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1 Introduction and Goals

In this experiment you will work on the Qube-Servo 3 by Quanser (Fig. 1). The goal of this
experiment is to control the position of the rotary pendulum. The successful completion of
this experiment requires the execution of the following tasks:

• Obtain the transfer functions for both the hanging and the inverted pendulums.

• Validate the model against the nonlinear model and the actual hanging pendulum.

• Design a proportional-derivative controller for balancing the inverted pendulum.

• Test the balancing controller both in simulations and in experiments.

• Complement the designed balancing controller with a swing-up controller.

Figure 1: Qube-Servo 3

All the necessary files to carry out the experiment are available in the Google Drive folder
shared with you. These files needed to design and test the controllers are in two subfolders:

• Design: These files are intended to be used “off-line” before or between sessions.

• Test: These files are intended to be used to run the experiment (Qube-Servo 3 must
be connected to the computer). To run any of these SIMULINK® files, navigate to
the “Hardware” tab in the top menu bar and select “Monitor and Tune.”

Lab Work 1:

1. Get familiar with Qube-Servo 3 and the provided MATLAB® /SIMULINK® files.
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2 Modeling

The rotary pendulum model is shown in Fig. 2. The rotary arm pivot is attached to the
Qube-Servo 3 system and is actuated. The arm has a length of r, a moment of inertia of
Jr, and its angle θ increases positively when it rotates counterclockwise (CCW). The servo
(and thus the arm) should turn in the CCW direction when the control voltage is positive,
i.e. vm > 0. The pendulum link is connected to the end of the rotary arm. It has a total
length of Lp and it center of mass is at l = Lp/2. The moment of inertia about its center of
mass is Jp. The rotary pendulum angle α is zero when it is hanging downward and increases
positively when rotated CCW.

1 Background
1.1 Rotary Pendulum Model
The rotary pendulum model is shown in Figure 1.1. The rotary arm pivot is attached to the QUBE­Servo 2 system
and is actuated. The arm has a length of r, a moment of inertia of Jr, and its angle θ increases positively when it
rotates counter­clockwise (CCW). The servo (and thus the arm) should turn in the CCW direction when the control
voltage is positive, vm > 0.

The pendulum link is connected to the end of the rotary arm. It has a total length of Lp and it center of mass is at
l = Lp/2. The moment of inertia about its center of mass is Jp. The rotary pendulum angle α is zero when it is
hanging downward and increases positively when rotated CCW.

Figure 1.1: Rotary pendulum model

The equations of motion (EOM) for the pendulum system were developed using the Euler­Lagrange method. This
systematic method is often used to model complicated systems such as robot manipulators with multiple joints.
The total kinetic and potential energy of the system is obtained, then the Lagrangian can be found. A number of
derivatives are then computed to yield the EOMs. The resultant nonlinear EOM are:

(
Jr + Jp sinα2

)
θ̈ + mplr cosαα̈ + 2Jp sinα cosαθ̇α̇ − mplr sinαα̇2 = τ − br θ̇ (1.1)

QUBE­SERVO 2 Workbook ­ INSTRUCTOR 2

Figure 2: Rotary pendulum schematic.

The equations of motion (EOM) for the pendulum system were developed using the Euler-
Lagrange method. This systematic method is often used to model complicated systems such
as robot manipulators with multiple joints. The total kinetic and potential energy of the
system is obtained, then the Lagrangian can be found. A number of derivatives are then
computed to yield the EOMs. The resultant nonlinear EOMs are:

(Jr + Jp sin
2 α)θ̈ +mplr cosαα̈−mplr sinαα̇

2 + 2Jp sinα cosαθ̇α̇ = τ − brθ̇, (1)

mplr cosαθ̈ + Jpα̈− Jp sinα cosαθ̇2 +mpgl sinα = −bpα̇, (2)

where Jr = mrr
2/3 is the moment of inertia of the rotary arm with respect to the pivot (i.e.

rotary arm axis of rotation) and Jp = mpL
2
p/3 is the moment of inertia of the pendulum link

relative to the pendulum pivot (i.e. axis of rotation of pendulum). The viscous damping
acting on the rotary arm and the pendulum link are br and bp, respectively. The applied
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torque at the base of the rotary arm generated by the servo motor is

τ =
km
Rm

(vm − kmθ̇). (3)

At equilibrium, i.e. θ̈ = θ̇ = α̈ = α̇ = 0, these equations reduce to

0 = τ0, (4)

mpgl sinα0 = 0. (5)

An equilibrium point needs both τ0 = 0 and mpgl sinα0 = 0 ⇐⇒ α0 = 0, α0 = π.
The α0 = 0 solution is associated with the downward position of the pendulum, while the
α0 = π solution is associated with the upward position of the pendulum. Note that θ0 can
be arbitrary. We choose θ0 = 0 in this lab.

