Investigation of a Copper-based Hoard from the Megalithic Site of al-Midamman, Yemen: an Interdisciplinary Approach

Alessandra Giumlia-Mair

Dipartimento di Storia e Tutela dei Beni Culturali, Università di Udine, Centro Polifunzionale di Gorizia, Piazza Alvarez, Via D ‘Alvarez 5, 1–34170 Gorizia (Italy)

Edward J. Keall

Near Eastern and Asian Civilizations Department, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada

Aaron N. Shugar

Institute of Archaeology, University College London, 31–34 Gordon Square, London, WC1H 0PY, U.K.

Susan Stock

Conservation Department, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada

(Received 24 October 2000, revised manuscript accepted 26 March 2001)

In 1997, a hoard of copper-based objects was discovered at the megalithic site of al-Midamman, on the Red Sea Tihama coastal plain of the Republic of Yemen. Since there have been very few metal artifacts discovered in the lowlands of Yemen, and there was limited stratigraphy on the site, determining the time and place of production for these artifacts was difficult. A full investigation of the objects was deemed essential to determine their chronology and origin. Analysis included optical microscopy and scanning electron microscopy (SEM) for metallography, inductively coupled plasma spectrography (ICP) for bulk chemical composition, SEM to determine phase composition and corrosion products, and X-ray diffraction (XRD) to identify corrosion products.

The objects can be divided into three types of copper and copper alloy: pure copper, arsenic rich copper, and tin rich copper. The difference in composition appears likely to be deliberate and suggests that the objects were produced sometime during the Early Bronze Age through the Middle Bronze Age. Further investigation of any metal objects discovered along the Yemeni coast and along the Ethiopian/Eritrean side of the Red Sea is obviously essential.

Keywords: YEMEN, SEM, XRD, ICP, BRONZE AGE, ALLOYING, ANALYSIS, ARSENIC, TIN.

Introduction

The report of an archaeological investigation into an hitherto largely unknown menhir* culture in Yemen (Keall, 1998) highlights the question of how one may define the Bronze Age outside the mainstream of the Near East. Can we rely on artifact typologies developed for different archaeological contexts in attempting to establish a chronology for a culture that we have only just begun to study in the Southern Arabia? If we excavate copper alloy tools for which there are visual typological parallels, from, for example, Tell Selenkihiyya in Syria c. 2400–1800 BC, how applicable is this date to our entire artifact assemblage when there are “non-Bronze Age” features present and when many of the other “Bronze Age norms” are not represented? This issue was first aired by de Maigret (de Maigret et al., 1984: 426) when he...
The intellectual thrust of this article is to report the results of metallurgical and metallographic analysis conducted on copper-alloy tools which do in fact mesh with Syro-Palestinian EB/MB types (cf. Philip, 1989 (i), Figure 51). Typologically similar versions of some of the items have also been excavated by Zarins at Sihi, in south-western Saudi Arabia (for square-sectioned points, see Zarins & al-Badr, 1986: 48–49, & pl. 64, dated beginning c. 2100 BC), and reported by Vogt (Vogt & Sedov, 1998: cat. 76 [rivetted daggers], & 130 [square-sectioned point]), in a range of dates between the second half of the 3rd millennium–beginning 1st millennium BC. A most important observation in this regard is that, in the context of discussing daggers illustrated on statue-menhirs in the Hadramawt (southeastern part of the Arabian peninsula), Newton & Zarins (2000: 159, & Figure 2) have identified actual artifacts (or illustrations from sealings) from both Syria and Iraq where its presence is judged to be “not common in the Mesopotamian repertoire”. They conclude (Newton & Zarins, 2000: 161) that this type of dagger was common, however, in the Arabian peninsula, and associate them with a Semitic-speaking pastoral society between 2500–1500 BC.

The purpose then, here, is to put forward the material from al-Midamman that has been excavated and analysed, so that others may have the benefit of the basic results, to contemplate the implications for mainstream Near Eastern artifacts. For the Canadian Project itself, metallographic and compositional analyses of the tools promises at least to develop clearer indications of with whom these unknown people interacted, as part of our search for their cultural identity.

Archaeological Context

The artifacts discussed here are from the Yemeni site of al-Midamman that has been excavated and analysed, so that others may have the benefit of the basic results, to contemplate the implications for mainstream Near Eastern artifacts. For the Canadian Project itself, metallographic and compositional analyses of the tools promises at least to develop clearer indications of with whom these unknown people interacted, as part of our search for their cultural identity.

major periods of activity in the Bronze to Iron Age—the first around the turn of the 3rd–2nd millennium, and the second towards the turn of the 2nd–1st millennium. There is no sense of a hiatus between the two major phases, but the cultural activity is quite different.

