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a b s t r a c t

Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular com-
munication by passive diffusion of signaling molecules. We have shown previously that cells endo-
cytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane
vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and
protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic
stem cell colonies – endogenously expressing the GJ protein connexin43 (Cx43) – with epidermal
growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and
PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment
Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis
as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

1. Introduction

Direct intercellular communication by gap junction (GJ) chan-
nels is a hallmark of normal cell and tissue physiology. GJs are
the only cell–cell junction type that allows direct cell–cell commu-
nication via the transfer of molecules between cells. Examples in-
clude small metabolites such as glucose, amino acids, and ATP;
ions such as Na+, Ca2+, and Cl�; cell signaling molecules such as
IP3 and cAMP; and potentially functional RNAs, such as miRNAs
in glioma cells [1] and siRNAs in NRK cells ([2], reviewed in [3]).
Complete double-membrane spanning GJ channels are formed
when two hexameric hemi-channels (connexons) dock in the
extracellular space. In addition, based on their double-membrane

configuration GJs likely contribute significantly to cell–cell adhe-
sion. Clearly, these cellular GJ functions require precise modula-
tion. Remarkably, docked GJ channels cannot be separated into
individual hemi-channels under physiological conditions [4,5].
Yet, analyses in many different cell and tissue types revealed that
cells endocytose their GJs constitutively, and efficiently after treat-
ment with inflammatory mediators such as thrombin and endothe-
lin, in response to treatment with the non-genomic carcinogen
lindane, and under many physiological and pathological conditions
that require cell–cell uncoupling and/or physical cell–cell separa-
tion such as cell migration in development and wound healing, tis-
sue differentiation, mitosis, apoptosis, leukocyte extravasation,
ischemia, hemorrhage, edema, and cancer cell metastasis [6–14].
Constitutive and acute GJ endocytosis correlates with the short
half-life of 1–5 h reported for GJ proteins (connexins, Cxs) and
GJs [7,15–17]. We have previously shown that GJs are endocytosed
as a whole in a clathrin-mediated endocytic process [6,12,18,19].
However, the specific post-translational modifications such as
phosphorylation, ubiquitination, etc. that may render Cx proteins
in GJs endocytosis competent are still poorly understood.

Twenty Cx isoforms are found in mouse with Cx43 being the
most prominent isoform. Cx43 is a well-known phospho-protein.
Numerous serine residues in the Cx43 C-terminus are phosphory-
lated to up-regulate (Ser325, Ser328, Ser330, Ser364/365, and
Ser373) or down-regulate (Ser255, Ser262, Ser279/282, and
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Ser368) GJ mediated intercellular communication (GJIC) (reviewed
in [20]). Protein kinase C (PKC) is thought to phosphorylate Cx43 at
Ser368 to down-regulate GJIC [21,22]. Cx43 has also been shown to
be a substrate of mitogen activated protein kinase (MAPK) that
upon mitogen stimulation phosphorylates Cx43 at Ser255,
Ser262, and Ser279/Ser282 to down-regulate GJIC [23,24]. Epider-
mal growth factor (EGF), a well-studied mitogen, binds to the EGF
receptor (a receptor tyrosine kinase [RTK] family member) to acti-
vate both MAPK and PKC signaling pathways, to for example pro-
mote cell proliferation. Mouse embryonic stem (mES) cells are
known to express the GJ proteins Cx31, Cx43, and Cx45 and to form
functional GJs [25,26]. ES cells are actively proliferating cells with a
relatively short cell cycle (see Supplemental Movie 1). They can
infinitely self-renew while maintaining their pluripotency that is
mediated via GJIC among the cells in the colony [27–29]. Treat-
ment of mES cells with EGF is known to down-regulate GJIC [30].
However, the mechanism/s that lead to GJIC inhibition are not
known. Since EGF can stimulate cell proliferation, and mitotic cells
are known to remove their GJs at onset of mitosis [13], we hypoth-
esized that EGF-treatment may lead to GJ endocytosis to down-
regulate GJIC. To test this hypothesis, and to characterize signals
that may lead to GJ endocytosis, we treated mES cell colonies with
EGF. We found that EGF-treatment induced inhibition of GJIC that
correlated with clathrin recruitment and Cx43–GJ endocytosis, and
that GJ endocytosis was initiated by phosphorylation of Cx43 at
serines 262, 279/282, and 368.

