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Abstract

Two basic exercises in graph theory are characterizing degree sequences of
trees and degree sequences of multigraphs. For each there are several proofs using
different approaches. The goal here is to examine the interesting exercises that
arise when we combine these two problems by looking at degree sequences of
multigraphs with an underlying forest like structure.

1 Basics

A quick review of graph theory terminology and notation will appear at the end of this
section. For now we assume familiarity. The basic results and definitions that we refer
to can be found in almost any graph theory text. Two basic exercises in an introductory
graph theory course are to characterize those sequences of positive integers that can
occur as degrees of a tree or as degrees of a multigraph. For each there are, at least,
several different approaches to a proof. Our aim here is to explore what happens when
we combine these and look at multigraphs with underlying tree structure. Similarities
in one standard inductive proof for each of the problems lead us to both a nice example
of why we care about a basis in induction and to see how multigraphs have realizations
with underlying graph ‘close’ to a tree. As we explore these variations we get a variety
of problems with proofs that are straightforward enough that they could be posed as
additional exercises in introductory graph theory courses.

The basic results that we observe include:

• The degrees of multigraphs can be realized with underlying graph a forest or a
unicyclic graph where the unique cycle has length 3.
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• Multigraphs can be realized with underlying graph a forest if and only if the degree
sequence partitions into two parts with equal sums. In particular the degrees of a
bipartite multigraph can be realized with underlying graph a forest.

• The degrees of a multigraph with an underlying forest realization have a connected
(i.e., an underlying tree) realization if and only if the degree sum divided by the
greatest common divisor of the degrees is large enough.

As most of the results we observe are either already well known or reasonably straight-
forward generalizations of such known results, we will provide proof sketches rather than
detailed proofs for our claims. For some of these we will also include a ‘proof by exam-
ple’ as an illustration. Our goal will also be to examine different approaches to proving
these results. The first and second results a slight refinements of those found in [3] with
slightly different terminology and proofs along the lines of our Proof 2 of Fact 8. The
result in [3] involves the structure of realizations that minimize the number of underlying
edges and shows that each component has an odd cycle or no cycles but the technique
easily would give length 3 as we do here. The results reviewed in Sections 2 and 3 are
well known and can be found in most introductory graph theory texts.

For completeness, we include a quick review of graph theory terminology. All graphs
and sequences that we consider will be finite. A graph G = (V,E) is a set V of vertices
along with a set E of edges which are pairs of distinct vertices. A loop would be an edge
in which both vertices are the same. None of the graphs that we consider here will have
loops. A multigraph allows E to be a multiset. The degree of a vertex is the number of
edges that contain it and the degree sequence is the sequence of degrees. A realization of
a degree sequence is a graph with the given degrees. As each edge contains two vertices,
the degree sequence sums to twice the number of edges and hence has even sum. This
is often called the handshaking lemma.

A path in a graph is a set of edges of the form {v1, v2}, {v2, v3}, . . . , {vt−1, vt} with the
vi distinct. We use the notation v1, v2, . . . , vt. A cycle is a set of edges as in a path
except that vt = v1. By this definition a pair of parallel edges {v1, v2}, {v2, v1} could be
considered a 2-cycle but we will not call this a cycle. A forest is a graph with no cycles.
A graph is connected if there is a path between any pair of vertices. The components
of a disconnected graph are the maximal connected subgraphs. A tree is a connected
forest. A unicyclic graph is a graph with exactly one cycle, deleting any edge on this
cycle results in a forest.

The underlying graph of a multigraph is the graph obtained by keeping one copy of each
multiple edge. Multitrees and multiforests are multigraphs with underlying graphs that
are trees and forests respectively.

We will use the fact that the degree of a vertex on a cycle is at least 2 in the form that
a vertex of degree 1 (called a leaf) is on no cycle.
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Characterizing which integer sequences are degree sequences of some graph is, somewhat
surprisingly, not immediately obvious. There are at least a half dozen variants on how
to state the conditions and many different versions of proofs have been and continue
to be given. None of these are very short. A careful treatment presented takes up a
significant portion of an hour long undergraduate class and written fills at least a page.
On the other hand, characterizing degree sequences for certain classes of graphs yield
very short proofs with some insights for beginning students as well as the opportunity
for exercises asking for alternate proof approaches. We concern ourselves here with two
well known instances of these, trees and multigraphs, and then explore some extensions
that combine these two classes. See Figure 1 for an example of a multitree and its degree
sequence.