Whether this represents hostile take-over, or at least outside influence, or whether it can be judged to be the evolution of cultural behaviour of the same people, is for future enquiry to address. Conclusions drawn from the results of both seasons of excavations were presented at the 1st and 2nd International Conferences on the Archaeology of the Ancient Near East, in Rome (1998) and in Copenhagen (2000). The Proceedings, however, of both conferences have yet to appear in print (cf. Keall, 2000; in press a).

The bulk of the metal objects analysed here come from the commemorative setting of a group of standing stones. They were excavated from the sandy matrix beneath the stones, consisting of an intact cache of copper alloy tools and an obsidian core (see Figure 2). Other isolated tools were also recovered from the same general context, though the conditions were disturbed by the falling of other formerly upright stones. Apart from the copper alloy tools and the obsidian, small fragments of pottery were found in the matrix beneath the standing stones, sufficient to reveal that the culture had a ceramic record. And intact grinding stones deliberately interred in commemorative acts at the same site, seemingly Wpoint to food preparation that was most likely agricultural in nature. Typological comparison suggests a date beginning c. 2400–1800 BC because commemorative pillars of this kind (for al-Rajajil, see Zarins, 1979: 76; for Hajjar al-Ghaymah, (Wadi al-Hamili), see Bayles des Hermens, 1976: 5–37) are more usually attributed to the Chalcolithic era (say, 3500–2500 BC, it is proposed that the 2400 BC date is perfectly feasible for the al-Midamman finds.

A drastic cultural change occurred in the region of al-Midamman when many of the former standing stones were pulled down and dragged into position to form the footings of monumental buildings of stone. In one instance, the building’s footings were almost entirely constructed with pillars from an earlier menhir arrangement. Stone-lined tombs, which furnished a rich assemblage of whole vessels, allow this stone building settlement to be matched in time roughly with the Malayba-Subr culture (near Aden, 300 km distant), which is plausibly times the 14th–9th centuries BC (Vogt & Sedov, 1998: cat. 77–130).

The domestic settlement is characterized mainly through the presence of hearths that were presumably associated with ephemeral (and no longer visible) reed houses. The area is grossly deflated, but the extensive surface scatters of pottery are consistently intermixed with copper alloy tool fragments and obsidian microliths. The microliths have a reasonable parallel in the finds from Hajjar al-Rayhani, in the Wadi al-Jubah (see Rahimi, 1987: 140), from the early Iron Age, around
the turn of the 2nd–1st millennium BC. Obsidian microliths of the same character have also been recorded by the Canadian Mission on Dahlak al-Kabir, a large off-shore island on the Eritrean side of the Red Sea, at a latitude roughly 200 km to the north of al-Midamman. The most recent cultural record at al-Midamman comes in the form of a third building of stone, in which small fragments of shallowly scored decoration are to be equated exactly with those known from the northern highlands of Yemen (cf. Breton, 1998: 216). This gives us a date for the continued use of the settlement until around the 8th century BC. Terminal occupation of the site is marked by a volcanic ash horizon, though this event has yet to be dated successfully through laboratory analysis of the quartz-rich ash.

The main cache of metal artifacts was excavated in trench S1W1 at the base of the now-fallen granite monolith (see Figure 3). The cache consists of a cluster of copper alloy “tools”* deliberately placed around a large cube of obsidian. The tools comprise an “adze” (ZP97.224), a “dagger” with double rivets below the tang (ZP97.232), a “razor” (ZP97.218), and two square-sectioned “points” adhering to one another (ZP97.231a,b). Excavated from a related, but slightly higher context was another group of artifacts which is, in all probability, part of the same cache. These comprise another “razor” (ZP97.110) and a “spatula”

*The descriptive terms are given in quotation marks to impart some suggested sense of tool use, though no proof of actual function can be presented. Others, for example, have reported items like our spatula as a “spearhead”, and the tanged-points as “javelin heads”.

Figure 1. Culturally related sites in southern Arabia. E. J. Keall, ROM.
The same contextual relationship applies to a third group of tools, which may have been disturbed from the main cache when the monolith fell. These consist of a “tanged point” (ZP97.237), a double-riveted “dagger” (ZP97.244), and a “spatula” (ZP97.236) (not illustrated). A second “adze” (ZP97.219) was excavated in the nearby trench N1E1, beneath a fallen basalt pillar. Another point (ZP97.216) was found near the surface west of the henge grouping. The entire assemblage is illustrated in Figure 4.

Scope of Study

Since little is known about the metallurgical tradition in Yemen in ancient times, analysis of the metal artifacts discovered at the megalithic site of al-Midamman, offered a unique opportunity to provide at least a few substantive facts about an otherwise little known tradition in the Southern Arabian Peninsula. A group of the metal objects, as listed in Table 1, arrived at the Conservation Laboratory of the Royal Ontario Museum, Toronto (Canada) in early summer 1997 for cleaning, treatment for stabilization, and simple repair before being returned to Yemen. When questions arose as to the provenance of the material, conservation work was delayed until the objects could be sampled and analysed. To collect as much information as possible from the artifacts, analysis included optical microscopy and scanning electron microscopy (SEM) for metallography and to determine metallographic structure and corrosion products, inductively coupled plasma spectrography (ICP) for bulk chemical composition, and X-ray diffraction (XRD) to identify corrosion products.