2. Materials and methods

2.1. Cell culture

E14TG2a mouse embryonic stem (mES) cells (ATCC, Cat. No.
CRL-1821) were seeded on mouse embryonic fibroblasts (MEFs)
(Millipore, Cat. No. PMEF-NL). Under established culture conditions
described below mES cells remain undifferentiated and grow into
3-dimensional colonies that are only loosely attached to the cul-
ture dishes. Colonies were passaged and maintained in 0.1% gela-
tin-coated dishes (MEF-free) in humidified atmosphere
containing 5% CO2 at 37 �C in KO DMEM (Gibco, Cat. No. 10829).
Media were supplemented for a final concentration of 15% with
KO serum replacement (Gibco, Cat. No. 10828), 3 mM L-glutamine
(Gibco, Cat. No. 25030), 50 I.U/ml penicillin and 50 lg/ml strepto-
mycin (Gibco, Cat. No. 15070), 1 mM sodium pyruvate (Gibco, Cat.
No. 11360, stock 100 mM), 1� non-essential amino acids (Milli-
pore, Cat. No. TMS-001-C), 1� b-mercaptoethanol (Millipore, Cat.
No. ES-007-E), and 1000 U/ml ESGRO mLIF (Millipore, Cat. No.
ESG1106) to prevent cells from differentiating. Prior to EGF treat-
ment (100 ng/ml EGF, Sigma, Cat. No. E4127), media were replaced
with serum free media (to starve cells of growth factors) supple-
mented either with 50 lM PD98059 (MEK, MAPK pathway inhibi-
tor; Sigma, Cat. No. P215), 100–500 nM chelerythrine-Cl (PKC
inhibitor; Cayman Chemical, Cat. No. 11314), or both for 1 h and
cultured under standard conditions.

2.2. Dye transfer assays

mES cell colonies were cultured in 3.5 cm diameter dishes for
2 days, then pre-incubated with serum free media as described
above. Appropriate culture dishes were then treated with
PD98059, chelerythine-Cl, or both and cultured for 1 h before add-
ing 100 ng/ml EGF and incubating for additional 30 min. Media
were replaced with 0.1% Lucifer Yellow (LY; Invitrogen, Cat. No.
L682) in OPTIMEM (Gibco, Cat. No. 31985). To wound cells and al-
low for LY dye uptake, mES cell colonies were carefully cut with a
sharp scalpel in the presence of LY, incubated at room temperature

(RT) for 5 min to allow dye to transfer to neighboring cells, then
washed 3 times with OPTIMEM followed by 3.7% paraformalde-
hyde fixation for 10 min. Paraformaldehyde was removed by wash-
ing 3 times with 1 � PBS containing Ca2+ and Mg2+. LY fluorescence
and Phase Contrast images were acquired using a 20� objective.
Dye spreading from the injured cells to the farthermost receiving
cells was measured using MetaVue software version 6.1r5 (Molec-
ular Devices, Sunnyvale, CA), averaged and plotted. In addition,
fluorescence intensities along lines placed perpendicular to the
cut at representative areas were measured and plotted as well.

2.3. Immunofluorescence microscopy and image analyses

mES cell colonies were grown on glass cover slips pre-treated
with 0.1% gelatin (Fisher Scientific, Cat. No. G-7) to improve colony
adhesion; fixed and permeabilized in pure ice-cold ethanol for
10 min; blocked with 10% FBS in PBS at RT for 1 h, and incubated
with primary rabbit polyclonal anti-Cx43 antibodies (Cell Signaling
Technology, Cat. No. 3512) at 1:500 dilution at 4 �C overnight. Sec-
ondary antibodies (Alexa488-conjugated goat anti-rabbit, Molecu-
lar Probes/Invitrogen, Cat. No. A11008) were used at 1:500 dilution
at RT for 1 h. Plasma membranes were visualized using 1 lg/ml
Alexa594-conjugated wheat germ agglutinin (WGA; Molecular
Probes/Invitrogen, Cat. No. W11262), or a monoclonal antibody di-
rected against the membrane-associated protein, ZO-1 (at 1:300
dilution, Zymed Laboratories, Cat. No. 33-9100) combined with
an Alexa568-conjugated secondary antibody (goat anti-mouse, at
1:500 dilution, Molecular Probes/Invitrogen, Cat. No. A-11031)
after fixation in 3.7% formaldehyde and permeabilization in 0.2%
Triton X-100. Cell nuclei were stained with 1 lg/ml DAPI. Cells
were mounted using Fluoromount-G™ (SouthernBiotech, Cat. No.
0100-01) and examined. Wide-field fluorescence microscopy was
performed on a Nikon Eclipse TE 2000E inverted fluorescence
microscope equipped with a 40�, NA 1.4, Plan Apochromat oil
immersion objective. Images were acquired using MetaVue soft-
ware. Confocal microscopy was performed on a Zeiss Axiovert
200 M inverted fluorescence microscope equipped with an
LSM510 META scan head and a 63�, NA 1.4, Plan Apochromat oil
immersion objective. Argon-ion and Helium–Neon lasers were
used to generate 488 and 543 nm excitation lines, and pinholes
were typically set to 1 airy unit. Images were acquired and ana-
lyzed using ZEN software. Quantitative analyses were performed
using ImageJ (National Institutes of Health, USA).