The linearized equations around the downward position (α0 = 0) are obtained in Appendix 5.
From (54) it is possible to write (θ̃ = θ − θ0 = θ, α̃ = α− α0 = α)

¨̃θ =
1

Jt
(m2

pl
2rgα̃− Jp(br +

k2
m

Rm

) ˙̃θ +mplrbp ˙̃α + Jp
km
Rm

vm), (6)

¨̃α =
1

Jt
(−mpglJrα̃ +mplr(br +

k2
m

Rm

) ˙̃θ − Jrbp ˙̃α−mprl
km
Rm

vm). (7)

The linearized equations around the upward position (α = π) are obtained in Appendix 5.
From (55) it is possible to write (θ̃ = θ − θ0 = θ, α̃ = α− α0 = α− π)

¨̃θ =
1

Jt
(m2

pl
2rgα̃− Jp(br +

k2
m

Rm

) ˙̃θ −mplrbp ˙̃α + Jp
km
Rm

vm), (8)

¨̃α =
1

Jt
(mpglJrα̃−mplr(br +

k2
m

Rm

) ˙̃θ − Jpbp ˙̃α +mprl
km
Rm

vm). (9)

In both cases,
Jt ≜ JpJr −m2

pl
2r2. (10)

The electrical and mechanical parameters are given in Table 1.

Lab Work 2:

1. Define A(s) ≜ L{α̃(t)}, Θ(s) ≜ L{θ̃(t)}, V (s) ≜ L{vm(t)} and show that

Θ(s)

V (s)
=

50.6372s2 + 19.0182s+ 5776.2

s4 + 13.1244s3 + 268.9104s2 + 1397.8s
(11)

A(s)

V (s)
=

−50.0484s2

s4 + 13.1244s3 + 268.9104s2 + 1397.8s
(12)

for the hanging pendulum, and

Θ(s)

V (s)
=

50.6372s2 + 19.0182s− 5776.2

s4 + 13.1244s3 − 259.7056s2 − 1397.8s
(13)

A(s)

V (s)
=

50.0484s2

s4 + 13.1244s3 − 259.7056s2 − 1397.8s
(14)

for the inverted pendulum.
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Symbol Description Value/Units

Rm Motor terminal resistance 8.4 Ω (ohms)
Lm Motor inductance 1.16 mH (assumed approximately zero)
kt Motor torque constant 0.042 Nm/A (newton-meters per amp)
km Motor back-electromotive force constant 0.042 V/(rad/s)
mr Rotary arm mass 0.095 (kg)
r Rotary arm total length 0.085 m
Jr Rotary arm moment of inertia 2.2879× 10−4 kgm2

br Rotary arm damping coefficient 10−3 Nms/rad
mp Pendulum mass 0.024 kg
Lp Pendulum total length 0.129 m
l Pendulum center of mass 0.0645 m
Jp Pendulum moment of inertia 1.3313× 10−4 kgm2

bp Pendulum damping coefficient 5× 10−5 Nms/rad
g Gravity constant 9.81 m/s2

vm Motor terminal voltage V (Volts)
θ Rotary arm angle rad
α Pendulum angle rad

θ̇ Rotary arm angular velocity rad/s
α̇ Pendulum angular velocity rad/s

Table 1: Pendulum parameters.

2. Compute the open-loop poles for the hanging-pendulum transfer function. Is there any
pole in the right-hand-side (RHS) of the complex plane? Is the equilibrium at α0 = 0
stable?

3. Compute the open-loop poles for the inverted-pendulum transfer function. Is there any
pole in the right-hand-side (RHS) of the complex plane? Is the equilibrium at α0 = π
stable?

NOTE: The rest of this lab will focus on the hanging pendulum since the instability
associated with the inverted pendulum makes model validation very challenging if not
impossible.

First validation step: Comparison of linearized model with nonlinear model

The SIMULINK® file MEM06 Qube Pendulum OLResponse NonlinLinComp.slx pro-
vided in the “Design” directory will allow you to simulate the response of both non-
linear and linearized models. The nonlinear model results from the implementation
of the nonlinear state-space representation (42)–(50). The linear model results from
the implementation of the linear state-space representation (54)–(58) (the outputs of
the model are the four state variables). Before running this SIMULINK® file, run
the MATLAB® file MEM06 Qube Pendulum Model.m also provided in the “Design” di-
rectory and make sure to choose “Hanging Pendulum” (option 1) and “Full Output”
(option 1). This file calls the MATLAB® file MEM06 Qube Pendulum Parameters.m,
which is also located in the “Design” directory. The provided SIMULINK® file gen-
erates the input voltage vm by combining a Signal Generator block in series with a
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Gain block. Use a square voltage input with frequency of 1 Hz and amplitude ±1.
Besides showing the simulated inputs and outputs in Scope blocks, SIMULINK®

saves all the signals in a structure “simout” in the workspace. The MATLAB®

file MEM06 Qube Pendulum OLResponse NonlinLinComp Plots.m in the same directory
gives you an example on how to plot the signals from the workspace. All the plots in
your report should follow this standard (screen captures of the SIMULINK® scopes
with black backgrounds should not be used in the report). The default value for the
signal generator gain is 0. The default values for the initial conditions of the states are
also 0.

4. While keeping the signal generator gain at 0, compare responses by both nonlinear
and linear models to an initial condition for α of π/2 by running the simulation for
2 seconds. This emulates the action of releasing the pendulum from a stationary
horizontal position. Examine the “unforced” response of the pendulum. Choose the
initial conditions of both linear and nonlinear models by double-clicking “Linear State-
Space Model” and “Integrator 2,” respectively, and selecting the appropriate values.

5. Change the signal generator gain to 1 and choose zero initial conditions for both non-
linear and nonlinear models. Compare responses by both nonlinear and linear models
to the imposed input by running the simulation for 10 seconds. Examine the “forced”
response of the pendulum.

