Why Don't These Drugs Work Anymore?

Biosciences in the 21st Century

Dr. Amber Rice

October 28, 2013

Outline

- Drug resistance: a case study
- Evolution: the basics
- How does resistance evolve?
 - Examples of "superbugs"
- Avoiding more widespread resistance

Drug resistance: a case study

 AZT (azidothymidine) approved as a treatment for HIV in 1987.

Copyright © 2004 Pearson Prentice Hall, Inc.

Drug resistance: a case study

 After several months of treatment, higher concentrations of AZT were needed.

Drug resistance: a case study

 In most cases, patients became resistant to AZT within 6 months!

What happened?

Why might a drug stop working so quickly?

Outline

- Drug resistance: a case study
- Evolution: the basics
- How does resistance evolve?
 - Examples of "superbugs"
- Avoiding more widespread resistance

What is evolution?

Evolution is a change in a population's allele frequencies over time.

- 1. <u>Mutation</u>: a change in DNA sequence, gene order, or chromosome number
 - Random
 - Increases genetic variation within populations
 - Types of mutations:
 - Point mutations
 - Insertions
 - Deletions
 - Gene duplications
 - Chromosomal inversions
 - Polyploidy

- 2. <u>Gene flow (or migration)</u>: movement of genes between populations
 - Increases genetic variation within populations
 - Makes populations more similar to each other

- 3. <u>Genetic drift</u>: random changes in gene frequencies from one generation to the next (sampling error)
 - Non-adaptive
 - Decreases genetic variation within populations
 - Makes populations more different from each other (divergence)
 - Acts faster in small populations

- 4. Natural selection: differential reproductive success
 - Non-random
 - Not forward-looking, can only work with existing variation
 - Only adaptive mechanism of evolution

Evolution by natural selection

Ingredients needed for evolution by natural selection

- Variation in traits
- Inheritance
- Differential reproduction (natural selection)

End result: Traits that increase reproductive success increase in frequency in a population.

Paleontology's Understanding Evolution Site

Back to our case study: the evolution of resistance

Back to our case study: the evolution of resistance

Mutation **C**

Natural selection ingredients:

Variation **D**

Inheritance A

Differential reproductive

success **E**

End result: AZT-resistant HIV strain **B**

Time

Back to our case study: new treatments informed by evolution

 By understanding how resistance evolves, researchers could design new treatments.

Why are drug cocktails more effective?

- With a single drug, only 1 mutation can confer resistance.
 - Easy. HIV has <u>large populations</u>, a <u>short</u> generation time, and a <u>high mutation rate</u>.
- For resistance to drug cocktails,
- More mutations needed for resistance → lower probability the mutations will occur together in one virion

Outline

- Drug resistance: a case study
- Evolution: the basics
- How does resistance evolve?
 - Examples of "superbugs"
- Avoiding more widespread resistance

Important terms

- Antimicrobial: substances that kill or slow the growth of microbes
- Microbes: microscopic organisms including bacteria, viruses, parasites, and some fungi
- Antibiotic: drug developed to kill or slow the growth of bacteria

What "ingredients" are needed for the evolution of antimicrobial resistance by natural selection?

Evolution of resistance

- Heritable variation for resistance
 - 30,000 year-old bacterial DNA recovered from Yukon permafrost
 - Genomic analyses identified genes for resistance to several antibiotics, including tetracycline and vancomycin (D'Costa et al. 2011, Nature)
 - So, resistant strains:
 - can pre-date use of the antimicrobial drug.
 - may arise by random mutation or even gene transfer after the drug is in use.

Evolution of resistance

- Differential reproduction
 - Widespread use of antibiotics creates strong selection for resistant strains.
 - Antibiotics over-prescribed by doctors
 - Antibiotics used in agriculture and commercial products
 - Use of any anti-microbial drug, not only antibiotics, creates strong selection for resistance.

Evolution of resistance

End result: Superbugs

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.