2.4. Electron microscopic analyses

mES cell colonies were cultured under feeder-free conditions in
3.5 cm diameter dishes, then fixed with 2.5% glutaraldehyde (Sig-
ma, Cat. No. G7651) in 0.1 M sodium cacodylate buffer at RT for
2 h. Cells were washed, treated with tannic acid, dehydrated, ura-
nyl acetate-stained and flat-embedded in the dishes as described in
Falk [31]. Embedded cells were mounted, trimmed, thin-sectioned
and examined with a Phillips CM100 electron microscope.

2.5. Western blot analyses

Denatured protein samples derived from mES cell lysates were
analyzed on 10% SDS–PAGE mini-gels (BioRad). Biotinylated pro-
tein ladder (Cell Signaling Technology, Cat. No. 7727S) was used
as a molecular weight marker. Proteins were transferred onto
nitrocellulose membranes (Whatman, Cat. No. 10439396) on ice
at 120 V for 1 h before blocking with 5% non-fat dry milk, or 5%
BSA in TBST at RT for 1 h. Membranes were then incubated with
primary antibodies at 4 �C overnight. Antibodies used were: rabbit
anti-Cx43 (Cell Signaling Technology, Cat. No. 3512) at 1:2500
dilution, phospho-specific rabbit anti-Cx43 Ser255 (Santa Cruz,
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Cat. No. sc-12899-R), phospho-specific rabbit anti-Cx43 Ser262
(Santa Cruz, Cat. No. sc-17219-R) both at 1:500, phospho-specific
rabbit anti-Cx43 Ser279/282 [32] at 1:1000, phospho-specific rab-
bit anti-Cx43 Ser368 (Cell Signaling Technology, Cat. No. 3511) at
1:2000, phospho-ERK1/2 (Cell Signaling Technology, Cat. No.
9102) at 1:3000, mouse anti-clathrin heavy chain (BD Transduc-
tion Laboratories, Cat. No. 610499), at 1:2000, and mouse anti-a-
tubulin (Sigma, Cat. No. T9026) at 1:5000 dilution. Membranes
were washed with TBST followed by incubation with HRP-conju-
gated secondary antibodies (Zymed Laboratories, Cat. No. 81-
6520 or 81-6120) at 1:10000 dilution at RT for 1 h. Proteins were
detected with enhanced chemiluminescent (ECL) reagent. NIH Im-
ageJ was used to quantify protein band intensities.

2.6. Co-Immunoprecipitation assays

mES cells were lysed with 1 � SDS-free RIPA buffer (Cell Signal-
ing Technology, Cat. No. 9806) supplemented with protease and
phosphatase inhibitor cocktail (Cell Signaling Technology, Cat.
No. 5872). Supernatants were incubated with rabbit anti-Cx43
antibodies (Cell Signaling Technology) bound to protein-G
magnetic beads (Dynabeads�, Invitrogen, Cat. No. 10003) at 4 �C
overnight or RT for 2 h, then washed 3 times with 1 � TBS. Cx43
and bound proteins were eluted using hot SDS–PAGE sample buffer
containing 50 mM DTT. Samples were analyzed by Western blot as
described above.

2.7. Statistical analyses

Unpaired student t-tests were performed to analyze the dis-
tance of dye transfer (Fig. 1), and to calculate efficiency of EGF-
mediated GJ endocytosis (Figs. 3A, S1) using GraphPad software
(GraphPad Inc., La Jolla, CA). ANOVA with Dunnett’s post hoc tests
were used to compare the levels of serine phosphorylation in Cx43,
and the amount of co-precipitated clathrin heavy chains (Figs. 2
and 4). Data are presented as mean ± S.E.M. In all analyses, a P-va-
lue 60.05 (depicted with ⁄, ⁄⁄, or ⁄⁄⁄) was considered statistically
significant.

