The evaluation of the charge for the
0.038 spheres is more difficult. We have never

observed the 0.038 )JL spheres to crystallize, even
with volume fraction up to 30 % (although a

glasslike state seems to exist at these highest volume
fractions). The Z* for the 0.038 spheres is also

considerably more sensitive to the environment

(concentration, solvent pH, etc.) since the ionizable
surface groups are carboxilic acid which is a much
weaker acid than the sulfonic acid on the 0.091 u
spheres. We have therefore performed several exper-
iments to get an approximate value of Z* for the
0.038 u spheres under our experimental conditions.
In the first such experiment we added either the
0.038 u spheres or HCI to different volume fraction
suspensions of the 0.091 )JL spheres and determined
the critical melting concentration of added electro-

Fig. 1. - Phase boundary for melting colloidal crystals of
0.091 fJL polyballs with added 0.038 u spheres or added
HCI.

lyte. The results are shown in figure 1. There is an
approximate linear dependence of the melting curve
with the concentration of either 0.038 u particles or
HCI indicating, but certainly not proving, that we
may treat the 0.038 u particles and their counterions
as a simple electrolyte solution. We can then as-
sociate the screening length of a certain concen-
tration of 0.038 u particles with that of the HCI
solution which melts the same colloidal crystal of
0.091 u particles using the equation

where K is the inverse screening length and c0.038,
CO.091, ZO*038, Zo m are the concentrations and effec-
tive charges of the 0.038 u and 0.091 u particles and
E is the dielectric constant of water. The two terms in

Zo o3s arise from the screening due to the counter-
charges from the 0.038 u particles (the ZO*.038 term)
and the screening due to the 0.038 u macroions
themselves. If we allow screening from the macro-
ions (which would be correct if the concentration of
0.038’s was much larger than the concentration of
0.091’s) then we would have Z* - 40. If the screen-
ing is due purely to the countercharge we would find
Z* - 1 600. Unfortunately, the number of 0.038’s is
approximately equal to the number of 0.091’s so that
neither approximation is valid. (If the value of Z* is
closer to 40 e, as we believe, then the melting is

more realistically caused by the strong perturbation
to the lattice of 0.091’s caused by the 0.038’s.)
We can also get an approximate value for the

charge of the 0.038’s from the viscosity of suspen-
sions of pure 0.038’s using the empirical relation
q = GT, T = (0.1 d)2/ Do, Do = kT/6 -xqa [11]
and the shear modulus of charged suspensions given
by G = (4/9) V (d) (Kd)2 where
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with a the sphere radius and d the interparticle
spacing. Unfortunately Z*(G) = constant is a dou-
ble valued function and also allows Z* -- 100 e, or
Z* &#x3E; 1 000 e from our viscosity measurements. Fi-
nally we have measured the self diffusion of pure
0.038 u samples for low concentration and find
reasonable agreement with Z* - 40-60 e [4]. We
therefore take ZO*.038 - 50 e and in any event consider-
ably less than Zo* .09, - 300 e.

3. Large spheres labeled.

We now consider the diffusion of the large spheres in
the mixtures, i.e. Forced Rayleigh Scattering exper-
iments where the 0.091 u particles are dyed and the
0.038 u particles are not. What should we expect ?
First take the limit where there are a few large
spheres diffusing in a much more concentrated

suspension of small spheres. The large spheres
undergo Brownian motion due to forces from the
solvent molecules, H20 and also from the 0.038 R
spheres which in some sense comprise their own
interacting fluid. In the limit that the radius of the
small spheres goes to zero while their density
increases to that of conventional fluids we might
expect the diffusion of the large spheres to be

governed by Stokes law Ds1 = kT/6 irq 1 ro.091 where
171 1 is the viscosity of the liquid of 0.038 spheres. The
large spheres are then immersed in suspension which
looks like two interpenetrating fluids. In this two
fluid model the diffusion constant for the large
sphere is given by

where 0 refers to the water and 1 the fluid of

interacting 0.038 u particles. The diffusion constants
add reciprocally (as for rates) as long as hydrodyn-
amic interactions (which depend on the total volume
fraction of solids in suspension [~ 1 % for our

studies]) are small. The viscosity in this two fluid
model is simply the sum of the viscosities

Similar equations have been derived with consider-
ably more rigor by the authors of references [3] and
[6] who write their equation for the self diffusion as
Ds = kT/ (Co + A§ ) where Co is the friction factor
related to the suspending fluid and A§ is the friction
factor related to the interparticle potential interac-
tions. Clearly this equation can be written in the
form of equation (2). In suspensions with a single
species, equations (2) and (3) have been found to
describe and predict experimental results excellently
[4, 12].
We can obtain complementary information on

these suspensions by measurements of their viscosity.
In the present study this was accomplished by
observing the fall time of a small ion exchange resin

bead in the sample couvette directly after each
measurement of the self diffusion and comparing the
fall time with that of the same bead in the same
couvette filled with water. The viscosity measured in
this way corresponded well to the macroscopic zero
shear rate viscosity measured in a Zimm viscometer
for a similar sample. The accuracy of the fall time
measurements is - 5 %.
The normalized large sphere diffusion (Dg/Do)

and normalized viscosity from our measurements are
plotted in figure 2. The x axis of this plot is the
volume fraction of 0.038 u spheres with the total
volume fraction of spheres being kept constant at
1 %. Thus x = 0 corresponds to a pure 1 % suspen-
sion of 0.091 tJL particles while x = 1 % corresponds
to a pure 1 % suspension of 0.038 u particles.