Figure 1: A multitree with degrees (11,5,5,4,3,3,1,1,1,1,1)

2 Forests and trees

Some basic facts about trees (that are themselves good introductory exercises) are that
every tree (except the trivial tree consisting of a single vertex and no edges) has at least
two vertices with degree 1 (indeed the number of leaves is at least the maximum degree),
and that the number of edges is one less than the number of vertices. So, a tree with
n vertices has n − 1 edges. As the degree sum is twice the number of edges it must be
2n− 2.

Question 1 When is a positive integer sequence with even sum the degree sequence of
a tree?
A necessary condition for a sequence with n terms is that the sum is 2n− 2.
Is this sufficient?

We observed a simple necessary condition above. This obvious necessary condition turns
out to be sufficient. One standard proof builds on the idea that trees have leaves: note
that the degree sum condition implies that some term is exactly 1 and another is at least
2 (if there are at least 3 terms). Reduce one number that is at least 2 in the potential
degree sequence by 1 and remove a 1. By induction on the new sequence, form a tree
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then add an edge joining a new leaf to a vertex with the reduced degree. One end of the
new edge has degree 1, hence the edge is not on a cycle and adding it has not created a
cycle. So we get a tree. The basis is the sequence 1, 1 realized by an edge. If we allow
degree sums less than 2n− 2 then inductively we reach a sequence 1, 1, . . . , 1 which can
be realized as a set of disjoint edges and hence is not connected. So we get a forest but
not a tree for smaller degree sums. We have just outlined one of several approaches to
prove the following well known fact.

Fact 2 Positive integers d1, d2, . . . dn with even sum are the degrees of a forest if and
only if d1 + d2 + · · ·+ dn ≤ 2n− 2. There is a tree (connected forest) with these degrees
if and only if equality holds.

(3, 2, 1, 1, 1) (2, 2, 1, 1, ) (1, 2, 1, , ) (1, 1, , , )

⇐ ⇐ ⇐

⇒ ⇒ ⇒

Figure 2: Illustrating a tree degree recursion

In Figure 2 we illustrate the recursive construction for tree degrees implied by the in-
ductive proof.

3 Multigraphs

As we do not allow loops in multigraphs, a vertex with largest degree must have another
vertex at the other end of each edge. So the largest degree is at most the sum of the
other degrees. This is a necessary condition for degree sequences of multigraphs.

Question 3 When is a a nonnegative integer sequence with even sum the degree se-
quence of a multigraph?
A necessary condition is that the largest term is at most the sum of the others.
Is this sufficient?

We observed a simple necessary condition above. This, along with the basic condition
that the degree sum must be even turns out to be sufficient.
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To illustrate one of the standard proofs for sufficiency of the multigraph conditions
we need a little notation. We want to show that a sequence d1 ≥ d2 ≥ · · · ≥ dn
of nonnegative integers with even sum is the degree sequence of some multigraph if
d1 ≤ d2 + · · ·+dn. Consider the sequence d1−dn, d2, . . . , dn−1. If the largest term in the
new sequence is at most the sum of the others, form a multigraph by induction and add
dn edges joining a new vertex with a vertex of degree d1 − dn. This includes the trivial
case dn = 0.

So we need to check if the new sequence satisfies the condition on the largest term
(noting also that it is clear that the new sequence has even sum).

If d1 − dn is largest then

d1 ≤ d2 + · · ·+ dn ⇒ d1 − dn ≤ d2 + . . . + dn−1

If d2 is largest then

d2 ≤ d1 and dn ≤ dn−1 ⇒ d2 + dn ≤ d1 + dn−1 ⇒ d2 ≤ (d1 − dn) + d3 + · · ·+ dn−1

Hence the condition holds for the new sequence and we complete the proof by induction.
We have just outlined one of several approaches to prove of the following well known
fact.

Fact 4 Nonnegative integers d1 ≥ d2 ≥ · · · ≥ dn with even sum are the degrees of a
multigraph if and only if d1 ≤ d2 + · · ·+ dn.

In Figure 3 we illustrate the recursive construction for multitree degrees implied by the
inductive proof.

