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Abstract

A chain packing H in a graph is a subgraph satisfying given degree con-
straints at the vertices. Its size is the number of odd degree vertices in the
subgraph. An odd subtree packing is a chain packing which is a forest in
which all non-isolated vertices have odd degree in the forest. We show that
for a given graph and degree constraints, the size of a maximum chain pack-
ing and a maximum odd subtree packing are the same but the same does not
hold for a version in which the sum of given weights on the odd degree ver-
tices is to be maximized. We also note a reduction to weighted capacitated
b-matching for finding a maximum size chain packing, maximum size odd
subtree packing and maximum weight chain packing. The main result of
this note is the proof that a min-max formula generalizing the Berge-Tutte
formula for matching holds for chain packing.



1 Introduction

Edge disjoint packings of chains as an extension of matching have been
studied by deWerra [14, 15, 16], deWerra and Pulleyblank [13] and deWerra
and Roberts [17]. In [14, 15, 16, 13] the chains have odd length. Chain
Packings of general length are studied in [17]. A chain packing H in a
graph G is a subgraph of G satisfying given degree constraints. Its size
is the number of vertices with odd degree in H. We will examine chain
packings and a closely related notion of odd subtree packings. An odd subtree
packing F is a chain packing for which each non-trivial component is a tree
containing no even degree vertices. Its size is the number of odd degree
vertices in F . Thus, odd subtree packing can be viewed as a generalization
of matching in which matched edges are replaced by odd subtrees satisfying
certain degree constraints. Related, but distinct problems of packing with
the subgraphs drawn from a fixed family and finding subgraphs satisfying
degree constraints have been extensively studied. See for example [1], [7]
and [9] and the references therein.

The maximum size of a chain packing and the maximum size of an odd
subtree packing are easily shown to be equal. However, for a given graph,
the collections of sets of vertices which have odd degree in a chain packing
and in an odd forest packing are different. In particular, when weights are
assigned to the vertices and we wish to maximize the sum of the weights of
the odd vertices, the maximum value for chain packings can be larger than
the maximum value for odd forest packings.

We will examine the similarities and differences of chain packings and
odd forest packings and note a reduction to weighted capacitated b-matching.
The main result of this note is the proof that a min-max formula generalizing
the Tutte-Berge formula for matching holds for the maximum size of a chain
packing. We show that the maximum size of a chain packing (for which all
degree constraints are odd) is equal to the minimum over all subsets S of
the vertex set of

|V |+ b(S)−O(G \ S)

where b(S) is the sum of the constraints over vertices in S. This answers a
question posed in deWerra and Roberts [17].

We briefly mention the graph theoretic notation which we will use. See
for example [4] for any terms not defined here. We will assume that all graphs
G = (V, E) are finite and contain no loops unless otherwise noted. Vertex x
is adjacent to vertex y if {x, y} is an edge in E(G). A chain in a graph is a
sequence v0, v1, . . . , vk such that {vi, vi+1} is an edge for i = 0, . . . , k − 1. If
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the vertices are distinct we call this a path. A graph is connected if there is a
chain between every pair of vertices. A component of a graph is a maximal
connected subgraph. A matching is a subgraph for which each component is
an edge. The degree of a vertex v in a graph G = (V,E), denoted by dG(v)
is the number of edges in E(G) with one end v. A vertex is isolated if it
has degree 0. A forest is an acyclic digraph and it is called a tree if it is
connected. We will use G \ S to denote the graph induced by the vertices
of V (G) \ S if S. We will also use G \ {{x, y}} to denote the graph G with
edge {x, y} removed.

2 The Problems

In this section we give formal definitions of the problems we will consider
and review the relationships between these problems. In both weighted and
unweighted versions

Chain Packing: Given a graph G = (V,E) and positive integer constraints
b : V → Z+, a chain packing in G is a subgraph H = (V, P ) that satisfies
dH(v) ≤ b(v) for all v ∈ V . The size of a chain packing is the number of
vertices with odd degree in H. If weights w are assigned to the vertices, we
call the problem weighted chain packing and the weight of a packing is the
sum of the weights of the vertices which have odd degree in H.