6. Keep the signal generator gain at 1 and choose once again an initial condition for α of
π/2 for both nonlinear and nonlinear models. Compare responses by both nonlinear
and linear models to the imposed input and assumed initial conditions by running
the simulation for 6 seconds. Examine the “combined” response of the pendulum
and identified the transient associated with the “unforced” response and the repetitive
“forced” response. Provide plots in your report comparing responses by nonlinear and
linear model for θ, α, θ̇ and α̇. Provide also a plot for the input vm.

Second validation step: Comparison of linearized model with actual plant

The SIMULINK® file q qube3 pen ss model.slx provided in the “Test” directory
will allow you to compare the simulated response by the linear model with the ac-
tual response of the Qube-Servo 3. Before running this SIMULINK® file, run the
MATLAB® file MEM06 Qube Pendulum Model.m also provided in the “Test” directory
and make sure to choose “Hanging Pendulum” (option 1) and “Partial Output” (option
2). This file calls the MATLAB® file MEM06 Qube Pendulum Parameters.m, which is
also located in the “Test” directory. Use a square voltage input with frequency of 1 Hz
and amplitude ±1, and associated gain of 1. Make sure to select zero initial conditions
for the linear model.

7. Build and run the QUARC® controller. Make sure that the actual initial conditions of
the hanging pendulum are consistent with those selected for the linear model. Provide
plots comparing both measured (actual) and simulated (model-based) rotary arm (θ)
and pendulum (α) angles. You may want to add a “To Workspace” block in the
provided SIMULINK® file (similar to how is done in the provided SIMULINK® file
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MEM06 Qube Pendulum OLResponse NonlinLinComp.slx) so that you can plot from
MATLAB® the variables available in the workspace.

8. Does your model represent the actual pendulum well? If not, explain why there might
be discrepancies.

9. The viscous damping of each pendulum can vary slightly from system to system. If
your model does not accurately represent your specific pendulum system, try modifying
the damping coefficients br and bp in the MEM06 Qube Pendulum Parameters.m file
to obtain a more accurate model. Remember to run MEM06 Qube Pendulum Model.m

again.

10. Stop the QUARC® controller. Power off the Qube-Servo 3 if no more experiments will
be conducted.

3 Balance Control

Balancing is a common control task. In this experiment we will find control strategies that
balance the pendulum in the upright position while maintaining a desired position of the
arm. When balancing the system, the pendulum angle α̃ is small and balancing can be
accomplished with a simple PD controller, as shown in Fig. 3. If we are further interested
in keeping the arm in a desired position, a feedback loop from the arm position will also be
introduced.

1 Background
Balancing is a common control task. In this experiment we will find control strategies that balance the pendulum in
the upright position while maintaining a desired position of the arm. When balancing the system, the pendulum angle
α is small and balancing can be accomplished with a simple PD controller, as shown in Figure 1.1. If we are further
interested in keeping the arm in a desired position, a feedback loop from the arm position will also be introduced.
The control law can then be expressed as

u = kp,θ(θr − θ) − kp,αα − kd,θ θ̇ − kd,αα̇ (1.1)

where kp,θ is the arm angle proportional gain, kp,α is the pendulum angle proportional gain, kd,θ is the arm angle
derivative gain, and kd,α is the pendulum angle derivative gain. The desired, or reference, angle of the rotary arm is
denoted by θr. The reference for the pendulum angle is zero (i.e. upright position).

Figure 1.1: Block diagram of balance PD control for rotary pendulum

There are many different ways to find the controller parameters. The two most common ones are explored in the
Pole­Placement Control and Optimal LQR Control laboratory experiments. Initially, however, the behavior of the
system will be explored using default parameters.

Recall that the pendulum angle α is defined as zero when the pendulum is about its upright vertical position and
expressed mathematically using α = αfull mod 2π − π, as defined in the Rotary Pendulum Modeling Lab as

α = αfull mod 2π − π.

The balance control is to be enabled when the pendulum is within the following range:

|α| ≤ 10◦. (1.2)

Given that the pendulum starts in the downward vertical position, it needs to be manually brought up to its upright
vertical position. Once the pendulum is within ±10◦, the balance controller is engaged. It remains in balance mode
until the pendulum goes beyond ±10◦.

If desired, you can integrate this with an algorithm that swings­up the pendulum automatically. See the Pole­
Placement Control laboratory experiment for details.

QUBE­SERVO 2 Workbook ­ Student 2

Figure 3: Block diagram of balance PD control for rotary pendulum.

The control law for u = vm can then be expressed as

vm = −kp,θ(θ̃ − θ̃r)− kp,αα̃− kd,θ
˙̃θ − kd,α ˙̃α (15)
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Step 3 Find K = K̃W−1 to get the feedback gain for the original system (A, B).

Remark: It is important to do the K̃ → K conversion. Remember that (A, B) represents the actual system while
the companion matrices Ã and B̃ do not.