Methodology

Initial visual examination showed that some of the objects—particularly the blade of dagger ZP97.244 and razor ZP97.110—were heavily corroded. However, because of their uniqueness, all finds were sampled to determine their chemical composition and their properties.
Chemical characterization of the objects

ICP-AES analysis. The samples for ICP analysis were taken with a portable jeweller’s drill using 0.8 mm drill bits. The first drilling from the corrosion layer was discarded and only metallic turnings were collected. The samples weight had a range of 9–15 mg. Subsequently, any corrosion that was visible under a microscope was removed before weighing, however, inavoidably, because of intergranular corrosion, some amount of corrosion products was included in the samples. This is reflected in the low totals of the analysis results.

ICP-AES analysis is a well-established method for investigating the chemical composition of archaeological metal objects (Blades et al., 1991; Segal et al., 1994;
Tykot & Young, 1996). Analysis of the al-Midamman metal artifacts was performed on an OPTIMA 2000 Perkin Elmer simultaneous ICP spectrometer, in the labs of the Agenzia prov. per la protezione ambiente e la tutela del lavoro in Bolzano/Bozen (Italy), by applying a previously tested program especially developed for the analysis of ancient copper-based alloys. Sixteen elements were determined and quantified: Cu, Sn, Pb, As, Zn, Fe, Sb, Ni, Ag, Au, Bi, Cd, Co, Mn, P, S.

The results have a precision of about ±1% for Cu, ±2% for elements present at levels higher than 1%, and deteriorate to ±50% at levels around the detection limits, which are different for each element. The analytical results for all objects are given in Table 1. It should be pointed out that particularly the ICP results for the two most heavily corroded objects have to be considered as only semi-quantitative, since no pure metal was retrievable. Nevertheless, the analysis gives useful information about the nature of the material.

SEM analysis. Semi-quantitative chemical analysis by SEM was carried out on a fragment of corrosion from the blade edge of dagger ZP97.232 at the Wolfson Archaeological Science Laboratories, Institute of Archaeology, University College London (U.K.). A JEOL JSM-35 CF SEM equipped with an Oxford Link Pentafet energy dispersive X-ray analyzer (EDX) was used for the analysis. Elements quantified included Cu, Fe, Sn, As, Ni, Si, Cl, Ca, Sb, Pb, and S. A second investigation, limited to some inclusions in the metal of point ZP97.237, was carried out on a Cambridge/Leica Stereoscan 430i/Oxford Link SEM/EDX at the Department of Materials and Applied Chemistry for Engineering, University of Trieste (Italy). Samples cut with a jewellers saw and mounted in epoxy resin and ground down on successive grades of silicon-carbide paper from p100–p1200. They were then polished with diamond paste on a polishing wheel down ¼ to micron and carbon coated in preparation for analysis. The SEM-EDX was run at 20 KeV at a working distance of 39 mm.

XRD analysis. At the Earth Sciences Department, Royal Ontario Museum (Canada), the X-ray powder-diffraction data were collected using Gandolfi cameras of either 114·8 or 57·4 mm diameter, with Cu Ka radiation (Ni filtered). The films were scanned using an optical scanner calibrated for intensity and peak position using an external silicon standard. The data were then compared against the ICDD PDF-2 X-ray diffraction data sets using the search match routines of the JADE for Windows (3·0) programs.

Metallography
Three metallographic samples were taken for investigation by optical microscopy and SEM, one each from dagger ZP97.244, dagger ZP97.232 and point ZP97.237. The purpose of the investigation was to determine microstructure and the implications for production techniques employed for the objects. Investigative work was carried out on the Zeiss microscopes in the Metallography Laboratory, and on the SEM at the Department of Materials and Applied Chemistry for Engineering of the University of Trieste (Italy), and on the SEM-EDX at the Wolfson Archaeological Science Laboratories, Institute of Archaeology, University College London (U.K.).
Table 1. Results of ICP analysis of the copper artifacts from al-Midamman, Yemen