As noted in deWerra and Roberts [17], the chain packing subgraph H
can be decomposed into a collection of edge disjoint chains (plus possibly
some cycles) with the chains having distinct endpoints. Thus the name chain
packing. The size of the chain packing is twice the number of chains in the
decomposition, with each odd degree vertex in H appearing as the endpoint
of one chain. To find such a decomposition, we simply find a chain C in H
connecting two odd degree vertices. Add this to the collection of chains and
continue the decomposition with H \ C until the remaining graph has only
even degree vertices. A graph with all even degrees can be decomposed into
a collection of cycles.

Also, deWerra and Roberts [17] note that when looking for a chain pack-
ing of maximum size, one may assume that the constraints are all odd. Let
H be a chain packing of maximum size. If dH(v) = b(v) > 0 for some even
b(v), then consider H ′ = H \ {{v, w}} for any edge {v, w} ∈ H. We have
dH′(v) = dH(v) − 1, dH′(w) = dH(w) − 1, and dH′(x) = dH(x) − 1 for
x ∈ V , x 6= v, w. Thus H ′ satisfies the degree constraints. If dH(w) is even
then H does not have maximum size. So, in H, v has even degree and w
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has odd degree, and in H ′, v has odd degree and w has even degree. H ′

is also a maximum size chain packing. By continuing such reductions, we
can find a maximum size chain packing H for which there are no vertices
with dH = b(v) and b(v) even. Thus, deWerra and Roberts [17] assume that
all degree constraints are odd. Note that the reductions described above
do change the set of odd degree vertices. We will discuss the differences
between chain packings in a graph and chain packings in the same graph
when all even degree constraints are reduced by one. Thus, we will distin-
guish between chain packings with general constraints and chain packings
for which the constraints are all odd, even though in general the second is a
special case of the first.

Odd Chain Packing: A chain packing in which all degree constraints are
odd is called an odd chain packing. In particular an instance of odd chain
packing obtained from an instance of chain packing is the odd chain packing
problem obtained by setting b(v) = b(v) − 1 for all even b(v). If weights w
are assigned to the vertices we call the problem weighted odd chain packing
and the weight of a packing is the sum of the weights of the vertices which
have odd degree in H.

Given a set of constraints b on a set V we will define the the reduced
constraints b̃ by b̃(v) = b(v) if b(v) is even and b̃(v) = b(v)− 1 if b(v) is odd.

Consider a maximum size odd chain packing H. Removing a cycle from
H does not change the parity or increase the degree of any vertex. Thus,
there is a maximum size odd chain packing which is a forest. Furthermore,
consider a forest F containing a non-isolated vertex w with even degree. We
can find a path in F from w to a vertex x with dF (x) = 1 (a leaf in the
forest F ). By deleting such a path, we obtain a new forest F ′ in which x
is isolated and dF ′(w) = dF (w) − 1. So w has odd degree. Also, the de-
gree of every other vertex is unchanged or reduced by 2. Removing paths
from non-isolated vertices of even degree produces a forest F ′ with the same
number of odd degree vertices as F and dF ′(v) ≤ dF (v) for all v ∈ V . Thus,
a maximum size chain packing and a maximum size odd chain packing can
always be realized by a forest in which all the non-isolated vertices have odd
degree. However, the reductions to an odd forest change the set of odd de-
gree vertices. Thus we define a third problem, that of odd subtree packing.

Odd Subtree Packing: Given a graph G = (V, E) and odd positive integer
constraints b : V → 2N+1, an odd subtree packing F = (V, P ) is a subgraph
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G which is a forest such that for all v ∈ V , either dF (v) = 0 or dF (v) is
odd. Furthermore, dF (v) ≤ b(v) for all v ∈ V . The size of an odd forest
is the number of vertices with odd degree. If weights w are assigned to the
vertices we call the problem weighted odd subtree packing and the weight of a
packing is the sum of the weights of the vertices which have odd degree in F .

