

Microorganisms in Biofuel Production.

Bioenergy resources

Biomass-BIOFUEL system

Role of microbes

- Bioprocessors
- Source of biocatalyst (enzymes)
 - Preprocessing of feedstock for fuel production
 - Cell wall modification
 - Feedstock preservation
 - Pretreatment
 - Hydrolysis
 - Fuel production (An array of conversion options)
 - Other [energy saving & environmental roles
 - Carbon recycling
 - Micro-carbon sinks
 - Carbon extension???
 - Waste treatment/Bioremediation

Biofuel energy options

- [Trans]esterification
- Combustion
- Combine Heat and Power (CHP)
- Pyrolysis
- Gasification
- Hydroprocessing/treatment
 - Fermentation
 - Anaerobic digestion
- Microbial Fuel cells
 - Electrosynthesis (liquid fuels)
 - Electromethanogenesis/Electroh (gaseous fuels)
 - Electricity

Chemical route

Thermal route

Thermochemical route

Biochemical route

Require biocatalyst (enzymes or microbes)

Bio-electrochemical

•

Microbial Communities

Conversion

Microbial Communities

Conversion to biofuel

What are will looking for ?

- Growth in high substrate concentration
- Tolerance to stress
- Substrate flexibility
- Product specificity
- High productivity
- High yield
- Fast doubling time????
- Media composition
- Operational conditions
- Biological parameters

Ethanol production

Hydrolysis: carbohydrate

Microbial Communities

Conversion to Ethanol

Saccharolytic microbes

Fermentative microbes

Hydrolytic enzymes

Single species

Fungi

Complex of multiple enzymes (**Cellulosome**)

Bacteria

Ethanol production

Carbohydrates: Cellulose Starch

Glucose/sucrose

$$C_6 H_{12} O_6 \rightarrow 2C_2 H_5 OH + 2CO_2$$

1 mole glucose = 2 moles ethanol + 2 moles carbon-dioxide

$$3C_5H_{10}O_5 \rightarrow 5C_2H_5OH + 5CO_2$$

3 moles xylose = 5 moles ethanol + 5 moles carbon-dioxide

Alcohol fermentors (Lab-scale reactors)

Anaerobic Digestion

U.S. Methane Emissions, By Source

Note: All emission estimates from the *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013*.

Enteric Fermentation

Gas composition		Human Fart	Ruminant Burp	
•	Nitrogen	59%	7%	
•	Hydrogen	21%	0.2%	
•	Carbon-dioxide	9%	65%	
•	Methane	7%	27%	-
•	Oxygen	4%	0.5%	4009
	Hydrogen sulfide/Mercaptans	1%		

95% of enteric emissions from belching rather than farting

Biogas digesters

Reaction: Fermentation

Capacity: 40 to 60 gallons of material

Microbes: 150 billion/teaspoon

> 400 different species

Output: Energy/nutrients

132 - 264 gal of ruminal gas belched/day

30 - 50 gallons methane/cow/day

Anaerobic digestion

Acetogens

Methanogens

Dominant methanogenic groups (archaea):

Manure

- 1) Methanoculleus thermophilicus (hydrogenotrophic)
- 2) Methanosarcina thermophila (acetotrophic)

Fruits and vegetables

- 1) Methanosphaera stadtmanii (hydrogenotrophic)
- 2) Methanobrevibacter wolinii (hydrogenotrophic)

Municipal wastes and sewage sludge

- 1) Methanosaeta concilii (acetotrophic)
- 2) Methanosarcina sp (acetotrophic)

Bioenergy to the rescue

Missouri
Hog production facility
~ 2 Million hogs
80 manure Lagoons

Bioenergy to the rescue

- Energy production
- Pathogen reduction
- Odor reduction
- Nutrient recovery
- Mitigate Global warming

Operational Biogas Systems in the U.S.

Source: American Biogas Council

Microbial fuel cells (mfc)

Rabaey and Verstaraete, 2005. Microbial fuel cells: novel biotechnology for energy generation. http://www.microbialfuelcell.org/Publications/Rabaey%20and%20Verstraete%20Trends%20in%20Biotechnology.pdf

Microbial Fuel Cells (Mfc)

Some MFC bacteria (electricigens)

- 1 Geobacter species
 - Geobacter metallireducens
 - Geobacter sulfurreducens
 - Geobacter psychrophilus
 - Desulfuromonas acetoxidans
 - Geopsychrobacter

(direct membrane electron transfer mechanism - exoelectrogens)

- 2 •Shewanella putrefacians
 - Pseudomonas species
 - Geothrix ferementans

(Produce their own chemical – redox mediators)

- 3 •Shewanella oneidenensis
 - Pseudomonas aeruginosa

Use nanowires for electron transfer

Nanowires

http://www.nanowerk.com/spotlight/spotid=1197.php

MFC – variants

MFC – other variants

Hydrogen-producing MFC

TWO MODES

- BioElectrochemically-Assisted Microbial Reactor (BEAMR)
- Biocatalyzed electrolysis cells (BECs)
- Microbial electrolysis cells (MECs)

1

MEC reaction at cathode:

Oxygen +
$$H^+$$
 + e^- = Hydrogen

Acetic acid

2

$$C_6H_{12}O_6 + 2 H_2O \rightarrow 4 H_2 + 2 CO_2 + 2 C_2H_4O_2$$

 $C_2H_4O_2 + 2H_2O + electricity \rightarrow 2CO_2 + 4H_2$

Theoretically: 0.41 Volts to make H₂ from acetate,

Bacteria produce: ~0.2 to 0.3 V

Supplementary voltage: 0.2 V

Connect the positive pole of a programmable power supply to the anode and the negative pole to the cathode