(7, 5, 2, 2, 2) (5, 5, 5, 2, ) (3, 5, 2, , ) (3, 3, , , )

⇐ ⇐ ⇐

⇒ ⇒ ⇒

Figure 3: Illustrating a multitree degree recursion

4 Near Multiforests

If we look at the proof outlines for degree sequences of forests and for degree sequences
of multigraphs we note a great deal of similarity. In each case we ‘removed’ a vertex
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of minimum degree dn and ‘removed’ dn edges from a vertex of larger degree, used
induction and then added dn edges between these two vertices. While this description
gets the point across it also illustrates a possible error made by beginning students. We
are handed a sequence of integers, so we can’t ‘remove’ vertices and edges. Instead we
reduce the values in the sequence, use induction to get a graph that does have vertices
and edges, and then add a vertex and edges to get the right degrees.

Just as the last step in the tree proof, adding an edge to a new vertex, does not create a
cycle, the last step in the multigraph proof, adding multiple edges to a new vertex does
not create any cycles in the underlying graph.

It would seem then that our multigraph proof has actually shown the following.

False Claim 5 If a nonnegative integer sequence is the degree sequence of a multigraph
then it is the degree sequence of a multiforest.

Question 6 Why is False Claim 5 False?

Trees are bipartite, the vertices can be partitioned into two parts such that every edge
has one vertex from each part. Hence degree sequences of bipartite graphs have the
additional property that they can be partitioned into two parts with equal sums. If
correct, our claim would have shown that all integer sequences with even sum in which
the largest value is at most the sum of the rest can be partitioned into two parts with
equal sums. This is of course false, consider for example the sequence 2, 2, 2 or slightly
less trivial 5, 4, 3.

The general problem of partitioning a sequence into two parts with equal sums is NP-
hard, so if our proof was correct it would essentially imply an elementary and efficient
algorithm for an NP-hard problem and imply that all sequences in which the largest
value is not too large could be partitioned into two parts with equal sum.

Question 7 What went wrong with our ‘proof’ of False Claim 5?

The examples 2, 2, 2 and 5, 4, 3 give a hint. Note that we skipped the ‘obvious’ basis
for our induction in the multigraph proof outline. Hidden in the ‘d2 largest’ part of the
multigraph proof was an assumption that our sequence have a least 4 terms. When we
reduce 5, 4, 3 as in the proof we get the sequence 2, 4 for which that largest term is not
at most the sum of the rest. Consider the example in Figure 4, the sequence we obtain
from the reduction 4, 5, 3 has the unique realization with underlying graph a 3 cycle as
indicated in the figure. Hence the proof only shows that the sequence (6, 5, 3, 2) has a
multigraph realization. This sequence does have a multitree realization as noted later,
but the proof does not show this.
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(6, 5, 3, 2) (4, 5, 3, )⇒

⇐

Figure 4: Illustrating a multigraph degree recursion with basis size 3

The rest of the proof is correct so we have a nice example illustrating why we need to
pay attention to the basis in induction proofs.

We can salvage the multigraph proof by providing a correct basis when n = 3. That
the statement is correct when n = 2 is indeed obvious. Given a sequence d1 ≥ d2 ≥ d3
with even sum and d1 ≤ d2 +d3 form the multigraph with vertices v1, v2, v3 and d1+d2−d3

2

edges between v1 and v2,
d1+d3−d2

2
edges between v1 and v3 and d2+d3−d1

2
edges between

v2 and v3. The conditions ensure that the numbers for the edges are indeed nonnegative
integers so we get a multigraph with correct degrees.

The salvaged proof tells us how ‘close’ we can get to realizing multigraphs as forests.
Our induction for the proof of Fact 4 along with the revised basis provide a proof of the
following.

Fact 8 A sequence of nonnegative integers that is the degree sequence of a multigraph is
the degree sequence of a multigraph for which the underlying graph either has no cycles
or is unicyclic with the cycle having size 3.

Later we will outline several additional proof approaches to Fact 8.

We note also that the proof outlined above does not tell us when a multigraph has a
mutiforest realization. We have already noted the difficulty in determining if a sequence
of integers partitions into two parts with equal sums. For a given sequence realizable
as a multigraph, translating the inductive proof process into a recursive algorithm can
produce a realization with an underlying 3-cycle even if there is an underlying forest
realization. In particular, the realization of the sequence (6, 5, 3, 2) illustrated in Figure
4 has a 3-cycle while there is a realization of these degrees with an underlying path on 4
vertices by placing 3 edges between the first two pairs on the path and 2 edges between
the last pair.
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5 Multiforests

Fact 8 showed that multigraphs have realizations that are nearly multiforests. The
question of characterizing which degree sequences can be realized with an underlying
forest or tree will fall back to the fact that degree sequences of bipartite graphs can be
partitioned into two parts with equal sums. This is a necessary condition as forests are
bipartite. Note that we no longer need to explicitly state the even sum condition or the
bound on the largest degree as the equal sums partition condition will imply these.