Note that for each of the problems chain packing, odd chain packing and
odd subtree packing, maximum size matching arises as a special case when
b(v) = 1 for all v ∈ V . The maximum size of a chain packing (odd subtree
packing) in this case is twice the size of a maximum matching. However,
maximum weight matching is not a special case, as we consider weights on
the vertices, not the edges.

We have already discussed the similarities between the unweighted ver-
sions of the three problems. We give examples below to show that the
weighted versions of these problems may all have different maximums. Thus
we have the following.

Remark 1 Let a graph G = (V, E) and positive integer constraints b on
V be given. Let b̃ denote the reduced constraints obtained from b. The
maximum size of a chain packing on G with constraints b, the maximum
size of an odd chain packing on G with constraints b̃, and the maximum size
of an odd subtree packing on G with constraints b̃ are all equal. However, the
collections of sets of vertices which have odd degree in some maximum chain
packing, maximum odd chain packing, and maximum odd subtree packing
may all be different. Additionally, given weights on the vertices, the weighted
versions of the problems may all have different maximums.

We show in Figure ?? an example demonstrating the last comment in
the remark. Let b(v) = dG(v) for every vertex in the graph G in the figure.
Then b(v) = 2, so b̃(v) = b(v) − 1 = 1, b(u) = b̃(u) = b(x) = b̃(x) = b(y) =
b̃(y) = 1, and b(w) = b̃(w) = 3. It can can be checked that the maximum
size chain packings on G with constraints b are G, G1 = G \ {{w, v}} (G
with edge {w, v} deleted), G2 = G \ {{u, v}} (G with edge {u, v} deleted),
G3 = G \ {{v, w}, {w, y}}, and G4 = G \ {{v, w}, {w, x}}. The maximum
size odd chain packings on G with constraints b̃ are G1, G2, G3, and G4. The
maximum size odd subtree packings on G with constraints b̃ are G2, G3, and
G4. Thus, the corresponding collections of sets of vertices covered by the
maximum packings are all distinct. Assign the weights w̃(u) = 3, w̃(v) = 1,
w̃(w) = 2, w̃(x) = w̃(y) = 4 to the vertices of G. Then a maximum weight
chain packing with respect to b has weight 13, a maximum weight odd chain
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packing with respect to b̃ has weight 12, and a maximum weight odd subtree
packing with respect to b̃ has weight 11.

Call a set S of vertices saturable with respect to a given type of packing
if there exists a packing of that type in which all vertices in S have odd
degree. In dewerra and Roberts [17], the saturable sets in a graph with
respect to odd chain packing are shown to be a matroid. By modifying their
definition of augmenting chain to allow repeated end appearances of end
vertices, their proof can be seen to show that the saturable sets in a graph
with respect to general chain packing also form a matroid. The algorithm
described in Isaak [8] shows that the saturable sets in a graph with respect
to odd subtree packing also form a matroid.

3 Algorithms

In this section we present a reduction to weighted capacitated b-matching
which shows that there is a polynomial algorithm to find the maximum size
or maximum weight of a chain packing. Thus, the reduction also can be used
to give a maximum size odd subtree packing. However, the reduction does
not work for maximum weight odd subtree packing. An alternative approach
(details of which can be found in [8]) that directly computes the maximum
size of a chain packing or odd subtree packing is also briefly discussed.

We first recall a formulation of the problem of weighted capacitated b-
matching. See for example [6] or [3] for more details on b-matching. Given
a graph G = (V, E) with ‘loops’ xl(v) for each vertex v ∈ V , capacities b(v)
for each vertex, and capacities ce and weights we on the edges (including the
loops), a weighted capacitated b-matching is an assignment of non-negative
integers xe to the edges (including the loops) such that xe ≤ ce and for each
v ∈ V , 2xl(v)+

∑
xe ≤ b(v) where the sum is over all edges with one end v.

A perfect b-matching is one in which 2xl(v)+
∑

xe = b(v) for all v ∈ V . The
weight of the b-matching is

∑
wexe where the sum is over all edges. There

are known polynomial procedures for finding a minimum weight b-matching.
See for example Anstee [3] and the references there.

We will first describe a construction reducing maximum size chain pack-
ing to weighted capacitated perfect b-matching. We will then show how this
can be easily modified for weighted chain packing. This reduction is due to
an anonymous referee.