Alloy grouping	Sample number	Object	Sample location	Cu	As	Sn	Pb	Zn	Fe	Sb	Ni	Ag	Au	Bi	Cd	Co	Mn	P	S	Total	
Copper	1	adze	ZP97.224 narr. end	93·9	0.32	0.04	0.26	0.02	0.17	0.01	0.01	0.02	—	0.06	—	0.001	—	0.04	0.27	95.121	
	2	adze	ZP97.219 narr. end	94·6	0.16	0.03	0.11	0.01	0.21	—	0.01	0.01	—	0.02	—	0.001	0.001	—	0.05	95.212	
	10	point	ZP97.237 broad p.	87·5	0.25	0.01	0.08	0.01	0.09	—	—	0.41	—	—	—	—	—	—	—	0.012	88.47
	12	point	ZP97.231b tang	90·8	0.29	—	—	0.01	0.03	—	0.06	0.002	0.01	—	—	—	—	—	—	0.07	91.272
	3	dagger	ZP97.244 blade	73·3	0.67	0.01	0.03	0.51	0.01	—	0.01	—	—	—	0.002	0.004	0.02	0.07	74.666		
Copper/arsenic	Copper/arsenic	rivet	ZP97.244 head	92·7	1·26	0.04	0.04	0.02	0.21	0.03	—	0.15	—	0.01	0.002	0.001	0.001	0.03	0.11	94.604	
	Copper/arsenic	rivet	ZP97.244 head	69·4	1·19	0.03	—	0.06	0.93	0.03	0.01	0.09	—	—	—	0.001	0.011	0.03	0.35	72.132	
	Copper/arsenic	point	ZP97.216 tang	88·6	2·21	0.01	—	0.01	0.41	—	0.01	0.09	—	0.01	0.001	0.002	0.001	0.02	0.12	91.494	
Copper/tin	Cu/Sn	6	dagger	ZP97.232 blade	78·9	0.27	2·12	0.15	0.02	0.57	0.01	0.01	0.02	—	0.04	—	0.001	0.004	0.04	0.49	82.645
	Cu/Sn	7	rivet	ZP97.232 head	78·7	0·18	2·82	0·38	0·01	0·23	0·01	0·01	0·02	—	0·07	—	0·001	0·003	0·02	0·18	82.634
	Cu/Sn	8	rivet	ZP97.232 head	81·5	0·21	2·58	0·55	0·02	0·39	0·01	0·01	0·01	—	0·05	—	0·002	0·003	0·05	0·22	85.605
	Cu/Sn	11	point	ZP97.231a broad p.	94·8	0·17	1·46	0·37	0·01	0·07	0·01	—	0·02	—	0·05	—	—	0·15	0·39	97·5	
	Cu/Sn	13	razor	ZP97.218 handle	84·6	0·12	3·04	0·48	0·01	0·21	0·01	0·01	0·05	—	0·07	—	0·002	0·001	0·02	0·33	88.953
	Cu/Sn	15	razor	ZP97.110 handle	78·1	0·17	2·15	2·44	0·03	0·17	0·01	—	0·001	0·06	—	0·002	0·009	0·25	83.473		
	Cu/Sn	16	spatula	ZP97.111 handle	73·8	0·15	3·31	0·42	0·03	0·21	0·09	0·01	0·01	—	0·05	—	0·001	0·002	0·04	0·19	78·313
Likely copper/tin	Likely copper/tin	14	razor	ZP97.110 handle	50·1	0·02	0·18	0·01	0·39	1·71	—	0·01	—	—	—	0·005	0·012	0·05	1·96	54.447	

The results given in the table have a precision of approx. ±1–2% for Cu, ±5% for elements present at levels greater than 1%, but deteriorating to ±50% at the respective detection limits.
Results

Quantitative chemical compositional analysis by ICP-AES

In discussing the analytical results we have to bear in mind that the total values are low because of problems with obtaining corrosion free metal. This will be mentioned and discussed below in the relevant paragraphs. ICP analysis revealed three main compositional distinctions within the group of objects: first, unalloyed copper; second, copper alloyed with arsenic; and third, a low tin bronze (see Table 1). Two adzes (ZP97.224 and ZP97.219), two of the points (ZP97.237 and ZP97.231b), and the handle of razor ZP97.110 were made of unalloyed copper. One dagger ZP97.244 and another point ZP97.216 were made of an arsenical copper, while the second dagger ZP97.232, the two razors (ZP97.218 and ZP97.110), the spatula ZP97.111, and the second point ZP97.231a were made of low tin bronze.

Semi-quantitative chemical compositional analysis by SEM. The SEM analysis of the corrosion fragment from dagger ZP97.232 gave the following results. The blade was found to be heavily corroded with alternating bands of cuprite and copper chloride, with a well defined surface encrustation (see Figure 5). Sulphur compound inclusions were also detected. The variation seen in tin and arsenic content is due to the technique of analysis, which incorporates spot analysis of individual phases, when averaged the amount of tin and arsenic detected are comparable to the ICP results (see SEM results in Table 2).