3. Results

3.1. EGF treatment inhibits GJIC in mES cell colonies by activating the
MAPK signaling cascade

GJIC has been shown to play a crucial role in embryonic devel-
opment, tissue function, and cellular homeostasis (reviewed in
[26,33]). GJIC in pre-implantation mouse embryos as early as at
the 8-cell stage was described by Lo and Gilula [14]. Cx protein
expression and GJIC in mES cell colonies has also been described
[25]. In 2008, inhibition of GJIC in mES cells treated with EGF has
been described [30]. However, the mechanism/s that lead to
GJIC-inhibition were not explored. Thus, to specifically examine
the effects of EGF-treatment on Cx43, and to test whether specific
Cx43 phosphorylation events may be responsible for the inhibition
of GJIC and/or GJ endocytosis, we pre-incubated mES cell colonies
either with or without PD98059 (a specific MEK inhibitor, an up-
stream kinase of the MAPK signaling cascade, see Fig. 5), cheleryth-
rine-Cl (a PKC inhibitor), or both in serum free media before
treating colonies with EGF. To assess GJIC inhibition, scrape load-
ing/dye transfer assays using the GJ-permeable dye, Lucifer Yellow
(LY) were performed, and GJIC-efficiency in EGF-treated cell colo-
nies was compared to untreated cell colonies in 3 independent
experiments. GJIC in EGF-treated cell colonies was significantly re-
duced to 36 ± 1.1% (P = 0.0001, n = 41) compared to untreated con-
trols (100 ± 5.9%, n = 35) (Fig. 1A and B, columns 1, 2). Cell colonies

pre-incubated in PD98059, or PD98059 and chelerythrine-Cl
exhibited a similar level of GJIC comparable to untreated control
cells (90 ± 2.5%, P = 0.078, n = 59 and 87 ± 6.1%, P = 0.164, n = 19,
respectively), suggesting that the MEK inhibitor significantly abol-
ished the GJIC inhibitory effect of EGF (Fig. 1A and B, columns 3, 5).
Pre-treating cells with chelerythrine-Cl did only slightly reduce the
inhibitory effect of EGF, resulting in a 49 ± 2.5% (P = 0.0001, n = 11)
efficient GJIC (Fig. 1A and B, column 4). Together, these results indi-
cate that EGF inhibits GJIC in mES cell colonies by activating the
MAPK signaling cascade.

3.2. EGF activates MAPK and PKC in mES cell colonies to phosphorylate
Cx43 on serines 262, 279/282, and 368

In order to examine which serine residues in the Cx43 sequence
might be phosphorylated in response to EGF treatment, we imple-
mented phospho-specific antibodies to detect the level of Cx43
phosphorylation at specific serine residues. mES cell colonies were
cultured and serum-starved as described, then lysed at 10, 20, 30,
45, and 60 min post EGF treatment. Levels of phospho-Cx43 were
analyzed by Western blots and intensities of protein bands were
quantified. a-Tubulin levels were analyzed as a loading control. Re-
sults indicate that EGF induced Cx43 phosphorylation at specific
serine residues located in its C-terminus. Levels of pSer262,
pSer279/282, and pSer368 at 10, 20 and 30 min post EGF treatment
were significantly higher than in the untreated control (Fig. 2A and
B, red, green and purple columns). At later time points (45 and
60 min), serine phosphorylation levels again dropped to levels that
were not significantly different from untreated controls. No signif-
icant increase in phospho-Ser255, another Cx43 MAPK site that is
known to be phosphorylated in mitotic cells [34,35], was detected
(see Section 4) (Fig. 2A and B, blue column).