The construction reducing maximum size chain packing to weighted ca-
pacitated perfect b-matching is similar to a construction used in Edmonds
and Johnson [6]. Let a graph G = (V,E) and positive integer constraints
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b(v) on the vertices be given. Let EV EN be the set of vertices with even
constraints and ODD the set of vertices with odd constraints. Construct
a new graph G′ with weights and capacities on the edges as follows. Let
each edge in E(G) have weight 0 and capacity 1. Add a new vertex z and
new edges {z, v} for all v ∈ V . Let b(z) be either |V | or |V | − 1, so that
the parity of b(z) agrees with the parity of |ODD| (i.e., the number of ver-
tices with odd degree constraints). This insures that G′ will have a perfect
b-matching. Let the new edges have capacity 1. Set the weight on the new
edge {v, z} to 1 if v ∈ ODD and −1 if v ∈ EV EN . Finally, for each vertex
(including the new vertex z) add a loop with weight 0 and ‘large’ capacity
(at least b(v)/2). Then, it can be seen that a minimum weight capacitated
perfect b-matching in G′ corresponds to a maximum size chain packing in
G and vice versa.

If B is the set of edges (with multiplicities) in a b-matching in G′, then
edges of G appear in B with multiplicity at most one due to the capacity
constraints. Let P = B ∩ E(G), the edges of B in G. The edges of P are
the edges of a packing, since the degree constraints are the same in the b-
matching and the chain packing. Also, in the graph induced by P , a vertex
v ∈ EV EN has even degree if {v, z} 6∈ B and odd degree if {v, z} ∈ B. A
vertex v ∈ ODD has even degree if {v, z} ∈ B and odd degree if {v, z} 6∈ B.
Given a packing P , a b-matching can be formed by adding edges adjacent
to z by the conditions of the preceding sentence. Then the parity of each
vertex is the same as its constraint and the b-matching can be completed by
adding loops with appropriate multiplicity at each vertex (including z). So
there is a one-to-one correspondence between b-matchings in the new graph
and chain packings in the original graph.

Consider a chain packing P and the corresponding b-matching B. Let
EV EN− and EV EN+ denote, respectively, the vertices in EV EN with
odd degree and with even degree. Similarly, let ODD− and ODD+ denote
the vertices in ODD with odd and respectively even degree in P . Then,
|ODD| = |ODD−| + |ODD+| and the size s of the packing is given by
s = |ODD−| + |EV EN−|. If t is the weight of the b-matching, we have
(from the description of edges incident to the new vertex z),

t = |ODD+|−|EV EN−| = |ODD−|+|ODD+|−(|ODD−|+ |EV EN−|) = |ODD|−s.

Thus, since |ODD| is constant, maximum size chain packings correspond to
minimum weight b-matchings.

For weighted chain packings, if w̃ are the weights on the vertices of G,
then we construct G′ as above, except that we set the weight of the edges
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{v, z} to w̃(v) if v ∈ ODD and −w̃(v) if v ∈ EV EN . The weight of the
packing s is s =

∑
v∈(ODD−) w̃(v) +

∑
v∈(EV EN−) w̃(v). Then in a manner

analogous to unweighted chain packing, for the weight t of the b-matching,
we get t =

∑
v∈ODD w̃(v)−s. So the reduction can also be used to determine

maximum weight chain packings using b-matching.
Note that using the reductions described in Section 2, a maximum size

chain packing can be used to construct a maximum size odd subtree packing.
So the b-matching reduction can also solve the problem of finding a maxi-
mum size odd subtree packing. We can obtain a maximum size odd subtree
packing directly from the minimum weight b-matching by putting weights
of 1 >> ε > 0 on the edges of G in G′. It can be seen that a minimum
weight b-matching in G′ will correspond to a maximum size odd subtree
packing (in a fact a maximum subtree packing with a minimum number of
edges). However, we note that this method does not seem to work to solve
the maximum weight odd subtree packing problem.

Remark 2 There exist polynomial procedures to find maximum weight and
maximum size chain packings and maximum size odd subtree packings.