1.4 Time-Domain Specifications for Higher Order
Systems

The rotary inverted pendulum system has four poles. However, if two of the closed­loop poles are chosen to be
closer to the imaginary axis (typically by a factor equal or greater than four) than the remaining poles, the conjugate
poles are considered to be dominant and the system’s behavior can be approximated by a second­order system.
As depicted in Figure 1.2, poles p1 and p2 are the complex conjugate dominant poles and are chosen to satisfy the
natural frequency, ωn, and damping ratio, ζ, second­order specifications. Let the conjugate poles be

p1 = −σ + jωd (1.14)

and
p2 = −σ − jωd (1.15)

where σ = ζωn and ωd = ωn

√
1 − ζ2 is the damped natural frequency. The remaining closed­loop poles, p3 and p4,

are placed along the real­axis to the left of the dominant poles, as shown in Figure 1.2.

Figure 1.2: Desired closed­loop pole locations

QUBE­SERVO 2 Workbook ­ Student v 1.4

Figure 4: Desired closed-loop pole locations.

where kp,θ is the arm angle proportional gain, kp,α is the pendulum angle proportional gain,
kd,θ is the arm angle derivative gain, and kd,α is the pendulum angle derivative gain. The
desired, or reference, angle of the rotary arm is denoted by θ̃r. The reference for the pendulum
angle is zero (i.e. upright position). The references for both time derivatives are also zero.

The balance control is to be enabled when the pendulum is within the following range:

|α| ≤ 10◦ (16)

Given that the pendulum starts in the downward vertical position, it needs to be manually
brought up to its upright vertical position. Once the pendulum is within ±10◦, the balance
controller is engaged. It remains in balance mode until the pendulum goes beyond ±10◦.

There are many different ways to find the controller parameters. In this lab you will use Pole
Placement for the closed-loop transfer function. The question that follows is where to place
the closed-loop poles. The rotary inverted pendulum system has four poles as you already
noted from the transfer functions (8) and (9). Closing the loop with the PD controller (15)
will also lead to a closed-loop transfer function with four poles. However, if two of the
closed-loop poles are chosen to be closer to the imaginary axis (typically by a factor equal
or greater than four) than the remaining poles, the conjugate poles are considered to be
dominant and the system’s behavior can be approximated by a second-order system. As
depicted in Fig. 3, poles p1 and p2 are the complex conjugate dominant poles and are chosen
to satisfy the natural frequency, ωn, and damping ratio, ζ, second-order specifications. Let
the conjugate poles be

p1 = −σ + jωd (17)

p2 = −σ − jωd (18)
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where σ = ζωn and ωd = ωn

√
1− ζ2. The remaining closed-loop poles, p3 and p4, are placed

along the real axis to the left of the dominant poles, as shown in Fig. 3.

Lab Work 3:

1. The time-domain specifications when the pendulum is balanced and tracking a rotary
arm setpoint are Mp ≤ 6.81% and ts ≤ 1.77 sec. Thus, as the rotary arm goes back and
forth to track the reference (while balancing the pendulum) it should have a percent
overshoot Mp and settling time ts matching these requirements. Recalling that

Mp[%] = e
−π ζ√

1−ζ2 × 100, ts =
4

ζωn

, (19)

calculate the minimum damping ratio ζ and natural frequency ωn that satisfy these
time-domain specifications and provide the resulting locations of the poles p1 = −σ +
jωd, p2 = −σ − jωd.

2. Show that if the other poles are placed at p3 = −40 and p4 = −45, the desired
characteristic polynomial is given by

s4 + 90.20s3 + 2257.80s2 + 10714.95s+ 28779.22 (20)

Does this selection of p3 and p4 make p1 and p2 the dominant poles according to the
discussion above around Fig. 3?

3. The control architecture used in this lab and presented in Fig. 15 represents a MIMO
(Multi-Input-Multi-Output) closed-loop configuration that can also be represents in
a more compact form as shown in Fig 3. Note that in this lab we will work with
Θr(s) ̸= 0 and Ar(s) ≡ 0.

-

+ K(s) P(s)
Θ(𝑠)

𝐴 𝑠

V 𝑠
-

+Θ!(𝑠)

𝐴!(𝑠)

Figure 5: MIMO closed-loop configuration.

The closed-loop input-output relationship can be written in this case as
[
Θ(s)
A(s)

]
= T (s)

[
Θr(s)
Ar(s)

]
, (21)

where T (s) = (I +P (s)K(s))−1P (s)K(s), I is the identity matrix of dimension 2, and

P (s) =

[
Pθ(s)
Pα(s)

]
, K(s) =

[
kp,θ + kd,θs kp,α + kd,αs

]
, (22)
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with Pθ(s) ≜
Θ(s)
V (s)

= b2s2+b1s+b0
s2+a3s3+a2s2+a1s

as defined in (13) and Pα(s) ≜
A(s)
V (s)

= c2s2

s2+a3s3+a2s2+a1s

as defined in (14). The poles of the closed-loop transfer function T (s) is given by the
roots of the characteristic polynomial, which is in turn given by the determinant of
I + P (s)K(s) since (I + P (s)K(s))−1 = adj(I + P (s)K(s))/ det(I + P (s)K(s)). Show
that the characteristic polynomial is written as

s4+(a3+c2kd,α+b2kd,θ)s
3+(a2+c2kp,α+b1kd,θ+b2kp,θ)s

2+(a1+b0kd,θ+b1kp,θ)s+b0kp,θ
(23)

4. By comparing desired (20) and actual (23), obtain the controller gains kp,θ, kd,θ, kp,α,
and kd,α.

Test of designed controller in Simulations

5. By using the SIMULINK® file MEM06 Qube Pendulum CLResponse.slx provided in
the “Design” directory, test your design in linear simulations. Before running this
SIMULINK® file, run the MATLAB® file MEM06 Qube Pendulum Model.m in the “De-
sign” directory and make sure to make the controller gains kp theta n, kd theta n,
kp alpha n and kd alpha n. This file calls MEM06 Qube Pendulum Parameters.m, which
is also located in the “Design” directory. Use a square voltage input with frequency of
0.25 Hz and amplitude ±1, and associated gain of 1. Make sure to select zero initial
conditions for the linear model. Provide plots for θ vs θr, α, and vm.

