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1 Introduction and Goals

In this experiment you will work on the Qube-Servo 3 by Quanser (Fig. 1). The goal of this
experiment is to control both the velocity and the position of the inertial disc module. The
successful completion of this experiment requires the execution of the following tasks:

• Obtain the differential equation governing the dynamics of the inertial disc.

• Calculate transfer functions between applied voltage and velocity/position of the disc.

• Design a proportional controller for both velocity and position regulation.

• Design a proportional-derivative controller for position regulation.

Figure 1: Qube-Servo 3

All the necessary files to carry out the experiment are available in the Google Drive folder
shared with you. These files needed to design and test the controllers are in two subfolders:

• Design: These files are intended to be used “off-line” before or between sessions.

• Test: These files are intended to be used to run the experiment (Qube-Servo 3 must
be connected to the computer). To run any of these SIMULINK® files, navigate to
the “Hardware” tab in the top menu bar and select “Monitor and Tune.”

Lab Work 1:

1. Get familiar with Qube-Servo 3 and the provided MATLAB® /SIMULINK® files.

2 Modeling

The Quanser Qube-Servo 3 is a direct-drive rotary servo system. Its motor armature circuit
schematic is shown in Fig. 2 and the electrical and mechanical parameters are given in
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Figure 2: Motor

Table 1. The DC motor shaft is connected to the load hub. The hub is a metal disk used
to mount the disk or rotary pendulum and has a moment of inertia of Jh. A disk load is
attached to the output shaft with a moment of inertia of Jd.

The back-emf (electromotive) voltage eb(t) depends on the speed of the motor shaft, ωm, and
the back-emf constant of the motor, km. It opposes the current flow. The back-emf voltage
is given by:

eb(t) = kmωm(t) (1)

Using Kirchoff’s Voltage Law, we can write the following equation:

vm(t)−Rmim(t)− Lm
dim(t)

dt
− eb(t) = 0.

Since the motor inductance Lm is much less than its resistance, it can be ignored. Then, the
equation becomes

vm(t)−Rmim(t)− eb(t) = 0. (2)

The motor shaft equation is expressed as

Jeqω̇m(t) = τm(t), (3)

where Jeq is total moment of inertia acting on the motor shaft and τm is the applied torque
from the DC motor. Based on the current applied, the torque is

τm = ktim(t). (4)

The moment of inertia of a disk about its pivot, with mass md and radius rd, is

J =
1

2
mr2. (5)

Lab Work 2:

1. Formulate the differential equation for ωm using (1), (2), (3) and (4). Show that this
equation can be written as

ω̇m(t) =
kt

JeqRm

vm(t)−
ktkm
JeqRm

ωm(t) (6)
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Symbol Description Value/Units

Rm Motor terminal resistance 8.4 Ω (ohms)
Lm Rotor inductance 1.16 mH
kt Motor torque constant 0.042 Nm/A (newton-meters per amp)
km Motor back-electromotive force constant 0.042 V/(rad/s)
Jm Rotor moment of inertia 4× 10−6 kgm2

mh Load hub mass 0.0106 kg
rh Load hub radius 0.0111 m
md Disk mass 0.053 kg
rd Disk radius 0.0248 m
vm Motor terminal voltage V (Volts)
im Motor current A (amps)
ωm Motor shaft angular velocity rad/s
τm Torque produced by the motor Nm
Jeq Equivalent moment of inertia kgm2

Table 1: Motor parameters.

2. The motor shaft of the Qube-Servo 3 is attached to a load hub and a disk load. Based on
the parameters in Table 1, calculate the equivalent moment of inertia Jeq ≜ Jm+Jh+Jd
acting on the motor shaft by using (5). Implement this calculation in the MATLAB®

file MEM05 Qube DCMotor Parameters Stds.m provided in the “Design” directory.