Finally, we briefly comment that using an augmenting chain theorem of
deWerra and Roberts [17] provides a more direct procedure for maximum
size odd chain packing and maximum size odd subtree packing. This pro-
cedure is a blossom type algorithm along the lines of that of Edmonds [5],
except that more general conditions for blossoming are used. The complex-
ity is O(|V |3). See Isaak [8] for details. We note also that the augmenting
chain theorem of deWerra and Roberts [17] does not necessarily hold for the
general case of chain packing (with even degree constraints). Their defini-
tion does not allow an end vertex of an augmenting chain to have multiple
appearances in the chain. In order for their augmenting chain theorem to
work in the general case, the definition of augmenting chains must be slightly
modified to allow end vertices to have repeated appearances. See deWerra
and Roberts [17] for details on this augmenting chain theorem.

4 A Min-Max Formula

We have already observed that for a given graph G = (V, E), constraints b,
and the reduced constraints b̃ obtained from b, that the maximum size of a
chain packing in G with constraints b, the maximum size of an odd chain
packing in G with constraints b̃ and the maximum size of an odd subtree
packing in G with constraints b̃ are all equal. In this section we state a
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min-max formula for this common value which is a straightforward gener-
alization of the Tutte-Berge formula for the maximum size of a matching.
For simplicity, we will consider the problem of odd chain packing.

We will first prove a special case of the min-max formula for chain pack-
ings in which all vertices have odd degree.

Definition 1 A perfect odd chain packing on G is an odd chain packing
with size |V (G)|.

Let O(G) denote the number of odd components in the graph G. Let
b(S) =

∑
v∈S b(v) for any set of vertices S ⊆ V .

The Tutte-Berge formula for maximum cardinality matching states that
the size of a maximum cardinality matching is equal to

min
S⊆V

|V | − (O(G \ S)− |S|)
2

.

That is, the number of vertices left uncovered by the matching is equal to
the maximum value of O(S) − |S| over all subsets S of the vertex set V .
Numerous proofs of this result can be found. See for example Lovász and
Plummer [11] or Bollabás [4]. We will prove that an analogous formula for
odd chain packing holds.

In chain packing, as in matching, half of the min-max formula is im-
mediate. Let a graph G with odd positive integer constraints b be given.
Consider any set S ⊆ V (G). At most b(S) edges can have exactly one end in
S in any chain packing P . Let Ci be an odd component of G \S. By parity,
either some vertex of Ci is even in P , or there is an edge of P with exactly
one end in Ci. Since Ci is a component of G \ S, an edge with exactly one
end in Ci has the other end in S. Thus, of the O(G \S) odd components of
G \ S, at most b(S) can have all vertices odd in P . That is, for any S, at
least O(G \ S) − b(S) vertices must be even in any packing P . This shows
that the maximum size of a chain packing is less than or equal to

min
S⊆V

|V | − (O(G \ S)− b(S)) .

We will show that equality does hold.
A special case of the Tutte-Berge formula for matching is that a graph

has a perfect matching if and only if

O(S) ≤ |S| (1)
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holds for all subsets S of the vertex set V . For odd chain packing, we will
show that there is a perfect odd chain packing in G if and only if

O(S) ≤ b(S) (2)

holds for all subsets S of the vertex set V . As in the case of matching, the
condition for perfect odd chain packings will be used to provide a general
min-max formula.

We give a proof which follows very closely the proof of the Tutte-Berge
formula for matching given by Mader [12] and Anderson [2] as presented
in Bollabás [4]. There are a few minor differences in our proof which are
not needed in the proofs of Mader and Anderson for the matching result.
In both cases, note that if (1) or (2) holds, then |V (G)| must be even.
For matching, if S is a maximal set with (1) holding with equality, then
S 6= ∅ (as equality holds for single element sets) and G \ S contains no even
components (as equality will also hold for S ∪ {x} for any x in an even
component). In odd forest packing, similar facts do not hold. If (2) holds in
G, and if S is maximal with equality in (2), then S may be empty and also
G \ S may contain non-trivial even components (as O(G \ (S ∪ {x})) may
be only O(G \S) + 1 while b(S ∪ {x}) may be strictly greater than b(S) + 1
if b(x) > 1). For example, if G is the complete graph on six vertices and all
degree constraints are three, then the only set for which equality holds in
(2) is ∅ and G \ ∅ has an even component.