6. By using the SIMULINK® file MEM06 Qube Pendulum CLResponse NL.slx provided
in the “Design” directory, test now your design in nolinear simulations. Before run-
ning this SIMULINK® file, run the MATLAB® file MEM06 Qube Pendulum Model.m

also provided in the “Design” directory and make sure to make the controller gains
kp theta n, kd theta n, kp alpha n and kd alpha n. This file calls the MATLAB® file
MEM06 Qube Pendulum Parameters.m, which is also located in the “Design” directory.
Use a square voltage input with frequency of 0.25 Hz and amplitude ±1, and associated
gain of 1. Make sure to select zero initial conditions for the linear model. Provide plots
for θ vs θr, α, and vm.

Test of designed controller in Experiments

7. The SIMULINK® file q qube3 bal pp.slx provided in the “Test” directory will allow
you to test the performance of the designed controller on the Qube-Servo 3. Before
running this SIMULINK® file, define the gain vector

K =
[
kp,θ kp,α kd,θ kd,α

]
(24)

and make sure to load it to the MATLAB® workspace. Set the “Signal Generator”
block as follows:

• Type = Square

• Amplitude = 1

• Frequency = 0.125 Hz
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Set the “Gain” block that is connected to the “Signal Generator” to 0.

8. Build and run the QUARC® controller.

9. Manually rotate the pendulum in the upright position until the controller engages.

10. Once the pendulum is balanced, set the “Gain” to 30 to make the arm angle go between
±30◦. Provide pots in your report showing the response of the rotary arm, pendulum,
and controller voltage.

11. Does the rotary arm and pendulum response match the settling time and percent
overshoot specifications the controller was designed for? If not, give one reason why
there is a discrepancy.

12. Stop the QUARC® controller.

13. Power off the QUBEServo 2 if no more experiments will be conducted.

4 Swing-Up Control

In this lab, a nonlinear control system is developed to swing the pendulum from the down-
ward, hanging down, position to the upright vertical position. In order to do this, an
energy-based control will be developed that will calculate the acceleration (i.e motor volt-
age) necessary to swing the pendulum up in the inverted position. Once it reaches the
upright vertical position, the balance control designed and tested in the previous lab will be
engaged to stabilize the pendulum.

4.1 Energy Control

In theory, if the arm angle is kept constant and the pendulum is given an initial perturbation,
the pendulum will keep on swinging with constant amplitude. The idea of energy control
is based on the preservation of energy in ideal systems: The sum of kinetic and potential
energy is constant. However, friction will be damping the oscillation in practice and the
overall system energy will not be constant. It is possible to capture the loss of energy with
respect to the pivot acceleration, which in turn can be used to find a controller to swing up
the pendulum. The nonlinear equation of motion of a single pendulum based on the diagram
in Fig 4.1 is given by

Jpα̈(t) +mpgl sinα(t) +mplu(t) cosα(t) = 0 (25)

where α(t) is the angle of the pendulum defined as positive when rotated counter-clockwise,
Jp is the moment of inertia with respect to the pivot point, mp is the mass of the pendulum
link, l is the distance between the pivot and the center of mass, and u(t) is the linear
acceleration of the pendulum pivot (positive along the x0 axis).
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1 Background
In this lab, a nonlinear control system is developed to swing the pendulum from the downward, hanging down,
position to the upright vertical position. In order to do this, an energy-based control will be developed that will
calculate the acceleration (i.e motor volage) necessary to swing the pendulum up in the inverted position. Once
it reaches the upright vertical position, a balance control will be engaged to stabilize the pendulum, similarly as
witnessed in the balance control labs: Balance Control, Pole-Placement Control, or Optimal LQR Control.

1.1 Energy Control
In theory, if the arm angle is kept constant and the pendulum is given an initial perturbation, the pendulum will keep
on swinging with constant amplitude. The idea of energy control is based on the preservation of energy in ideal
systems: The sum of kinetic and potential energy is constant. However, friction will be damping the oscillation in
practice and the overall system energy will not be constant. It is possible to capture the loss of energy with respect
to the pivot acceleration, which in turn can be used to find a controller to swing up the pendulum.

The nonlinear equation of motion of a single pendulum based on the diagram in Figure 1.1 is

Jpα̈(t) + mpgl sinα(t) + mplu(t) cosα(t) = 0 (1.1)

where α(t) is the angle of the pendulum defined as positive when rotated counter-clockwise, Jp is the moment of
inertia with respect to the pivot point, mpis the mass of the pendulum link, l is the distance between the pivot and
the center of mass, and u(t) is the linear acceleration of the pendulum pivot (positive along the x0 axis).

Figure 1.1: Free-body diagram of pendulum

The potential energy of the pendulum is
Ep(t) = mpgl (1 − cosα)

and the kinetic energy is
Ek =

1

2
Jpα̇

2.