Question 9 When is a a nonnegative integer sequence with even sum the degree se-
quence of a multiforest?
A necessary condition is that the sequence partitions into two parts with equal sums.
Is this sufficient?

The same basic proof idea used for trees and multigraphs works here. Assume that
the degree sequence can be partitioned into two parts with equal sums, r1, . . . , ra and
s1, . . . , sb with r1 + · · · + ra = s1 + · · · + sb. Pick a smallest value, say sb, consider the
sequences r1 − sb, r2, . . . , ra and s1, . . . , sb−1, induct and add sb edges between a new
vertex and a vertex with degree r1 − sb. In this case there are no issues with the basis.
Note that this works for any partition of the degrees into parts with equal sum. We
have just outlined proofs of the following.

Fact 10 Nonnegative integers d1, . . . , dn are the degree sequence of a multiforest if and
only if they partition into two parts with equal sums. For every partition of the di into two
parts with equal sum there is a realization for which the degrees in the parts correspond
to the partition.

Corollary 11 If nonnegative integers d1, . . . , dn are the degree sequence of a multigraph
with underlying graph that is bipartite then there is a multiforest realization with the
same bipartition.

By previous comments note that this implies that testing if an integer sequence can be
realized as a bipartite multigraph (equivalently as a multiforest) is NP-hard.

6 Multitrees

Having found conditions for multiforest degrees we next consider multitree degrees.
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Question 12 When is a positive integer sequence with even sum the degree sequence of
a multitree?

Determining when a multiforest has a connected realization, i.e., a realization with
underlying graph that is a tree takes a little more effort. The edge multiplicities in a
multigraph are the number of times each edge appears. We use g = gcd to indicate
greatest common divisor. If the greatest common divisor of the degrees is g > 1 then in
a forest realization the edge multiplicity for edges adjacent to leaves (degree 1 vertices)
in the underlying graph are multiples of g. Removing all such we get a forest in which
the greatest common divisor is a multiple of g. Hence inductively we get the following.

Fact 13 If G is a multiforest with degrees d1, . . . , dn then all edge multiplicities are a
multiple of gcd(d1, . . . , dn).

So we may as well consider the sequence d1/g, d2/g, . . . , dn/g where g = gcd(d1, . . . , dn).
There is a realization for these ‘reduced’ degrees if and only if there is a realization with
the original degrees with each edge multiplicity g times as big. If the sum of these values∑

i∈[n] di

gcd(d1,...,dn)
is less than 2n−2 then there cannot be a connected realization. A connected

graph has at least n− 1 edges and hence degree sum at least 2n− 2. We will see that if
the sum is at least 2n− 2 then we can get a connected realization.

An approach to get a connected realization uses the idea of switching, which preserves
degrees. Switching is a common technique for certain problems related to degrees in
graphs. The following fact is obvious and illustrated in Figure 5.

Fact 14 If a multigraph has edges {w, x}, {y, z} then deleting these edges and adding
edges {w, y}, {x, z} results in a new multigraph with the same degree sequence. We call
this an edge switch.

⇒

Figure 5: An example of switching

Consider a forest realization of a multigraph. For s > r, if edge {w, x} with multiplicity
r and edge {y, z} with multiplicity s are in different components then removing r copies
of edges {w, x}, {y, z} and adding r copies of edges {w, y}, {x, z} yields a new graph
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with the same degrees. With some basic graph techniques for connectivity one can also
easily check that the resulting multigraph has underlying graph a forest and has one
less component. Note that when s = r the switch produces a new forest with the same
number of components.

Since we are working with degrees d1/g, d2/g, . . . , dn/g with greatest common divisor 1,
either there are two edges with different multiplicity and hence two edges in different
components with different multiplicity or every edge multiplicity is 1. In the second
case, if the multigraph is not connected there are less than n− 1 edges and the adjusted
degree sum is less than 2n − 2. Otherwise we repeat the switching until a connected
multiforest, i.e., a multitree, realization is obtained. We note also that the switch can
be done so that a given bipartition is preserved.