Assume that (1) or (2) holds in G. A second difference in the case of
odd forest packing occurs in the odd components of G \ S for S maximal
such that equality holds in (1) or (2). In matching, if S is maximal such
that equality holds in (1) then the proof of Mader and Anderson shows that
if C is an odd component of G \ S then C is factor critical, i.e., C \ {x} has
a perfect matching for every x ∈ V (C). In the case of odd forest packing, if
S is maximal such that equality holds in (2), and if C is an odd component
of G \ S, it is not necessarily the case that C \ {x} has a perfect odd forest
packing for every x ∈ V (C). For example, with the star consisting of edges
{x, u}, {x, v}, {x, w} if we have b(u) = b(v) = b(w) = 1 and b(x) = 3, then
{u} is maximal such that equality holds in (2). There is one odd component
of G \ {u}, the graph C consisting of the two edges {x, v}, {x, w}. Deleting
x from C produces a graph with two isolated vertices, i.e., a graph with no
perfect odd chain packing. However, if we add a new pendant edge from x
in C we get a new graph isomorphic to G, which does have a perfect odd
chain packing. This example suggests considering the following graphs.

Definition 2 Let a graph G and degree constraints b be given. For each
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x ∈ V (G), let Gx be formed by adding to G a new vertex z with b(z) = 1
and a pendant edge {x, z} joining x and z. G is extension perfect if Gx has
a perfect odd subtree packing for each x in V (G).

Note that if b(v) = 1 for all v ∈ V (G) and if G is factor critical, then G is
extension perfect. If S is maximal such that equality holds in (2) and if C is
an odd component of G \ S, then we will show that C is extension perfect.

With these slight variations in mind we can show that the analog of the
Tutte-Berge formula holds for odd forest packing. We first prove the result
for perfect odd forest packings. Note that there is no loss of generality in
assuming that b(v) ≤ dG(v) for all vertices v.

Theorem 1 Let G = (V,E) be a graph and let b : V → 2N + 1 be odd
degree constraints (such that b(v) ≤ dG(v) for all v). G has a perfect odd
chain packing if and only if

b(S) ≥ O(G \ S) for all S ⊆ V. (3)

Proof: As noted previously, if b(S) < O(G\S) for some S, then in any chain
packing, some odd component of G\S must contain a vertex of even degree
in the packing, so G does not have a perfect odd subtree packing.

We prove the converse by induction on |V (G)|+ |E(G)|+ ∑
bi. Assume

that G is such that (3) holds. Note that |V (G)| is even or else (3) is violated
by S = ∅. Since the constraints b are all odd, the parity of b(S) is the same
as the parity of S. If |V (G)| is even, then by parity

b(S) > O(G \ S) =⇒ b(S) ≥ O(G \ S) + 2. (4)

If |V (G)| = 2, G is either an edge or two isolated vertices and the result can
easily be seen to hold. So |V (G)| ≥ 4.

We may assume that G is connected or else by induction on each com-
ponent we are done.

Let S be a maximal set such that equality holds in (3). Assume first that
S = ∅. There can be no vertex w such that b(w) = 1 since equality would
hold in (3) for S = {w} contradicting the maximality of ∅. Pick any vertex
w and change b(w) to b(w) − 2. By (4), since > holds in (3) under the old
constraints for S 6= ∅, equation (3) still holds under the new constraints. So,
by induction, the graph with the reduced constraints (and thus the original
graph) has a perfect odd chain packing.

Next, assume that b(S) = 1 for all maximal sets for which equality holds
in (3). Since the b(v) are positive, the maximal sets also must satisfy |S| = 1.
If b(v) > O(G\{v}) for some vertex v. Then, by the strict inequality for {v}
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and since all maximal sets contain one element, we have b(S) > O(G \ S)
for all S ⊆ V (G) with v ∈ S. As above we can change b(v) to b(v)− 2, and
we are done by induction.