The potential energy is zero when the pendulum is at rest at α = 0 and equals Ep = 2mpgl when the pendulum is

QUBE-SERVO 2 Workbook - Student 2

Figure 6: Free-body diagram of pendulum.

The potential energy of the pendulum is

Ep = mpgl(1− cosα) (26)

and the kinetic energy is

Ek =
1

2
Jpα̇

2. (27)

The potential energy is zero when the pendulum is at rest at α = 0and equals Ep = 2mpgl
when the pendulum is upright at α = ±π. The sum of the potential and kinetic energy of
the pendulum is

E =
1

2
Jpα̇

2 +mpgl(1− cosα). (28)

Differentiating (28) yields

Ė =
dE

dt
= Jpα̇α̈ +mpgl sinαα̇. (29)

Solving for Jpα̈ in (25) yields

Jpα̈ = −mpgl sinα−mplu cosα (30)

and substituting this into (29) gives

Ė = −mpluα̇ cosα. (31)
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Since the acceleration of the pivot is proportional to current driving the arm motor and thus
also proportional to the motor voltage, it is possible to control the energy of the pendulum
with the proportional control law

u = (E − Er)α̇ cosα. (32)

This control law will drive the energy of the pendulum towards the reference energy, i.e.
E(t) → Er. By setting the reference energy to the pendulum potential energy, Er = Ep,
the control law will swing the link to its upright position. Notice that the control law is
nonlinear because it includes nonlinear terms (e.g. cosα). Further, the control changes sign
when α̇ changes sign and when the angle is ±90 degrees. For the system energy to change
quickly, the magnitude of the control signal must be large. As a result the following swing-up
controller is implemented in the controller as

u = satumax(ke(E − Er)sign(α̇ cosα) (33)

where ke is a tunable control gain and the satumax function saturates the control signal at
the maximum acceleration of the pendulum pivot, umax . The expression sign(α̇ cosα) is
used to enable faster control switching. The control law in (33) finds the linear acceleration
needed to swing-up the pendulum. Because the control variable in the QUBE-Servo 2 is
motor voltage, vm(t), the acceleration needs to be converted into voltage. This can be done
using the expression

vm(t) =
Rmrmr

kt
u(t) (34)

where Rm is the motor resistance, kt is the current-torque constant of the motor, r is the
length of the rotary arm, and mr is the mass of the rotary arm. The block diagram of the
swing-up nonlinear control is shown in Fig 4.1. Energy Control Implementation Based on
Lyapunov stability, it can be shown that different energy-type quantities can be used for the
swing-up, i.e., not only E = 1

2
Jpα̇

2 + mpgl(1 − cosα). In the actual implementation, the
following pendulum energy equation is used

E =
1

2
Jp,cmα̇

2 +mpgl(1− cosα) (35)

where Jp,cm is the moment of inertia of the pendulum with respect to the center of mass (as
opposed to the pivot Jp). Using this, we can perform the swing-up with a lower tunable gain
and reference energy.

4.2 Hybrid Swing-Up Control

The energy swing-up control defined in (33) can be combined with a balancing control,
such as the one designed in the previous lab, to obtain a control system that swings up
the pendulum and then balances it. Similarly as described in the Balance Control lab,
the balance control is to be enabled when the pendulum is within ±20 degrees. When
it is not enabled, the swing-up control is engaged. Thus the switching can be described
mathematically by

u =

{
ubal if |α− π| ≤ 0.345rad
uswing−up otherwise

(36)

13



Figure 1.2: Energy swing-up control of pendulum

Similarly as described in the Balance Control laboratory experiment, the balance control is to be enabled when the
pendulum is within ±20 degrees. When it is not enabled, the swing-up control is engaged. Thus the switching can
be described mathematically by

u =

{
ubal if |α| − π ≤ 0.345rad
uswing_up otherwise

(1.6)

QUBE-SERVO 2 Workbook - INSTRUCTOR 4

Figure 7: Energy swing-up control of pendulum.

Lab Work 4:

Energy Control

1. Open the SIMULINK® file q qube3 swingup.slx provided in the “Test” directory.

2. Run the setup swingup student.m MATLAB® script. This loads the pendulum pa-
rameters that is used by the Simulink model.

3. To turn the swing-up control off, set the “Slider Gain” block called ke to 0.

4. Build and run the QUARC® controller.

5. Manually rotate the pendulum at different levels and examine the pendulum angle and
energy in the Pendulum (deg and Pendulum Energy (mJ) scopes.

6. What do you notice about the energy when the pendulum is moved at different posi-
tions? Record the energy when the pendulum is being balanced (i.e. fully inverted in
the upright vertical position). Does this reading make sense in terms of the equations
developed above?

7. Click on the Stop button to bring the pendulum down to the initial, downward position.

8. Set the swing-up control parameters (i.e. the “Constant” and “Gain” blocks connected
to the inputs of the “Swing-Up Control” subsystem) to the following:

• ke = 50m/s/J

• Er = 10.0mJ

• umax = 6m/s2

9. If the rotary arm does not start rotating back and forth, gently perturb the pendulum
with your finger to get it going.

14



10. Vary the reference energy, Er, between 10.0mJ and 20.0mJ. As it is changed, examine
the pendulum angle and energy response in Pendulum (deg) and the Pendulum Energy
(mJ) scopes and the control signal in the Vm (V) scope. Provide MATLAB® versions
of these plots in your report, showing how changing the reference energy affects the
system.