Observe that here we have used the assumption that we are working with positive degrees
rather than nonnegative degrees as we did with multiforests.

We have just outlined a proof of the following.

Fact 15 Positive integers d1, . . . , dn are the degree sequence of a multitree if and only

if they partition into two parts with equal sums and
∑

i∈[n] di

gcd(d1,...,dn)
≥ 2n − 2. For every

partition of the di into two parts with equal sum there is a realization for which the
degrees in the parts correspond to the partition.

With similar switching ideas (albeit multiple cases) we can cover two additional situ-
ations. For multigraphs we can get connected realizations with only one cycle (of size
3) when the ‘reduced’ degree sum is large enough. For both multitree and multigraph
degrees when the reduced degree sum is small but the greatest common divisor is greater
than 1 we can get connected realizations with one cycle which will have a prescribed
length. Observe that since these graphs are no longer bipartite, the reduced sum of de-
grees can be odd. We omit outlining switching ideas for a proof of the following. They
are straightforward but involve several cases.

Fact 16 A sequence of positive integers that is the degree sequence of a multigraph (i.e.,
d1 ≥ d2 ≥ · · · ≥ dn with even sum and with d1 ≤ d2 + · · · + dn) which also has∑

i∈[n] di

gcd(d1,...,dn)
≥ 2n − 2 is the degree sequence of a multitree or the degree sequence of a

connected multigraph for which the underlying graph is unicyclic with the cycle having
size 3.

If gcd(d1, . . . , dn) > 1 and
∑

i∈[n] di

gcd(d1,...,dn)
= 2n − t for t ≥ 3 there is a realization in which

the underlying graph is unicyclic with the cycle having size t.

Here we have focused on connected realizations of multigraph sequences with underlying
tree or unicylic graph, hence n or n − 1 underlying edges. The problem of minimizing
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the number of underlying edges in a multigraph realization is NP-hard [1]. In the other
direction, moving away from tree like underlying graphs, maximizing the number of
underlying edges corresponds to determining the minimum number of 2’s to append to
the sequence so that there is a realization as a simple graph [2].

7 Alternate Proofs

We mention three other approaches to prove Fact 8 as well as an alternate proof for
Fact 15. For the three alternate approaches to prove Fact 8, the first will use use ideas
similar to switching, the second an alternate induction and the third will use Fact 10 and
switching. For each of these we provide only a brief sketch and assume some additional
basic graph theory terminology and elementary facts about switches, connectivity and
cycles. The alternate proof for Fact 15 follows the induction proof of Fact 10 with a
little extra work to ensure connectivity.

We will use the following generalized version of edge switching. We say that edge
multiplicity 0 corresponds to a non-edge. Assume the pairs in the following are distinct
while vertices may repeat. If we increase the multiplicities of
{v1, v2}, {v3, v4}, . . . , {v2t−1, v2t} by m and decrease multiplicities of
{v2, v3}, {v4, v5}, . . . , {v2t, v1} by m ≥ 1 where m is the minimum multiplicity of the
second set of edges, the degrees do not change. Here we want m ≥ 1 while the first
set may have pairs with multiplicity 0. The change in the number of underlying edges
is the number of 0 multiplicity edges in the first set minus the number of multiplicity
m edges in the second set. In particular, if all multiplicities are positive the number
of underlying edges decreases and if at most one edge has multiplicity 0 the number of
underlying edges does not increase.

In the following ‘switch’ refers to the generalized version in the previous paragraph.

Proof 2 of Fact 8: This proof uses switching. Given degrees of a multigraph consider
a multigraph realization that minimizes the number of edges in the underlying graph.
The underlying graph has no even cycles as otherwise a switch decreases the number of
underlying edges. A graph with no even cycles has every block an odd cycle or an edge.
If there are two odd cycles sharing a vertex one can find an even trail (vertices may
repeat but not edges) and switch to reduce the number of edges. So we may assume
that the blocks are edges or odd cycles and no pair of odd cycle blocks share a vertex.

If there are two disjoint odd cycles, using two non-edges between these cycles (if they
are in different components) or a non-edge and a path between the cycles (if the are
in the same component), one can use a switch to form an even cycle then switch again
to either obtain fewer cycles or two odd cycles joined by an edge from which using this
edge as the path will produce an even cycle on which switching reduces the number of
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cycles. Repeating results in a graph with at most one odd cycle. If the cycle has 5 or
more vertices, switch on a non edge between 2 vertices at distance two and the rest of
the cycle to obtain exactly one 3-cycle.