3.3. EGF induces GJ endocytosis in mES cell colonies

We have previously demonstrated that cells utilize the clathrin-
mediated endocytic (CME) machinery to endocytose GJs either
constitutively or acutely after treatment with natural inflamma-
tory mediators such as thrombin and endothelin [6,12,18,19]. GJ
channel endocytosis at onset of mitosis in rat fibroblasts and
NRK cells has also been described [13]. Thus, to examine whether
EGF-induced Cx43 phosphorylation may also induce GJ internaliza-
tion, mES cell colonies were treated with EGF and cultured to-
gether with appropriate untreated controls. Colonies were then
fixed and stained with Cx43 specific antibodies, followed by
Alexa488-conjugated secondary antibodies (Figs. 3A, S1, column
1). Plasma membranes (PMs) were visualized either by using
Alexa594-conjugated wheat germ agglutinin (WGA) (Figs. 3A, S1,
column 2), or antibodies specific for the protein ZO-1 followed
by Alexa568-conjugated secondary antibodies (Fig. S1, column 2).
When cell colonies were examined by wide-field fluorescence
microscopy (Fig. 3A) or confocal microscopy (Fig. S1), an obvious
increase in cytoplasmically located punctate Cx43 structures (pre-
sumably AGJ vesicles) was detected in EGF-treated cell colonies
(Figs. 3A, S1, middle panels, labeled with arrowheads) when com-
pared with untreated cells (Figs. 3A, S1, top panels). GJs appeared
as puncta and short lines clearly located in the membranes be-
tween cells (Figs. 3A, S1, labeled with arrows). Note that ES cells
only have small cytosolic volumes and hence AGJs often appear
in close proximity to the PM. When GJs and AGJs were counted
in 6 representative images, and ratios calculated and compared be-
tween treated and untreated cells, average GJ/AGJ ratios in un-
treated cells dropped from 68.8 ± 2.4% to 23.1 ± 8.0% in EGF-
treated cells, representing a GJ endocytosis rate of 66.4%
(P = 0.0007, n = 68 GJs and AGJs counted in total) in mES cell
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colonies when treated with EGF. When colonies were pre-incu-
bated with PD98059 prior to EGF-treatment, the average GJ/AGJ ra-
tio was only slightly lower (63.3 ± 1.7%, n = 60 GJs and AGJs

counted in 4 images) than the ratio observed in untreated cells cor-
relating with the previously observed efficient inhibitory effect of
PD98059 (Fig. 3A, bottom panel).

Fig. 1. EGF inhibits GJIC in mES cell colonies. mES cell colonies were treated with EGF in the presence or absence of the MEK-inhibitor PD98059 (MAPK signaling cascade), the
PKC-inhibitor chelerythrine-Cl, or both followed by Lucifer yellow (LY) scrape loading dye transfer assays. Representative overlays of merged Phase Contrast and LY
fluorescence images of 3 independent experiments are shown in (A), quantitative analyses of relative dye transfers (representative of GJIC efficiencies) are shown in (B). mES
cell colonies are outlined by dotted lines. Scalpel-cuts through the colonies leading to cell wounding and dye-uptake are depicted by red lines. Fluorescence intensity profiles
along lines (white) placed in representative areas perpendicular to the cuts are shown beside the images. In average, EGF-treatment reduced GJIC to 36%, while the MAP
kinase cascade inhibitor, PD98059, counteracted the inhibitory EGF effect, and GJIC almost reverted to the level detected in untreated colonies (90%). Chelerythrine-Cl
counteracted the inhibitory EGF effect only to some extent and GJIC efficiency remained low (49%). Addition of both inhibitors reverted GJIC to about the level observed for
PD98059 alone, suggesting that the inhibitory EGF effect is mainly MAPK driven. NS = not significant.
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To further support our conclusion that the cytoplasmic puncta
represent internalized AGJ vesicles, we treated cells with EGF or
PD98059 followed by EGF, and then performed EM analyses in
comparison with untreated cells. Typical GJs were detected in
the PMs between mES cell pairs in untreated and PD98059 plus
EGF treated cells (Fig. 3B, left and right panels, marked with ar-
rows). Consistent with our immunofluorescence data, we detected
numerous AGJ vesicles in the cytoplasm of the EGF-treated cells
(Fig. 3B, middle panels, marked with arrowheads). Note the typical,
penta-laminar striped appearance of GJs and of the AGJ vesicle
‘wall’ that is representative of the double-membrane configuration
of GJs. Also consistent, clearly less AGJs and more GJ plaques were
detected in PD98059 plus EGF-treated cells (Fig. 3B, right panel).
No AGJ vesicles were found in untreated cells. Taken together,
our results suggest that EGF-treatment induces efficient GJ inter-
nalization in mES cells. Representative images from 6 independent
immunofluorescence experiments and 2 independent EM studies
are shown.