11. Fix Er to 20.0mJ and vary the swing-up control gain ke between 20 and 60m/s2/J.
Describe how this changes the performance of the energy control.

12. Stop the QUARC® controller.

Hybrid Swing-Up Control

13. Open the SIMULINK® file q qube3 swingup.slx provided in the “Test” directory.

14. Run the setup swingup student.m MATLAB® script. This loads the pendulum pa-
rameters that is used by the Simulink model.

15. Set the swing-up control parameters to the following:

• ke = 20m/s/J

• umax = 6m/s2

16. Based on your observations in the previous section of the lab (Energy Control), what
should the reference energy be set to?

17. Make sure the pendulum is hanging down motionless and the encoder cable is not
interfering with the pendulum.

18. Build and run the QUARC® controller.

19. The pendulum should begin going back and forth. If not, manually perturb the pen-
dulum with your hand. Click on the “Stop” button in the SIMULINK® tool
bar if the pendulum goes unstable.

20. Gradually increase the swing-up gain, ke, denoted as the “ke Slider Gain” block, until
the pendulum swings up to the vertical position. Capture a response of the swing-up
and record the swing-up gain that was required. Show the pendulum angle, pendulum
energy, and motor voltage.

21. Stop the QUARC® controller.
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5 Appendix

The equations of motion (1) and (2) can be written as

[
(Jr + Jp sin

2 α) mplr cosα
mplr cosα Jp

][
θ̈
α̈

]
+

[
brθ̇ + 2Jp sinα cosαθ̇α̇−mplr sinαα̇

2 − τ

−Jp sinα cosαθ̇2 +mpgl sinα + bpα̇

]
=

[
0
0

]
(37)

[
(Jr + Jp sin

2 α) mplr cosα
mplr cosα Jp

]

︸ ︷︷ ︸
A

[
θ̈
α̈

]
=

[
−brθ̇ − 2Jp sinα cosαθ̇α̇ +mplr sinαα̇

2 + τ

Jp sinα cosαθ̇2 −mpgl sinα− bpα̇

]
(38)

We compute the inverse matrix as A−1 = adj(A)/ det(A), where

det(A) = (Jr + Jp sin
2 α)Jp −mplr cosαmplr cosα = (JrJp + J2

p sin
2 α)−m2

pl
2r2 cos2 α (39)

and

adj(A) =

[
Jp −mplr cosα

−mplr cosα (Jr + Jp sin
2 α)

]
(40)

Then, we can solve for the acceleration vector from (38) as

[
θ̈
α̈

]
=

[
Jp −mplr cosα

−mplr cosα (Jr + Jp sin
2 α)

] [
−brθ̇ − 2Jp sinα cosαθ̇α̇ +mplr sinαα̇

2 + τ

Jp sinα cosαθ̇2 −mpgl sinα− bpα̇

]

(JrJp + J2
p sin

2 α)−m2
pl

2r2 cos2 α
(41)

Therefore, we can finally write

θ̈ =
Jp

(
−brθ̇ − 2Jp sinα cosαθ̇α̇ +mplr sinαα̇

2 + τ
)

(JrJp + J2
p sin

2 α)−m2
pl

2r2 cos2 α

−
mplr cosα

(
Jp sinα cosαθ̇2 −mpgl sinα− bpα̇

)

(JrJp + J2
p sin

2 α)−m2
pl

2r2 cos2 α

α̈ =
−mplr cosα

(
−brθ̇ − 2Jp sinα cosαθ̇α̇ +mplr sinαα̇

2 + τ
)

(JrJp + J2
p sin

2 α)−m2
pl

2r2 cos2 α

+
(Jr + Jp sin

2 α)
(
Jp sinα cosαθ̇2 −mpgl sinα− bpα̇

)

(JrJp + J2
p sin

2 α)−m2
pl

2r2 cos2 α

Defining the state variable as xT = [x1 x2 x3 x4] with x1 = θ, x2 = α, x3 = θ̇, x4 = α̇,
and the input as u = τ , we can write the system dynamics in state-space form as

ẋ = f(x, u) (42)
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with

f(x) =




f1(x)
f2(x)
f3(x)
f4(x)


 (43)

and

f1(x) = x3 (44)

f2(x) = x4 (45)

f3(x) =
Jp (−brx3 − 2Jp sinx2 cosx2x3x4 +mplr sinx2x

2
4 + τ)

(JrJp + J2
p sin

2 x2)−m2
pl

2r2 cos2 x2

(46)

− mplr cosx2 (Jp sinx2 cosx2x
2
3 −mpgl sinx2 − bpx4)

(JrJp + J2
p sin

2 x2)−m2
pl

2r2 cos2 x2

(47)

f4(x) =
−mplr cosx2 (−brx3 − 2Jp sinx2 cosx2x3x4 +mplr sinx2x

2
4 + τ)

(JrJp + J2
p sin

2 x2)−m2
pl

2r2 cos2 x2

(48)

+
(Jr + Jp sin

2 x2) (Jp sinx2 cosx2x
2
3 −mpgl sinx2 − bpx4)

(JrJp + J2
p sin

2 x2)−m2
pl

2r2 cos2 x2

(49)