3. The SIMULINK® file MEM05 Qube DCMotor OLResponse.slx provided in the “Design”
directory will allow you to simulate the response of both velocity and position to the
imposed voltage based on the model (6). The provided file generates the input voltage
by combining Signal Generator and Constant blocks but you can use the input you want
(explore “Sources” in the Library Browser). Besides showing the simulated inputs and
outputs in Scope blocks, SIMULINK® saves all the signals in both the workspace and
“mat” files. The MATLAB® file MEM05 Qube DCMotor Parameters Stds.m file must
be run before running the SIMULINK® model to load in the workspace all the variables
that are needed by the model. The MATLAB® file MEM05 Qube DCMotor Plots.m in
the same directory shows you how to plot all the signals both from the workspace and
the “mat” files in both individual and combined plots. Simulate the response of the
Qube-Servo 3 to a sinusoidal voltage input with frequency of 1 Hz.

NOTE: The file MEM05 Qube DCMotor Plots.m shows you how to control font sizes,
titles, labels, legends, and lines in a MATLAB® plot. All the plots in your report
should follow this standard. Fig. 3 shows the type of plot expected in your report.
Screen captures of the SIMULINK® scopes should not be used in the report.

4. Take the Laplace Transform of (6) and find the voltage to speed transfer function,
Ωm(s)/Vm(s), of the system. Show that the transfer function can be written as

Ωm(s)

Vm(s)
=

k

τs+ 1
(7)

with k = 23.8 and τ = 0.1, where Ωm(s) ≜ L{ωm(t)} and Vm(s) ≜ L{vm(t)}.
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Figure 3: Example plot for the Qube-Servo 3 velocity as simulated by the SIMULINK® file
MEM05 Qube DCMotor OLResponse.slx. This plot has been generated by the MATLAB®

file MEM05 Qube DCMotor Plots.m.

5. Show that the voltage to position transfer function, Θm(s)/Vm(s), can be written as

Θm(s)

Vm(s)
=

k

s(τs+ 1)
(8)

where Θm(s) ≜ L{θm(t)} and ωm(t) = dθm(t)/dt.

6. The SIMULINK® file q qube3 model student.slx provided in the “Test” directory
will allow you to compare the simulated response by the model with the actual response
of the Qube-Servo 3. Before being able to run this file you need to implement model (6)
in the “QUBE-Servo Model” subsystem as shown in Fig 4.

Figure 4: Qube-Servo 3 schematic for model validation. Applies an input voltage and displays
measured and simulated Qube-Servo-3 speed. The “QUBE-Servo Model” subsystem must
be configured first. The qube servo3 usb board must be selected in the HIL Initialize block.
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This subsystem block in SIMULINK® will need Gain blocks, a Subtract block, and
an Integrator block (to go from acceleration to speed). Part of the solution is shown
in Fig. 5.

Figure 5: Incomplete Qube-Servo Model subsystem.

7. Build and run the QUARC® controller with your Qube-Servo 3 model in the edited file
q qube3 model student.slx. Make sure to run the MATLAB® file qube3 param.m

to load all the necessary variables in the workspace before running the experiment.
The scope response should be similar to Fig. 6. Does your model represent the
Qube-Servo 3 reasonably well? Include plots in your report showing: 1- Input volt-
age; 2- Simulated and actual velocity output; 3- Simulated and actual position out-
put. The SIMULINK® file q qube3 model student.slx should also be modified so
that SIMULINK® saves the signals in either the workspace or in “mat” files. Use
the provided file MEM05 Qube DCMotor OLResponse.slx as an example. This will en-
able you to produce the necessary plots by a modified version of the provided file
MEM05 Qube DCMotor Plots.m.

Figure 6: Example response when running block diagram model and with Qube-Servo 3
hardware in parallel.