3.4. More clathrin is recruited to Cx43 GJs in EGF treated mES cell
colonies

As described above, cells utilize the clathrin endocytic machin-
ery to internalize their GJs [6,12,18,19]. Thus, the amount of
clathrin that co-immunoprecipitates with Cx43 can be used as a
direct measurement to quantify GJ endocytosis. We thus pre-trea-
ted mES cell colonies in serum free media for one hour with

PD98059 (MEK inhibitor) and/or chelerythrine-Cl (PKC inhibitor),
followed by treatment with EGF, and immunoprecipitation of
Cx43 protein using magnetic beads. Mardin Darby canine kidney
(MDCK) cells known not to express endogenous Cx43 protein
[36], and untreated mES cell colonies were included as controls.
Fractions of the cell lysates were collected for input analyses of
Cx43 phosphorylation, ERK1/2 activity (=MAP kinase cascade acti-
vation), and protein loading (Fig. 4A). Consistent with the results
shown in Fig. 2, Cx43 was substantially phosphorylated at Ser262,
Ser279/282, and Ser368 after 30 min post EGF treatment (Fig. 4A,
lanes 1, 2). Note, that the activity of ERK1/2, a late kinase of the
MAPK signaling cascade (see Fig. 5), was significantly increased
in EGF treated cells as indicated by the elevated levels of phos-
phorylated ERK1/2 that was detected with phospho-ERK-specific
antibodies (Fig. 4A, row 5, lanes 2, 4). Also note that ERK1/2 acti-
vation/phosphorylation was effectively inhibited by PD98059, a
specific inhibitor of the upstream MAP kinase MEK (Fig. 4A, row
5, lanes 3, 5). As a result and consistent with ERK1/2 inhibition,
in PD98059 treated colonies, Cx43 phosphorylation at Ser262
and Ser279/282 (known Cx43 MAPK target sites [24]) was inhib-
ited (Fig. 4A, rows 2, 3, lanes 3, 5). Likewise, in chelerythrine-
Cl-treated colonies a significant reduction of EGF-induced
Ser368 phosphorylation (a known Cx43 PKC target site [21])
was observed (Fig. 4A, row 4, lanes 4, 5).

Proteins that co-precipitated with Cx43 under these experimen-
tal conditions were analyzed by Western blot using antibodies spe-
cific for clathrin heavy chain (CHC) (Fig. 4B). The amount of CHC
that co-immmunoprecipitated with Cx43 in EGF-treated mES cell
colonies was increased in average by 5.9 ± 1.5-fold (P < 0.01,
n = 3) when compared to untreated colonies (Fig. 4B, lanes 1, 2),
strongly supporting our earlier finding that EGF induced GJ endo-
cytosis. Only a somewhat increased (insignificant) clathrin co-pre-
cipitation was observed in cells that were pre-incubated with
PD98059 (2.7 ± 0.9-fold; Fig. 4B, lane 3), or PD98059 and chel-
erythrine-Cl combined (2.8 ± 0.8-fold, Fig. 4B, lane 5), consistent
with effective but incomplete blockage of respective kinase activity
in these drug-treated cells. Interestingly, when cells were pre-incu-
bated with chelerythrine-Cl alone followed by EGF treatment, still
a significant 4.9 ± 1.3 (P < 0.05) fold increase in GJ internalization
was observed (Fig. 4B, lane 4). Thus, chelerythrine-Cl did not signif-
icantly inhibit EGF-induced GJ endocytosis, suggesting that PKC-
mediated phosphorylation of Ser368 is not sufficient to render
Cx43-GJs internalization competent (see Section 4). No Cx43 or
clathrin was immunoprecipitated in Cx43 negative MDCK control
cells (Fig. 4A and B, lanes 6).

Taken together, our data (summarized in Fig. 5) suggest that
EGF induces activation of the MAP kinase signaling cascade
(including MEK and ERK1/2), and of PKC to phosphorylate Cx43
at Ser262, Ser279/282, and Ser368. These specific phosphorylation
events render Cx43 protein subunits in GJs clathrin-binding capa-
ble to initiate the endocytosis of GJs in mES cells. Inhibiting MAPK
activation by treating cells with the upstream MEK kinase specific
inhibitor, PD98059, impedes Cx43 phosphorylation and in conse-
quence, GJ internalization.