With this selection of state variable and input, equation (3) can be written as

u = − k2
m

Rm

x3 +
km
Rm

vm. (50)

The model of the Furuta pendulum (42)–(49) is highly nonlinear. To enable control design
we are interested in obtaining an approximate linear model. As a first step, the function
f(x) is written as a Taylor series expansion around (x0, u0), i.e.

f(x) = f(x)
∣∣
(x0,u0)

+
∂f

∂x

∣∣∣∣
(x0,u0)

(x− x0) +
∂f

∂u

∣∣∣∣
(x0,u0)

(u− u0) +H.O.T. (51)

As a second step, the higher order terms (H.0.T.), that is the nonlinear terms, are neglected
to approximate the function f(x) as

f(x) ≈ f(x, u)
∣∣
(x0,u0)

+
∂f

∂x

∣∣∣∣
(x0,u0)︸ ︷︷ ︸
A

(x− x0)︸ ︷︷ ︸
x̃

+
∂f

∂u

∣∣∣∣
(x0,u0)︸ ︷︷ ︸
B

(u− u0)︸ ︷︷ ︸
ũ

(52)

We are interested in obtaining linearized models for the two equilibria corresponding to the
hanging pendulum and the inverted pendulum, i.e. for x2

0 = α0 = 0 and x2
0 = α0 = π. As

it was discussed in Section 2, x1
0 = θ0 can be nonzero but both x3

0 and x4
0 (time derivatives)

must be zero. Note that by using the state-space representation (42), the equilibrium point
(x0, u0) must make ẋ = 0, which requires f(x0, u0) ≡ 0. Making f1(x0, u0) = 0 demands
x3
0 = 0 and making f2(x0, u0) = 0 demands x4

0 = 0. Moreover, making f3(x0, u0) = 0 and
f4(x0, u0) = 0 demands x2

0 = α0 = 0 or x2
0 = α0 = π. Note that f(x, u) does not depend on

x1. Therefore, the equilibrium can be achieved for u0 = 0 for any value of x1
0 = θ0. We will

choose x1
0 = θ0 = 0 below for convenience.
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5.1 Linearized Model for the Hanging (Downward) Pendulum

In this case, x0 = (0, 0, 0, 0) (downward position) and u0 = 0. Since this is an equilibrium of
the system, f(x, u)

∣∣
(x0,u0)

= 0. Therefore, we can write the linearized model as

˙̃x = Ax̃+Bũ, A =




0 0 1 0
0 0 0 1

0
m2

pl
2gr

Jt
−Jpbr

Jt

mplrbp
Jt

0 −mplgJr
Jt

mplrbr
Jt

−Jrbp
Jt


 , B =




0
0
Jp
Jt

−mplr

Jt


 . (53)

where Jt = JpJr − m2
pl

2r2. Note that in this case θ̃ = θ − θ0 = θ, α̃ = α − α0 = α and
ũ = u − u0 = u. Replacing the expression for ũ = u from (50) in (53) yields a linear state
representation

˙̃x = Ax̃+Bvm, A =




0 0 1 0
0 0 0 1

0
m2

pl
2gr

Jt
−Jp

Jt
(br +

k2m
Rm

) mplrbp
Jt

0 −mplgJr
Jt

mplr

Jt
(br +

k2m
Rm

) −Jrbp
Jt


 , B =




0
0

Jpkm
JtRm

−mplrkm
JtRm


 . (54)

5.2 Linearized Model for the Inverted (Upward) Pendulum

In this case, x0 = (θ0, π, 0, 0) (upward position) and u0 = 0. Since this is an equilibrium of
the system, f(x, u)

∣∣
(x0,u0)

= 0. Therefore, we can write the linearized model as

˙̃x = Ax̃+Bũ, A =




0 0 1 0
0 0 0 1

0
m2

pl
2gr

Jt
−Jpbr

Jt
−mplrbp

Jt

0 mplgJr
Jt

−mplrbr
Jt

−Jrbp
Jt


 , B =




0
0
Jp
Jt

mplr

Jt


 . (55)

where Jt = JpJr −m2
pl

2r2. Note that in this case θ̃ = θ − θ0 = θ, α̃ = α − α0 = α − π and
ũ = u − u0 = u. Replacing the expression for ũ = u from (50) in (53) yields a linear state
representation

˙̃x = Ax̃+Bvm, A =




0 0 1 0
0 0 0 1

0
m2

pl
2gr

Jt
−Jp

Jt
(br +

k2m
Rm

) −mplrbp
Jt

0 mplgJr
Jt

−mplr

Jt
(br +

k2m
Rm

) −Jrbp
Jt


 , B =




0
0

Jpkm
JtRm

mplrkm
JtRm


 . (56)

5.3 Linearized Output Equation

The state-space equation ˙̃x = Ax̃ + Bvm is usually paired with an output equation of the
form

y = Cx̃+Dvm. (57)
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This output equation enables the selection of linear combinations of the states as outputs
of the model. For instance, if we are interested in an output identical to the state, these
matrices should be chosen as

C =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , D =




0
0
0
0


 ⇒ y =




θ
α

θ̇
α̇


 (58)

On the other hand, if we are interested in an output consisting of just the angles, these
matrices should be chosen as

C =

[
1 0 0 0
0 1 0 0

]
, D =

[
0
0

]
⇒ y =

[
θ
α

]
(59)
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