Metallographic investigation

Metallographic samples of dagger ZP97.244 and of point ZP97.237 were taken and examined under the optical microscope and under SEM. The metallographic structure of the samples from the dagger blades showed heavily elongated grains (i.e., Figure 5) and strain markings along the longitudinal section of the blade. A finely grained structure and some distorted annealing twins suggest that the dagger was functional and had a hardened edge. A fragment of the corrosion layer from dagger ZP97.232 examined by SEM gave similar results. The point ZP97.237 was also found to have been slightly worked by hammering. Faint striae are visible near the surface, while the core is in as-cast condition.

Conservation

The objects were examined using an Olympus SZ4060 stereo zoom (6–40×) microscope with a fiber optic light source. Peculiarities of the surface corrosion were noted, described and photographed. On many archaeological copper alloy artifacts, the original surface of the object remains as a pseudomorph (patina) composed of corrosion products within layers of massive corrosion. Mechanical cleaning is the optimum method to reveal this underlying layer (Stock, 1999). The choice of instrument to reveal such a surface will vary with the type of corrosion and the preference of the conservator. The metal artifacts were heavily encrusted with thick overlying corrosion products varying in colour from light to dark green, incorporating sand grains at various levels in the corrosion layer. The overall surface was non-uniform in a plastic way, with ebbs and flows of varying thickness.

The first test cleaning was performed in an area already opened (possibly by mechanical damage) in the corrosion on blade ZP97.232. A vibro-tool, Burgess Vibrograver Model 74, was used at high speed with a sharp tungsten tip for corrosion removal on all the material. It was hoped that one could follow the surface patina from this location by removing the corrosion products around it. However, the corrosion products proved to be extraordinarily thick, hard and tenacious, overlying an artifact that was thin and brittle, and (as discovered later) totally mineralized. This made corrosion removal very difficult and the patina was not discovered either here or at several
other locations. A test area was then tried on adze ZP97.219. This object was very weighty, which suggested that it might be less mineralized than some of the other objects and might therefore provide an easier subject. However, the patina could not be located on this object either.

A further attempt at locating the patina on the dagger ZP97.232 proved successful. Of interest are parallel-working marks found preserved in this layer which can be seen to run under the corrosion layer (see Figure 6 and cf. Figure 7). Also revealed were hairline fractures in the surface of the blade (see Figure 7 and cf. Figure 8). These cracks are likely due to the weight of the monolith found resting on them. The blade is unusually thin. On another area of the blade, viewed macroscopically, was a group of crystals, which appeared to be cuprous chloride. The crystals’ location above the cuprite layer made this identification logical, as the proximity of the site to the sea renders a high concentration of chlorides plausible. However, XRD analysis identified these crystals as gypsum, hydrated calcium sulfate, CaSO$_4$.2H$_2$O, for which the more likely source is the calcium rich ground water.

A test cleaning of point ZP97.237 was begun to compare corrosion/patina from a selection of objects from this excavated group. The polished break (see Figure 9) created while taking a section for

Table 2. SEM analysis of the corroded blade on dagger ZP97.232

<table>
<thead>
<tr>
<th>Spot</th>
<th>Cu</th>
<th>As</th>
<th>Sn</th>
<th>Pb</th>
<th>Zn</th>
<th>Fe</th>
<th>Sb</th>
<th>Co</th>
<th>Mn</th>
<th>S</th>
<th>Cl</th>
<th>Ca</th>
<th>Al</th>
<th>Si</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74·53</td>
<td>0·8</td>
<td>3·66</td>
<td>0·27</td>
<td>n/d</td>
<td>0·76</td>
<td>0·21</td>
<td>n/d</td>
<td>n/d</td>
<td>0·23</td>
<td>0·66</td>
<td>0·1</td>
<td>0·35</td>
<td>0·7</td>
<td>82·27</td>
</tr>
<tr>
<td>2</td>
<td>76·89</td>
<td>0·32</td>
<td>1·58</td>
<td>0·24</td>
<td>n/d</td>
<td>0·51</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>1·41</td>
<td>0·06</td>
<td>0·15</td>
<td>0·43</td>
<td>0·43</td>
<td>81·59</td>
</tr>
<tr>
<td>3</td>
<td>57·01</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·31</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·12</td>
<td>11·07</td>
<td>0·41</td>
<td>0·22</td>
<td>2·15</td>
<td>71·29</td>
</tr>
<tr>
<td>4</td>
<td>66·64</td>
<td>1·14</td>
<td>5·81</td>
<td>0·45</td>
<td>n/d</td>
<td>1·11</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·1</td>
<td>1·62</td>
<td>0·17</td>
<td>n/d</td>
<td>0·49</td>
<td>77·53</td>
</tr>
<tr>
<td>5</td>
<td>83·08</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·14</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·09</td>
<td>0·15</td>
<td>0·17</td>
<td>0·08</td>
<td>83·71</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>47·97</td>
<td>2·44</td>
<td>8·48</td>
<td>1·32</td>
<td>n/d</td>
<td>1·68</td>
<td>0·46</td>
<td>n/d</td>
<td>n/d</td>
<td>0·05</td>
<td>8·46</td>
<td>0·21</td>
<td>n/d</td>
<td>0·42</td>
<td>71·49</td>
</tr>
<tr>
<td>9</td>
<td>82·9</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·08</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·23</td>
<td>n/d</td>
<td>0·14</td>
<td>0·07</td>
<td>83·42</td>
<td></td>
</tr>
<tr>
<td>Area scan 1</td>
<td>72·69</td>
<td>n/d</td>
<td>1·43</td>
<td>n/d</td>
<td>n/d</td>
<td>0·38</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·12</td>
<td>3·34</td>
<td>0·09</td>
<td>0·06</td>
<td>0·27</td>
<td>78·299</td>
</tr>
<tr>
<td>Area scan 2</td>
<td>70·02</td>
<td>0·68</td>
<td>2·16</td>
<td>0·28</td>
<td>n/d</td>
<td>0·54</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>0·33</td>
<td>3·39</td>
<td>0·13</td>
<td>0·12</td>
<td>0·79</td>
<td>78·44</td>
</tr>
</tbody>
</table>