4. Discussion

EGF-mediated inhibition of GJIC in mES cell colonies has previ-
ously been observed by Park and colleagues [30]. However, no
molecular mechanism/s explaining this observation have been re-
ported. In WB-F344 and T51B rat liver epithelial cells, it was de-
scribed that EGF-treatment induced inhibition of GJIC that was
mediated by MAPK [23,37]. In principle, down-regulation of GJIC
can be achieved by either GJ channel closure, and/or GJ endocytosis
[38]. In 2004, by treating IAR20 rat liver epithelial cells in

Fig. 2. EGF activates MAPK and PKC signaling cascades to phosphorylate Cx43 at
serine residues 262, 279/282, and 368. mES cell colonies were treated with EGF
before cell lysates were prepared at indicated times. Phosphorylated Cx43 was
detected using phopho-specific antibodies directed against Ser255, Ser262, Ser279/
282, and Ser368. Membranes were stripped and re-probed with anti a-Tubulin
antibodies as a loading control. Representative blots are shown in (A), normalized
quantitative analyses of phosphorylated Cx43 of 4 independent experiments are
shown in (B). EGF induced a significant, 4-fold increase of Cx43 phosphorylation at
serines 262, 279/282 (MAPK sites), and 368 (PKC site), but not on Ser255 (another
MAPK site). Phosphorylation peaked between 10 and 30 min after EGF treatment.
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hypertonic medium, Leithe and Rivedal gained initial evidence
suggesting that the EGF-induced inhibition of GJIC was mediated
by the internalization of Cx43-GJs, and that internalization may
had been mediated by a clathrin-driven endocytic process [39].
However, again molecular signals that may be involved in this pro-
cess have not been elucidated. In order to better understand the
mechanism of EGF-induced GJIC-inhibition, we treated mES cell
colonies with EGF, confirmed GJIC inhibition using dye-transfer

assays (Fig. 1), examined whether EGF-treatment would lead to
GJ endocytosis using imaging and clathrin-co-immunoprecipita-
tion based assays (Figs. 3 and 4, S1), and analyzed whether poten-
tial concomitant phosphorylation events on specific serine
residues located in the known regulatory Cx43 C-terminal domain
would correspond to EGF treatment (Figs. 2 and 4). Implementing
phospho-specific antibodies and kinase inhibitors, we uncovered
that EGF-treatment induced specific Cx43 phosphorylation, and

Fig. 3. EGF induces GJ endocytosis in mES cells. mES cell colonies grown on cover glasses were fixed and stained using antibodies specific for Cx43 (Alexa488-conjugated
secondary antibodies, green). Alexa594-conjugated WGA (red) and DAPI (blue) were used to decorate PMs and label cell nuclei. (A) Representative wide-field
immunofluorescence micrographs of 4 independent experiments are shown. Magnified views of boxed areas are shown on the right. An increased number of cytoplasmic
Cx43 fluorescent puncta, indicative of internalized AGJ vesicles (labeled with arrowheads) were observed in EGF treated cells (middle panels). GJs, localized in the PM and
appearing as puncta and short lines, are depicted by arrows. Noticeably less AGs are detected in untreated colonies (top panels), and in colonies that were treated with
PD98059 plus EGF (bottom panels). Statistical analyses in EGF-treated and untreated colonies revealed an average GJ endocytosis efficiency of 66.4%. (B) Transmission
electron micrographs revealed typically appearing, double-membrane (penta-laminar striped) GJs (marked with arrows) and AGJ vesicles (marked with arrowheads) in
treated and untreated mES cell colonies, supporting the conclusion that cytoplasmic puncta detected in (A) probably are endocytosed GJs. A low-magnification overview
image showing the densely arranged morphology of mES cells within a colony is shown in panel 1. N = cell nuclei.
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Fig. 4. Significantly increased amounts of clathrin, a direct indicator of GJ endocytosis, co-precipitates with Cx43 in EGF-treated mES cell colonies. (A) Western blot analyses
of EGF-treated cell lysates show increased activity of ERK (as indicated by increased levels of phosphorylated ERK, pERK1/2), and increased phosphorylation of Cx43 at Ser262,
Ser279/282, and Ser368 in cells treated for 30 min with EGF (lane 2) consistent with results shown in Fig. 2. Treatment with PD98059 (MEK/MAPK pathway inhibitor) plus
EGF inhibited EGF-mediated phosphorylation of Ser262 and Ser279/282 (lanes 3, 5), while chelerythrine-Cl (PKC inhibitor) treatment inhibited EGF-mediated
phosphorylation of Ser368 (lanes 4, 5). Untreated mES cells and non-Cx43 expressing MDCK cell lysates were analyzed in control (lanes 1, 6). (B) Cx43 polypeptides from
lysates in (A) of 3 independent experiments were immunoprecipitated, and co-precipitated clathrin (CHC) was detected by Western blot analyses and quantified. Cx43 from
EGF treated cells in average co-precipitated 5.9-fold more clathrin than in untreated control cells (lanes 1, 2). PD98059-treatment counteracted EGF-induced GJ
internalization by inhibiting ERK1/2 (lanes 3, 5). Moderately increased levels of clathrin (4.9-fold) co-precipitated in cells treated with chelerythrine-Cl alone (lane 4). No
Cx43 or CHC was precipitated in MDCK control cells.
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that activation of ERK1/2 (MAPK signaling pathway) is responsible
for EGF-mediated Cx43 phosphorylation at Ser262 and Ser279/282,
whereas PKC activation is responsible for Ser368 phosphorylation
(see Fig. 5). Recently, Johnson et al. reported that in pancreatic
cancer cells mutation of serine residues 279 and 282 that pre-
vented phosphorylation of these residues led to GJ internaliza-
tion-deficiency [40]. Consistent with their findings, our data
demonstrate that ERK1/2-mediated phosphorylation of Cx43 on
Ser279/Ser282 also occurs upon EGF-treatment in mES cell colo-
nies, and that this phosphorylation is required for GJ internaliza-
tion in these cells.