8. You may notice that the the model does not match the measured system exactly. What
could cause this difference?

9. Stop the QUARC® controller.

10. Power off the Qube-Servo 3.
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3 PID Control

The proportional, integral, and derivative control can be expressed mathematically as follows

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
. (9)

The control action is a sum of three terms referred to as proportional (P), integral (I) and
derivative (D) control gain. The input of the controller is the error e(t) = r(t)− y(t), which
is the difference between the reference r(t) and the output of the plant y(t). The output
of the controller is the input of the plant u(t). By applying the Laplace transform to the
two sides of the equation and assuming zero initial conditions, the controller (9) can also be
described by the transfer function

C(s) =
U(s)

E(s)
= kp +

ki
s
+ kds, (10)

where U(s) ≜ L{u(t)}, E(s) ≜ L{e(t)}, R(s) ≜ L{r(t)}, and Y (s) ≜ L{y(t)}. The corre-
sponding block diagram is given in Fig. 7. The functionality of the PID controller can be
summarized as follows. The proportional term is based on the present error, the integral
term depends on past errors, and the derivative term is a prediction of future errors. The
design of the PID controller reduces to the selection of the proportional gain kp, integral
gain ki, and derivative gain kd so that the output y(t) tracks the reference r(t).

C(s)

G(s)E(s)R(s) U(s) Y(s)kp

ki

kd

1
𝑠

𝑠

+
+

+

+

-

Figure 7: Block diagram of PID control.

The Final Value theorem can be used to determine the steady-state or final value of the
tracking error e(t) given its Laplace transform E(s). For a stable system response (i.e. all
poles of the system are strictly in the left half of the s-plane or, in other words, the real
parts of all the poles are negative), the following holds

ess = rss − yss = lim
t→∞

e(t) = lim
s→0

sE(s), (11)

where the subscript (ss) denotes “steady-state.” This is of high interest because ess is a
measure of the tracking capabilities of the controller (ess = 0 implies perfect tracking (yss =
rss)).
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Lab Work 3:

1. Show that the transfer function Y (s)/R(s) in terms of the general controller C(s) and
the plant G(s) for a closed-loop system as the one shown in Fig. 7 can be written as

Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
. (12)

2. Show that the transfer function E(s)/R(s) in terms of the general controller C(s) and
the plant G(s) for a closed-loop system as the one shown in Fig. 7 can be written as

E(s)

R(s)
=

1

1 + C(s)G(s)
. (13)

4 Velocity Control

In this lab, you will examine how a proportional controller can be used to control the QUBE-
Servo-3 velocity as shown in Fig. 8.

-

+ G(s) =	 !
"#$%

C(s) = kp
E(s)R(s) U(s) Y(s)

Figure 8: Proportional control of servo velocity.

The proportional (P) control has the following structure

u(t) = kpe(t) = kp(r(t)− y(t)) (14)

where kp is the proportional gain, r(t) = ωd(t) is the reference angular velocity, y(t) = ωm(t)
is the measured angular velocity, and u(t) = vm(t) is the control input (applied motor
voltage).

Lab Work 4:

1. Show that for our plant G(s) = k/(τs+1) (k = 23.8 and τ = 0.1) with a proportional
(P) controller the closed-loop transfer functions (12) and (13) take the forms:

Y (s)

R(s)
=

Kkp
τs+ 1 +Kkp

, (15)

E(s)

R(s)
=

τs+ 1

τs+ 1 +Kkp
. (16)

What is the order of the closed-loop system? Provide a formula for the closed-loop
pole. Is the closed-loop system stable when kp > 0? How the location of the closed-
loop pole changes as you increase the proportional gain? What will be the effect of
increasing the proportional gain on the time response of the closed-loop system?
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2. By using the Final Value theorem show that the steady-state error when tracking a
step reference R(s) = R0/s, where R0 is the desired angular rate step amplitude, is
given by

ess = lim
t→∞

e(t) =
R0

1 +Kkp
. (17)

Is it possible to achieve perfect tracking with a proportional (P) controller? How could
you reduce the steady-state tracking error?