Fig. 2. - Self diffusion constant for 0.091 u spheres
(normalized by their free diffusion constant) for mixtures
of 0.091 u and 0.038 u spheres with constant 1 % total
volume fraction. On the abscissa is the volume fraction of

0.038 u spheres, 0 corresponds to 1 % pure 0.091’s, 1 % to
pure 0.038’s. Also shown is the reciprocal normalized
viscosity measured for each sample.

Near x = 1 % there are a few large particles
surrounded by the small particles, the case we began
considering above in writing equations (2) and (3).
From these equations we may try to obtain the
normalized self diffusion by assuming Stokes dif-
fusion in the two separate interpenetrating fluids,

This yields the simple result DS/Do = qo/,q. In the
region near x = 1 % of figure 2, we see that

Ds/Do for the large particle fits nicely with the
measured reciprocal viscosity. Thus the large spheres
are apparently undergoing free diffusion in a com-
plex fluid of viscosity 17. However, as the large
particles begin to interact with each other this
relation breaks down.

Suppose we are at the other side of figure 2 near
x = 0 where the large spheres interact primarily with
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other large spheres. In this case the particles see
each other as individual particles rather than as a
quasicontinuous liquid. Presumably we should be
able to calculate the diffusion of the particles from
knowledge of their interactions but as discussed
toward the beginning of this paper, theories have not
yet been able to successfully treat this strongly
interacting case. The problem however is similar to a
species diffusing in a liquid consisting of the same
species, i.e. an atom of argon diffusing in liquid
argon. Although there is little theoretical justifi-
cation, phenomenologically it is well known for all

simple liquids that the molecular self diffusion is

given by (kT/3.3 irqr) where R is the particle
radius, a result which resembles Stokes law but for
the substitution of 3.3 7T for 6 7T [13]. To apply such a
formula to our case it is more appropriate to use 1/2
the interparticle separation for R (instead of the
polyball radius) since it is the interparticle forces
that are important not the particle sizes, when
considering the polyballs as a separate fluid. For the
nearly pure, 1 %, 0.091 u suspension 1/2 the inter-
particle spacing is 0.19 u and the measured viscosity
,q/,qo = 2.6 yields a value of DSl = 9.2 x 10- 9,
Do = 4.8 x 10- 8 cm2/s and the self diffusion Ds is

then calculated as 0.22 Do which agrees very well
with the experimental observation in figure 2 and is
significantly different from qo/n.

4. Small spheres labeled.

We now look at the self diffusion of the 0.038

spheres in another similar set of mixtures with only
the small spheres dyed, figure 3. For x - 1 we have
small spheres diffusing in a liquid of small spheres.
Using the same arguments as above D,l should

correspond to molecular motion in a simple liquid.
With 1 %, 0.038 R suspension, 1/2 the interparticle

Fig. 3. - Normalized self diffusion constant for 0.038 u
spheres in 1 % mixtures with 0.091 u spheres. The recip-
rocal normalized viscosity for these samples is also shown.

spacing is 0.079 u, the viscosity q / -q 0 = 1.5, D sl =
1.01 x 10- 7, Do = 1.15 x 10-7 cm2/s and D,IDO =
0.47, in agreement with measurement and very
different from ’TJ 0/ ’TJ .
The most interesting situation occurs when we

have a few labelled small spheres diffusing in a sea of
interacting large spheres. In this case the small

particles see the particles of the liquid they are in
individually, but they are a different species. The
probe particle has smaller size and more importantly
smaller potential interactions. In one limit, for small
charge (for example that of a simple counterion) we
might expect a fast diffusion approaching free dif-
fusion. Of course as the charge is increased to that of
the large spheres the diffusion will be slowed to that
of the large spheres. In figure 3 we see that there is a
strong reduction in D, in the region near x = 0.
What is more illuminating is the data replotted in
figure 4 without normalization by Do for each

species. What we see in this figure is that the

absolute value of the diffusion constant of the small

spheres approaches that of the large spheres in the
x - 0 regime. Actually there were separate samples
used to make the measurements for large and small
spheres and their viscosities were slightly different.
If we try an analysis such as above with D, =
kT/3.3 7T i1’TJR we find R = 0.16 u for 0.091 in
0.091 and R = 0.18 u for 0.038 in 0.091, which still
suggests that the diffusion constant of the small

spheres is approaching that of the large spheres. ’

Fig. 4. - Absolute values of the diffusion constants for

the two species in 1 % mixtures of 0.091 u and 0.038 u
polyballs as a function of the volume fraction of 0.038’s.
Note the similarity in Ds in the regime where the dominant
species is the large spheres.

5. Discussion.

A simple explanation of this unusual result would be
that the small spheres are trapped in cages by the
large spheres and that the only way they can move is
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for the cages to open by diffusion of the large
spheres. Thus the diffusion of the small trapped
spheres would be controlled by that of the large
spheres. While this may be qualitatively correct it
would be somewhat surprising if the cages would
have to open as far to let a small sphere pass as to let
a large sphere pass. In any event these results largely
suggest that the self diffusion of a particle is governed
mostly by some large scale motion of many other
particles rather than the particular properties of the
local potentials in which it resides.

In conclusion we have studied the self diffusion of

strongly interacting charged particles in binary mix-
ture suspensions. For a few large particles diffusing

in a sea of small particles the diffusion obeys Stokes
law with the use of the macroscopic viscosity. For
particles diffusing amongst like particles the phenom-
enology associated with simple fluids works well.
The interesting case of a few small spheres diffusing
in many large spheres yields the unexpected result
that the two spheres have almost the same diffusion
rate indicating that diffusion in these strongly in-
teracting fluids is controlled by cooperative motion
of large groups of particles.
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