Interestingly, we did not find a significant increase in Ser255
phosphorylation (another MAPK Cx43 target site) upon EGF-treat-
ment of mES cell colonies (Figs. 2, 4A), as this was described to oc-
cur in 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated
epithelial IAR20 cells [35]. TPA is an analog of the second messen-
ger, diacylglycerol (DAG) that is known to activate both, MAPK and
PKC signaling pathways and to induce elevated phosphorylation
and ubiquitination of Cx43 [35,41]. Observed differences might
be explained by unalike experimental conditions (e.g. EGF versus
TPA specificity) or they might be cell type specific (rat liver epithe-
lial versus mES cells). In addition, besides its known cell-prolifera-
tive activity, EGF might have significant yet to be characterized
additional effects on mES cells that require cellular uncoupling as
well as GJ internalization (e.g. ES cell differentiation, migration,
or channel-independent Cx43 signaling). Indeed, in recent years,
the role of GJIC in mouse and human ES cell maintenance and dif-
ferentiation, as well as its potential role in the reprogramming and
differentiation of induced pluripotent stem (iPS) cells has attracted
increasing attention. For example, it has been shown that GJIC is
required for ES cells to maintain their pluripotent state [28]. In
addition, Cx43 expression has recently been found to be important
for the generation of iPS cells [27]. In 2008, Buehr et al. defined
specific rat ES cell culture conditions that capture their authentic
ES cell phenotype by using pharmacological inhibitors including
MEK/ERK inhibitors [42]. Their findings together with our own

results presented here indicate that ES cells utilize the EGF path-
way, for example to regulate cell proliferation, differentiation as
well as other essential events by modulating GJIC within the colo-
nies. A clear understanding of the molecular mechanisms that lead
to growth factor-induced inhibition of GJIC and GJ endocytosis are
therefore of eminent importance.

We used PD98059, a MEK specific inhibitor, and monitored
corresponding activation (phosphorylation) of ERK1/2 (upstream
and downstream kinases of the MAPK signaling cascade, see
Fig. 5) to inhibit EGF-induced GJIC. In addition, our results show
that EGF-receptor activation in mES cell colonies also stimulates
PKC to phosphorylate Cx43 on Ser368. However, inhibiting
PKC-activation alone (by chelerythrine-Cl treatment) did not
appear sufficient to inhibit EGF-induced GJ internalization,
suggesting that activation of ERK1/2 (and the MAPK signaling
cascade) may be more critical for EGF-induced GJ endocytosis
than activation of PKC. Clearly, further studies will be required
to fully understand a likely crosstalk between PKC and MAPK
pathways in regulating GJIC and GJ internalization. Although the
exact order of Cx43 phosphorylation events still needs to be
determined, for the first time we provide compelling evidence
that suggests that specific phosphorylation events renders Cx43
protein subunits in GJs clathrin-binding competent to induce GJ
endocytosis.
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Fig. 5. Schematic representation illustrating EGF-induced, MAPK/PKC-mediated GJ internalization in mES cell colonies. EGF binds to phosphorylates and activates its
receptor, a receptor tyrosine kinase (RTK) located in the PM of cells. Activated EGF-receptor activates MAPK and PKC signaling cascades to phosphorylate Cx43 at Ser262,
Ser279/282, and Ser368. Phosphorylated Cx43 recruits clathrin and clathrin-adaptors to endocytose GJs.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.febslet.
2014.01.048.
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