MFC vs Conventional Fuel Cell (CFC)

Utilization of biomass or organic substrate

Microbial Fuel Cells (Mfc)

Emerging technology: Oleaginous microorganisms

Microbial-based diesel and microdiesel

- Solar Gasoline
- Solar Diesel
- Solar Fuels

Photobioreactor

Emerging Technologies

Microbial-based Fatty acids for biodiesel

Cyanobacteria

- Modified thioesterases
 - Clip the bonds associating the fatty acids with more complex molecules
 - Modified S and peptidoglycan layers
 - allow fatty acids to more easily escape outside the cell

Emerging Technologies

Microdiesel

Genetically Modified Escherichia coli

- Ethanol producing genes from Zymomonas mobilis
- another genes from *Acinetobacter baylyi* to produce enzymatic catalyst for the reaction
- Uses oils/fatty acids and sugars
- Plant waste, food waste

Microbial Communities

Bunker silo (Horizontal)

Storage

Wrapped silage

Silage bag

Some endogenic silage microorganisms

MICROBE	SUBSTRATE	OUTCOME	
Lactic acid Bacteria (LAB)			
Homolactic	Simple sugars	Lactic acid	
Lactobacillus plantarum, Pediococcus acidilactici, Enterococcus faecium			
Heterolactic	Simple sugars	Lactic acid, [acetic,	
Lactobacillus buchneri, Leuconostoc pseudomesenteroides, Weissella cibaria		isobutyric, ethanol, mannitol, propandiol], CO2	
Propionic acid bacteria	Simple sugars	Propionic, acetic , CO2, H2O	
Propionibacterium shermanii, Propionibacterium jensenii			
Enterobacteria	Simple sugars	Acetic acid, ethanol, CO2, H2	
Erwinia persicinia, Escherichia coli, Pontoea agglomerans			
Bacilli Bacillus mageterium	Simple sugars (Cellulolytic activity)	Lactic and acetic acids [butyric acid]	
Clostridia Clostridium butyricum, Clostridium sporogenes, Clostridium perfringens	Simple sugars, lactic acid	Butyric acid, CO2	
Yeast (air infiltation)	Simple sugars, organic	Ethanol and CO2	
Candida intermedia, Pichia fermentans, Saccharomyces martiniae	acids		
Molds (air infiltration) Simple sugars		CO2 and H2O	
Aspergillus fumigatus, Penicillium roqueforti, Mucor circinelloides	(Cellulolytic activity)		
Most desirable OK	aerobic stabilty	NOT desirable	

Common organic acids in anaerobic solid state fermentation

		рКа	% Dissociated at pH 4.5	Post storage advantage
ses	Propionic	4.88	29.42	Aerobic stability
decreases	Butyric	4.82	32.37	None
capacity	Iso-butyric	4.86	30.39	Ethanol stimulant (if less than 4g/L)
	Acetic	4.76	35.46	Ethanol stimulant (if less than 6 g/L)*
Inhibitory	Lactic	3.85	81.71	Ethanol stimulant (if less than 8g/L)*
	7			

^{*} Higher concentrations can be present singularly (up to 10 g/L and 20 g/L for acetic and lactic respectively) without any inhibitory effect on ethanol $_{40}$

Effect of organic acids on feedstock structure

Additive: Biomax Si (CHR Hansen, Denmark) containing lactic acid bacteria

Storage moisture: 23 – 30%

Microscopic images comparing unensiled and ensiled corn stover (Adapted from Oleskowicz-Popiel et al. 2010)1

Ultimate goal and expectations?

Microbes in feedstock production

Strategy focus mainly on:

- Decreasing lignin content
- Altering/modifying lignin content
- incorporate enzymatic biocatalyst
- or microbial bioprocessers

- Down regulation of lignin synthesis enzymes e.g. shikimate hydroxycinnamoyl transferase
- Overexpression of some gene
- Replace lignin-lignin bonds with bond
- Gradually act on plant cell walls during growth
- Activated at crop maturity <u>or</u> at harvest <u>or</u> during feedstock processing to increase cell wall digestibility and make sugars more accessible

Two Models

Polyoses (Hemicellulose)

Lignin

Lignin Non-carbohydrate

Biomass-degrading enzymes used

Enzymes from bacteria (e.g. *Pseudomonas fluorescens*)

4-hydroxycinnamoyl-CoA hydratase/lyase

Lower degree of polymerization/molecular weight Cleavage of some side chains

Enzyme	Reference	
Endoglucanase	Dai <i>et al.</i> (2000)	
Cellobiohydrolase	Dai et al. (1999)	
Xylanase	Kimura et al. (2003)	
Lignin peroxidase	Bhat and Bhat (1997)	
Manganese peroxidase	Chen et al. (2012) and Saha (2003)	
Ferulic acid hydrolase	Buanafina et al. (2010)	
Multifunctional hydrolases	Fan and Yuan (2010)	
Cocktails (endoglucanase, exoglucanase, pectate lyase, cutinase, swollenin, xylanase, acetyl xylan esterase, beta-glucosidase and lipase)	Verma <i>et al.</i> (2010)	

Microbe-derived hydrolytic enzymes

Bioprospecting

Mostly based on natural analogues

Microbial Communities

Lignocellulose Degradation

Methane (Biogas) production

Hmm...
My poop has more value than I do

Questions