Proof 3 of Fact 8: This proof is a different proof by induction. Given degrees
d1, d2, . . . dn of a multigraph replace di and dj with di + dj for any i, j such that di + dj
is at most the sum of the other terms. This is possible for n ≥ 4. When n = 3 the basis
is the same as described just before Fact 8. The largest degree in the new sequence,
whether it is di + dj or d1 is at most the sum of the other degrees. By induction realize
with underlying graph a forest or a unicyclic graph for which the cycle has size 3. ‘Split’
a vertex of degree di+dj into two vertices. The edges to such a vertex can be partitioned
so that only one underlying edge is split to have edges to both new vertices. If the vertex
is not on a 3-cycle, any incident edge can be used if an edge must be split. If the vertex
is on a 3-cycle then one of the edges of the cycle must be used. In this way the new
graph is either still a forest or has at most one 3 cycle.

Proof 4 of Fact 8: This proof builds on the fact that if the degrees partition into
two parts with equal sums there is a forest realization. Partition the degrees into two
parts such that the difference of sums is as small as possible. As the degree sum is even,
the difference between the sums is even. Each value in the larger part is at least the
difference in the sums else we can move it to the other part and get a smaller difference.
Reduce two values in the larger part by half the difference between the sums to get a
new sequence that partitions into two parts with equal sum. Realize the new sequence
with a multiforest as in Fact 10. Add multiedges between vertices corresponding to the
reduced degrees to get the original degrees realized with exactly one cycle. The cycle is
odd since the vertices are in the same part. Finish as in Proof 2. I.e., if the cycle has 5
or more vertices, switch on a non edge between 2 vertices at distance two and the rest
of the cycle to obtain exactly one 3-cycle.

Note that in Proof 4 finding a partition into two parts with difference of sums as small as
possible is NP-hard, so implementing the proof as a recursive algorithm as stated is not
efficient. However, all we really need is two values in the larger part that are at least half
the difference between the sums. Finding a minimal difference by repeatedly shifting
values less than half the difference from the larger part to the smaller part suffices.

Proof 2 of Fact 15: The basis when n ≤ 3 is easy to check. Consider sequences
r1, . . . , ra and s1, . . . , sb with r1 + · · ·+ ra = s1 + · · ·+ sb, the greatest common divisor of
all terms equal to 1 and with sum at least 2n−2 where a+b = n. If two values are equal
pick so that r1 6= sb and one of r1 or sb is equal to some other value in the sequences
and in addition pick so that this is the smallest duplicated value. By relabelling we may
assume sb < r1. Consider the sequences r1 − sb, r2, . . . , ra and s1, . . . , sb−1. It is easy
to see that if two values are equal, so that one of sb or r1 equals a value in the new
sequences then the greatest common divisor of the terms in the new sequences is 1. If
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the new sum is at most 2(n− 1)− 3 = 2n− 5 then at least three new values are 1, hence
two original values are 1 and we would have picked sb = 1, contradicting the original
sum at least 2n − 2. So when two values are the same the new reduced sum is large
enough. If all values are distinct, the new greatest common divisor is g and the new
sum divided by g is at most 2(n − 1) − 3 then at least 3 of the new values are 1 and
hence at least two original values are the same, a contradiction. So when the values are
distinct the new reduced sum is large enough. Thus we can get a connected realization
for the new values and add add sb edges between a new vertex and a vertex with degree
r1 − sb to get a multitree realization.

8 Conclusion

Combining ideas from elementary results on degrees of trees and multigraphs we en-
counter some additional interesting basic facts on degrees of multigraphs with underly-
ing tree like structure. Another way to combine these basic ideas is to consider degree
sequences of 2-multigraphs (where each edge multiplicity is 1 or 2) with underlying graph
a tree or forest. In this situation one can also find nice characterizations. These will
be presented in another paper and can be left as an exercise for the reader here. For
now we note that results regarding partitions do not carry over to 2-multitrees. Our
results noted that for any partition of a sequence into two parts with equal sum there
is a multiforest or multitree realization for which the degrees in the parts correspond
to the given partition of the sequence. For the case of 2-multigraphs with underlying
graph a tree or forest the partition matters. There are examples where some equal sum
partitions give a 2-multitree realization and others do not.
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