n/d=not detected.
metallography and analysis showed an interesting cross section, indicating the relative thickness of the corrosion and location of the patina. Removal of the corrosion to a delicate patina revealed an object with a thin square profile, quite different from the impression of a “javelin point” that was indicated in its excavated state. This object is totally mineralized and therefore extremely fragile. As with the dagger, working marks were revealed in the surface patina (see Figure 6). They run at 45° to the edge of the pin and wrap around the object’s edges. Superficial hairline cracks, as on the blade, can also be seen, running mainly at right angles to the edge of the pin (see Figure 8). These are unusual finds in a patina and may be stress cracks. In the absence of a metallurgical explanation, one hypothesis is that these cracks and those on dagger blade ZP97.232 were caused by the movement of the earth due to the weight of the monolith above, during or after burial. As the weight stabilized, the fissures then re-corroded together.

Figure 9. Polished cross section at break, mid-section, in point ZP97.237, showing actual square shape of object within massive corrosion products. Hole in center is location of sample drilling. Kathy David, ROM.
Of additional interest because they are rarely documented (Gettens, 1970: 63) are two unusual corrosion products identified by XRD analysis, conellite \(\text{Cu}_{19}\text{Cl}_4(\text{SO}_4)_2(\text{OH})_{32} \cdot 3\text{H}_2\text{O} \) and buttgenbachite \(\text{Cu}_{10}\text{Cl}_4(\text{NO}_3)_2(\text{OH})_{32} \cdot 3\text{H}_2\text{O} \). Both are azure blue in colour. Various blisters in the corrosion, when opened during cleaning, showed dense crystals of cuprite, or colourless plates and crystals identified as gypsum. These crystallized formations on blade ZP97.232 and point ZP97.237 may indicate cycles of wet/dry and the slow evaporation of salts in solution after burial. The thickness and density of the corrosion products are similar to those seen on artifacts from contexts that have been exposed to periodic inundations. Conservation work is continuing.

Discussion

Arsenic

All copper-based objects excavated at al-Midamman contain measurable amounts of arsenic. The range is 0.12–2.21%. The presence of low levels of arsenic could be due to the use of copper ores in which arsenic was a relatively high impurity (Shugar, 1998). However, it could also be the remains of arsenical ores, such as realgar or orpiment (i.e., in sulphide form), previously smelted with copper ores to produce an arsenical copper alloy, which was then recycled several times. As arsenic is very volatile, some would have been lost in the form of vapor, in each re-melting of the metal. Another possible source could have been scrap arsenical copper, which was mixed with freshly smelted copper.

One of the two daggers (ZP97.244, samples 4 and 5, at over 1% As), and a point (ZP97.216, over 2% As) do contain higher arsenic levels than the remaining objects; however, even in this case, it is difficult to establish for certain whether the arsenic was deliberately added, as it can occur as a natural impurity even in rather pure copper ores. Lechtmann (1991, 1996) suggested that a level of arsenic of 0.5% was a recognizable intentional alloy for the metal smiths in the Andes. For the old world, Craddock (1976) suggested a level of 1% of arsenic as the border limit between accidental impurity and deliberate alloying, while Branigan (1974: 71–72) and Tylecote (1991: 215) suggested a level of around 2% As. Cowell (1985: 97–98) recommends a comparison of the arsenic to iron levels as a way of obtaining a better indication of the origin of the arsenic. Higher iron contents in the copper, in combination with the presence of arsenic, can indicate the use of unrefined (or not completely refined) copper. The iron levels in ZP97.244 (one of the daggers and its rivets) and in ZP97.216 (one of the points) are indeed slightly higher; however, the iron measurements may be enhanced because of corrosion problems.