3. The voltage that can be applied to the QUBE-Servo 3 is limited to ±10 V. De-
termine the maximum proportional gain for a square wave reference signal of ±0.5
rad/s that does not saturate the QUBE-Servo 3. What will be the minimum possible
steady-state error with the maximum proportional gain? Use the SIMULINK® file
MEM05 Qube DCMotor PControl Velocity.slx provided in the “Design” directory to
corroborate these calculations. Provide a plot comparing reference and actual angular
velocity and confirming the value of the calculated steady-state error associated with
the computed maximum proportional gain. Also provide a plot showing the motor
voltage. The provided SIMULINK® file will need to be modified to allow plotting
from MATLAB® . Use a ±0.5 rad/s square wave at a frequency of 0.4 Hz.

4. Open the SIMULINK® file q qube3 p speed cntrl.slx provided in the “Test” di-
rectory. To generate a reference speed command with an amplitude of 15rad/s, set
the Amplitude and Offset gain blocks both to 7.5 rad/s and ensure the Smooth Signal
Generator block is configured to output a square wave at a frequency of 0.4 Hz.

5. Build and run the QUARC® controller.

6. Calculate the steady-state error if the proportional gain is 0.5Vs/rad and the step
amplitude is 15rad/s using (17). Measure the actual steady-state error. How does it
compare with your value computed above? If they do not match, give one reason why
there would be a difference.

Hint: Use the Cursor Measurement tool in the Simulink Scope to take your measure-
ments or modify the SIMULINK® file q qube3 p speed cntrl.slx as it has been done
in the sample file MEM05 Qube DCMotor OLResponse.slx.

7. Show how the error can be decreased by half its current magnitude. Validate your
results with the QUBE-Servo 3 and show your response.

8. Stop the QUARC® controller.

9. Power off the QUBE-Servo 3 if no more experiments will be conducted in this session.

5 Position Control

In this lab, you will examine how both a proportional controller and a proportional-derivative
controller can be used to control the QUBE-Servo-3 position as shown in Fig. 9.
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C(s)=kp+kds
E(s)R(s) U(s) Y(s)

Figure 9: Proportional-derivative control of servo position.

The proportional (P) control has the following structure

u(t) = kpe(t) = kp(r(t)− y(t)) (18)

while the proportional-derivative (PD) control has the following structure

u(t) = kpe(t) + kd
de(t)

dt
= kp(r(t)− y(t)) + kd

(r(t)− y(t))

dt
(19)

where kp is the proportional gain, kd is the derivative gain, r(t) = θd(t) is the setpoint or
reference motor/load angle for the position control, y(t) = θm(t) is the measured load shaft
angle, and u(t) = vm(t) is the control input (applied motor voltage).

Lab Work 5:

1. Show that for our plantG(s) = k/(s(τs+1)) (k = 23.8 and τ = 0.1) with a proportional
(P) controller (kp ̸= 0 and kd = 0) the closed-loop transfer functions (12) and (13) take
the forms:

Y (s)

R(s)
=

Kkp
τ

s2 + 1
τ
s+ Kkp

τ

, (20)

E(s)

R(s)
=

s(s+ 1
τ
)

s2 + 1
τ
s+ Kkp

τ

. (21)

What is the order of the closed-loop system? Provide a formula for the closed-loop
poles. Is the closed-loop system stable when kp > 0? Can the locations of the poles
be arbitrarily determined by selecting the appropriate kp? How the locations of the
closed-loop poles change as you increase the proportional gain? What will be the effect
of increasing the proportional gain on the time response of the closed-loop system?
Remember that if the poles of a second-order system are located at s = −σ± jωd, the
damping ratio is given by ζ = σ/

√
σ2 + ω2

d and the natural frequency is given by ωn =√
σ2 + ω2

d. Use the SIMULINK® file MEM05 Qube DCMotor PControl Position.slx

provided in the “Design” directory to corroborate your answers.