Evolution of resistance: mutation by mutation

Evolution of resistance: a dangerous twist in the story

 Bacteria can also pick-up resistance genes through horizontal gene transfer

Antimicrobial resistance: general facts

- Global concern
 - Long distance spread through travel and trade
- Longer illnesses, higher risks of death
 - Greater chance of spread when patients infectious for longer
- Increased healthcare costs
 - 5-10% U.S. hospital patients develop a resistant infection
 - \$5 billion increase in annual healthcare costs!
- Growing problem
 - ~90,000 U.S. patients die each year vs. ~13,000 in 1992

MRSA

Methicillin-resistant Staphylococcus aureus

- Spread in hospitals and with close physical contact (e.g., among inmates, athletes)
- 33% worldwide have Staph, ~1% MRSA
- Painful skin conditions, even bacterial pneumonia and blood infections
- Can be fatal
- Resistant to entire class of penicillin-like antibiotics
- In 2002, vancomycin-resistant strain found

MRSA

Staphylococcus aureus (hospital isolates): percentage of methicillin-resistant strains, 2007, Latin America and the Caribbean

Adapted from: Annual report on the antibiotic resistance monitoring/surveillance network, 2008 Source: Latin American Resistance Surveillance Network, 2007. © PAHO HSD/CD 2011

MDR-TB

Multidrug-resistant Tuberculosis

- TB is major cause of death worldwide.
 - 2 million TB-related deaths each year
- 440,000 MDR-TB cases each year
 - 150,000 deaths
- 2nd line drugs have more side-effects, cost up to 100x more!

Gonorrhea

Neisseria gonorrhoeae

- Sexually transmitted disease
- Bacterial
- ~700,000 new infections in U.S. each year
- Can lead to infertility in both sexes
- Can spread to blood and joints, potentially lifethreatening
- · Easily takes up DNA from other bacteria
- Resistant to all but one class of antibiotics
- Serious problem worldwide

Centers for Disease Control and Prevention (CDC)
U.S. National Institute of Allergy and Infectious Diseases (NIAID)

Malaria

- Caused by Plasmodium spp. protozoan
- Transmitted by mosquito
- Tropical and sub-tropical regions
- Fever, muscle & back pain, vomiting, anemia...
- Brain damage in children
- Nearly 1 million deaths each year
- Drugs used for treatment and for prevention
- Resistance to cheapest and most commonly used drugs is widespread
- Resistance to newer drugs is emerging

Outline

- Drug resistance: a case study
- Evolution: the basics
- How does resistance evolve?
 - Examples of "superbugs"
- Avoiding more widespread resistance

Avoiding more widespread resistance

- 1. Avoid contracting infections
- 2. Minimize transmission of resistant microbes
- 3. Improve use of antimicrobial drugs
 - Take only when appropriate (i.e., don't take an antibiotic for the flu!)
 - Use antibacterial soaps/cleaners ONLY around people with weakened immune systems
 - Avoid broad-spectrum antibiotics if possible.
 - Take ALL of the medication
 - Reduce agricultural use of antibiotics

Resistance is sometimes costly for microbes.

- Use of specific antibiotics (not broadspectrum)
 - Some antibiotics target a greater number of bacterial species.
 - Often used when diagnosis is unclear.
 - Why is it better to prescribe an antibiotic that targets fewer species?
 - Selection for resistance will act only on the species that are targeted by the drug.

- Taking ALL of the medication increases the chance of exterminating the microbial population before resistance evolves.
 - If you stop early, you may get sick again or stay sick for longer.
 - Longer illness → more bacterial generations → greater chance of mutation for resistance arising
 - Even if resistant microbes DO arise, immune system may successfully fight them if population is small.
 - Stopping the drug lets the population grow larger.

Resistant bacteria escape livestock, spread to humans

Current research aims

- What is the mechanism of resistance?
- How do microbes acquire and pass on resistance genes?
- Development of better diagnostic tests to avoid the need for "broad spectrum" antibiotics
- Development of new drugs/vaccines

Key points

- Drug resistance is a serious problem worldwide.
- Understanding evolution is key to designing effective treatments and avoiding resistance in the first place.
- Evolution occurs by 4 mechanisms: mutation, gene flow, genetic drift, and natural selection.
- Mutation and genetic drift are random; natural selection is not.
- Evolution by natural selection requires: genetic variation, inheritance, differential reproduction.
- Natural selection can only work with the variation that is present. It cannot provide what is "needed."