An enriched Fahlerz-type ore tends to contain higher levels of many impurities, such as arsenic, antimony, bismuth, nickel and silver. However, the copper used for the finds from al-Midamman does not seem to have been reduced from this kind of ore, as these elements are quite low in all samples containing higher percentages of arsenic. Whatever the source, it should be stressed that the improved properties of the arsenical metal must have been evident to the metalworker. Arsenic acts as an excellent deoxidant for the metal, reducing its porosity and noticeably hardening the alloy. The relatively low arsenic content of dagger ZP97.232 (and its rivets) and point ZP97.216 could have resulted from its deliberate addition as a deoxidant (Northover, 1989: 113).

Arsenic, even at low levels, can change the colour of the metal giving a silvery appearance to the surface (Giumlia-Mair, in press b). In smelting experiments intended to replicate the production of arsenical copper found at Batan Grande, Peru, it was found that prills could be differentiated by their colour with arsenic contents as low as 2% (Merkel et al., 1994: 221). It should also be noted that examples of similar daggers made of silver are also known (Primas, 1988: Figures 6, 2, 3). This raises the possibility that the arsenical copper objects from al-Midamman, and other objects of similar alloys from the Near East, were meant to look like silver. The possibility that this had specific cultural significance is discussed by Hosler (1994). Either one or both of these explanations may account for the use of arsenical copper for the rivets of dagger ZP97.244 and point ZP97.216. Further, the low total of the ICP results of the sample from the blade ZP97.244 (sample no. 3), which is due to corrosion problems, suggests that the arsenic content might originally have been higher and that the blade and the rivets were made of the same metal, most probably to obtain the same colour on all parts of the weapon. The general picture seems to indicate that in these objects the arsenic content is due to deliberate co-smelting of an arsenic ore (such as orpiment or realgar) and copper ore, with the aim of obtaining an alloy with better working properties, and possibly a different colour than unalloyed copper. However, some twinned crystals—the result of hammering and annealing—are visible on the metallographic sample of the dagger, and repeated annealing might have spoiled the silvery surface because of the high volatility of arsenic.

Tin

Objects with high arsenic levels do not contain appreciable tin and vice versa, objects which contain tin, show lower arsenic levels. This seems to confirm that we are dealing with deliberate additions of either arsenic or tin.

The low tin contents in dagger ZP97.232, one of the points ZP97.231a and the razors ZP97.218 and ZP97.110 (sample no. 15) are somewhat puzzling, as such low levels (2–3% Sn) have little influence on the properties of an alloy, particularly if compared with
the effect of the same amount of arsenic (Tylecote, 1979: 14–15; Cowell, 1985: 98). However, since mixed copper-tin ores do not normally occur in nature, copper-tin alloys of any composition are commonly considered an artificial alloy (as opposed to a natural alloy, for example of arsenical copper smelted by chance from mixed copper/arsenic ores). Possibly the smiths were still experimenting with tin, as a new alloying material, or they were recycling scrap bronze (Tylecote, 1991: 218). Similar copper items with low percentages of tin are known from several Bronze Age contexts (Bahat, 1976: 27–33; Bahat, 1975: 18–23, 117; Cowell, 1985: 98; Craddock, 1985: 99; Philip, 1991: 94; Shalev & Northover, 1993: 287–243; Stech et al., 1985: 76).

The reason for employing low tin alloys could also be the wish of the artisan to keep the red colour of copper and to improve the casting properties of the metal. Tin deoxidizes, aids the fluidity of the molten metal (by reducing the melting temperature), and improves workability. In later times, for example, the copper red lips and nipples of Greek statues or even the earring of the same amount of arsenic (Tylecote, 1979: 14–15; Cowell, 1985: 98) and Philip (1991: 98–99), it seems that the deliberate addition of lead was practiced very early, possibly by the Early Dynastic period (Cowell, 1985: 98). The low level of lead in the blade of razor ZP97.110 (sample no. 15) has, of course, no practical function in a part of the artifact that had to be hardened by hammering. Lead is insoluble in copper and, if used in higher quantities, forms globules dispersed in the alloy, which weaken the metal and render it prone to cracking under the hammer. The level of lead in the razor could be due to a segregation phenomenon; however, the addition of lead (up to 2%) improves the fluidity of the molten metal. This alone could have been seen as a good reason for the use of lead as an additive in this early period. The presence of lead in the razor raises again the extremely important and thorny question elucidated by Philip (1991: 101; 1995: 529) on the possibility of scrap metal having been used as the substantial bulk of supply in the metal trade at an early stage of metallurgy. This is particularly relevant in the discussion about lead isotopes. Obviously, this problem can only be resolved by evaluating large amounts of data, which are as yet, not available.