2. What is the steady-state error when tracking a step reference R(s) = R0/s, where R0

is the desired angular step amplitude? Why is it possible to achieve perfect tracking
with a proportional (P) controller when regulating the position while it is not possible
when regulating the velocity (see Lab Work 4)? Provide a plot comparing reference
and actual angular position and confirming the value of the calculated steady-state
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error when kp = 1.5. Also provide a plot showing the motor voltage. The provided
SIMULINK® file will need to be modified to allow plotting from MATLAB® . Use a
±0.5 rad square wave at a frequency of 0.4 Hz.

3. Open the SIMULINK® file q qube3 p pos cntrl.slx provided in the “Test” directory.
Set the Signal Generator block such that the servo command (i.e. reference angle) is
a square wave with an amplitude of 0.5 rad and at a frequency of 0.4 Hz.

4. Build and run the QUARC® controller.

5. Run the controller with a proportional gain of kp = 1.5. Provide one plot showing
the position response in comparison with the reference and another plot showing the
motor voltage responses. Measure the percent overshoot Mp and peak time tp of the
response when kp = 1.5. Compare these values with the theoretical values based on
the model:

tp =
π

ωn

√
1− ζ2

,Mp[%] = e
−π ζ

1−ζ2 × 100. (22)

6. Is there a steady-state error? If so, evaluate it.

7. Vary kp between 1 and 5. How does the proportional gain affect the servo position
control response?

8. Vary kp between 0.1 and 1. What happens when kp is decreased?

9. Stop the QUARC® controller.

10. Show now that for our plant G(s) = k/(s(τs + 1)) (k = 23.8 and τ = 0.1) with a
proportional-derivative (PD) controller (kp ̸= 0 and kd ̸= 0) the closed-loop transfer
functions (12) and (13) take the forms:

Y (s)

R(s)
=

K(kp+kds)

τ

s2 + 1+Kkd
τ

s+ Kkp
τ

, (23)

E(s)

R(s)
=

s(s+ 1
τ
)

s2 + 1+Kkd
τ

s+ Kkp
τ

. (24)

What is the order of the closed-loop system? Provide a formula for the closed-loop
poles. Is the closed-loop system stable when kp > 0 and kd > 0? Can the locations of
the poles be arbitrarily determined by selecting the appropriate kp?

11. By comparing the closed transfer function (23) with the standard second-order transfer
function,

Y (s)

R(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

, (25)

give formulas for both kp and kd as functions of ζ and ωn.
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12. Calculate kp and kd to make the response of the closed loop system have a peak time of
0.15 s and a percentage overshoot of 2.5%. Use the formulas in (22) to obtain the needed
ζ and ωn. Use the SIMULINK® file MEM05 Qube DCMotor PDControl Position.slx

provided in the “Design” directory to corroborate your answers.

13. Open the SIMULINK® file q qube3 pd.slx provided in the “Test” directory. Set the
Signal Generator block such that the servo command (i.e. reference angle) is a square
wave with an amplitude of 0.5 rad and at a frequency of 0.4 Hz.

14. Build and run the QUARC® controller.

15. Set kp = 2.5 V/rad and kd = 0 V/(rad/s). Keep the derivative gain at 0 and vary
kp between 1 and 4. How does the proportional gain affect the servo position control
response?

16. Set kp = 2.5 V/rad and vary the derivative gain kd between 0 and 0.15 V/(rad/s). How
does the derivative gain affect the servo position control response?

17. Run the controller with the gains you calculated to satisfy the time constraints. Provide
a plot comparing reference and actual angular positions and a plot showing the motor
voltage.

18. Measure the percent overshoot and peak time of the Qube-Servo-3 response. Do they
match the desired percent overshoot and peak time specifications without saturating
the motor (going beyond ±10 V)?

Hint: Use the Cursor Measurements tool in the SIMULINK® Scope to take measure-
ments of the response.

19. If your response did not match the above overshoot and peak time specification, try
tuning your control gains until your response does satisfy them. Attach the MATLAB®

figures showing your results and comment on how you modified your controller to arrive
at those results.

20. Stop the QUARC® controller.

21. Power off the QUBE-Servo 3 if no more experiments will be conducted in this session.
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