Regional Comparisons

The few existing analyses of objects from Anatolia and the Near and Middle East during the transition period, from the use of arsenic as an alloy to the preferred use of tin as an alloying element, seem to indicate that the simultaneous use of low tin bronzes, arsenical copper, and unalloyed copper lasted for over a millennium, from the Egyptian Early Dynastic Period to some point in the Bronze Age (Caneva et al., 1985: 129 Figures 6–7; Frangipane & Palmieri, 1998: 140; Philip, 1991).

It is difficult to date the objects in this report typologically, because on sites as remote as al-Midamman, there is always the strong possibility of conservatism and archaism in the shapes. Furthermore the objects found buried in the main cache obviously reflect some form of ceremonial deposition, as practiced almost everywhere in early times (Cazeneuve, 1971: 72–75). In several instances, in different periods and with different cultures, objects were produced for ceremonial use only and were often not functional. The aim was a mere formal reproduction of the items for offerings, whose important features were the shape and the appearance of the metal, for example the colour (Shalev, 1995), rather than the alloy and its working properties. The alloy for this purpose would not have had any metallurgical significance and the smith may have used whatever cheap metal was at hand (Giulmlia-Mair, 1998a). However, as already mentioned in the section on metallography, the tools found on the site are hardened and functional. Of course the evidence of hammering in these objects does not exclude the possibility of ceremonial deposition, but indicates that the objects were produced with the possibility of use in mind.

Typologically, the dagger can be broadly compared to some EB-MB period types (Philip, 1991: Figures 3, 7; Seligman & Yogev, 1993: 74 Figure 4 and note no. 4). The two adzes can be compared to other examples dated to the EB-MB periods (Shalev, 1994: 634, 5–6 for example of early pieces). The presence of the leaf-shaped object, listed as “spatula” in the table of results, links the al-Midamman hoard to tomb III at Ma’ayan Barukh, dated to EB IV, in which daggers and a similar object were present (Amiran, 1961; Dever, 1980). Tomb I at Tiberias, Israel, dated to MB I (Tzaferis,
Syria and Egypt (by sea) already in the third millennium BC. A second indication of the vigorous trade between these regions are the tapered chlorite vessels, often with turquoise inlays, produced by eastern Iranians and exported to Syria and to the Indus valley (Carter, 1997: 325).

Yemen, on the other side of the Arabian Peninsula, seems to show more connections to the Ethiopian/ Eritrean side of the Red Sea. Fattovich (1978: 352) connects the megaliths in Yemen (which he dates to the 2nd millennium BC “and possibly earlier”) with the megaliths in the area of Harar, and the paintings and incisions on rocks in the Hidjaz desert with similar artistic expressions in the Ogaden. He argues that people belonging to the same group lived on both sides of the Red Sea, and that they traded in incense and myrrh up to the Mediterranean by following three trade routes: the land route down the Nile valley, the land route along the Western Arabic Peninsula and the maritime route down the Red Sea.

The lists of Tuthmes III mention the trade with the Gnb-tjw and other contemporary texts mention the import of incense from still unidentified areas. Fattovich (1978: 353) interprets the Gnb-tjw as the inhabitants of Qataban and the land, where incense was produced, as Yemen. The different metals used on the western and the eastern coast of the Arabian Peninsula could reflect the existence of two different spheres of influence: one encompassing both coasts of the Red Sea and the second the countries around the Persian Gulf.

Conclusions

An interdisciplinary study was undertaken to fully investigate the copper hoard discovered at the archaeological site of al-Midamman, Yemen. The hoard was composed of objects which in composition and style strongly suggest that they were produced sometime during the EB-MB periods. But, it must be emphasized that the parameters used to date objects in other geographic locations do not necessarily apply in Yemen. In addition, the number of objects analysed is too small to be able to draw general conclusions, and to consider them exclusively distinctive to this culture. As such, the data should only be considered as indicative.

This study has shown that an interdisciplinary approach, including field archaeology, archaeometallurgy and conservation, can provide a worthwhile method of investigation. Our preliminary work provides some insight, however more field research is necessary on the Yemeni coastal plain, as well as in the Horn of Africa, together with metallurgical studies. During further research, possible influences from the Indian Sub-Continent should also be considered. In addition the obsidian finds should be compared with finds from other regions (in particular from Dahlak islands) to provide scientific evidence regarding the trade of this material.

Ancient Sources

The examination of several ancient texts provides insights into the relationships amongst different cultures around the Arabian Peninsula. Some cuneiform texts report that the son of Sargon, Manishhtushu (2274–2260 BC) destroyed Awan/An Shan, the capital of Elam and overthrew the king of Magan, which was most probably today’s Oman. For the identification of Magan as the “Legendary Land of Copper”, see Weisgerber (1977: 192 and fn. 15).

The strong links between the cultures around the Indus, and in Elam and Mesopotamia, are well illustrated by the lapis lazuli trade from Afghanistan, down the Indus and up the Persian Gulf to Mesopotamia, Syria and Egypt (by sea) already in the third millennium BC.
References

Bibliography

Data Sets