Assume now that b(S) = 1 for all maximal set S for which equality holds
in (3) and that all single element sets are maximal. Additionally, assume
that for all v ∈ V (G), G \ {v} has no even components. (Note that we have
b(v) = 1 for all v ∈ V (G) and we could use the Tutte-Berge formula to
complete the proof of this case. However, we will give a short alternative
proof so that we do not need to rely on the matching result directly.) Then,
if there exists a vertex x such that b(x) < dG(x), consider the graph G\{x}.
Since G \ {x} has no even components and since dG(x) > b(x) and b(x) =
O(G \ {x}) ({x} is maximal), there is one (odd) component C in G \ {x},
and x is adjacent to at least two vertices in C. Let y and z be two such
vertices. Since y is adjacent to x, dG(y) ≥ 2 or else y and z are not in
the same component of G \ {x}. Now, in G′ = G \ {{x, y}} (G with edge
{x, y} deleted), b(v) ≤ dG′(v) holds for all vertices (by the choice of {x, y}).
Additionally, it is not difficult to check that since (3) holds in G, the only
way for (3) to be violated in G′ is if b(S) = O(G \S) and removing the edge
{x, y} from some even component of G \ S produces two odd components.
However, we have assumed that the only sets for which equality in (3) holds
in G are such that G \ S contains no even components. Thus, (3) holds in
G′ and this case is complete by induction.

Under the same assumptions as the preceding paragraph, if dG(x) =
b(x) = 1 for all x ∈ V , then G is a collection of edges and G itself is a
perfect odd chain packing.

Finally, we consider the cases that there is a maximal |S| with b(S) ≥ 2
or there is a maximal S with b(S) = 1 and some component of G \ S even.
Let k = b(S). Let D1, . . . be the even components and C1, . . . , Ck the odd
components of G \ S. If some S′ ⊆ V (Di) violates (3) in Di, then S ∪ S′

violates (3) in G. So (3) holds in each even component Di and by induction
each of these components has a perfect odd chain packing.

We next show that every odd component of G \ S is extension perfect.
Consider any such component C = Ci and any y ∈ V (C). Construct C ′

with V (C ′) = V (C)∪{z} (for a new vertex z 6∈ V (G)) and E(C ′) = E(C)∪
{{z, y}}. That is, C ′ is formed from C by adding a new pendant edge {y, z}
to y. Let b(z) = 1. By assumption |V (C ′)| + |E(C ′)| +

∑
v∈V (C′) bv <

|V (G)| + |E(G)| + ∑
v∈V (G) bv since either b(S) ≥ 2 or there is an even

component D1 with at least two vertices. We show that C ′ satisfies (3).
Assume that there is a set S′ ⊆ V (C ′) which violates (3) in C ′. Clearly
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S′ 6= ∅ since C ′ is connected and |V (C)| is even. Also, it is not difficult
to check that if S′ ∪ {z} violates (3) in C ′, then S′ violates (3). So we
assume that z 6∈ S′. Note that O(C \ S′) ≥ O(C ′ \ S′) − 1 since at most
one odd component becomes even (or empty) by removing the pendant
vertex z. Since S′ violates (3) in C ′, b(S′) < O(C ′ \ S′). Then, by parity,
b(S′) ≤ O(C ′ \ S′)− 2. Since S′ is contained in the vertex set of some odd
component C of G \ S, we have O(G \ S \ S′) = O(G \ S)− 1 +O(C \ S′).
So, we have

b(S ∪ S′) = b(S) + b(S′)
≥ O(G \ S \ S′)
≥ O(G \ S)− 1 +O(C \ S′)
≥ O(G \ S)− 1 +O(C ′ \ S′)− 1
≥ b(S) + b(S′)

Thus, in G, equality holds in (3) for S ∪ S′, contradicting the maximality
of S. So, (3) holds in C ′ and thus by induction, C ′ has a perfect odd chain
packing. That is, C is extension perfect.

To finish the proof, we show that for each odd component Ci we can
replace the pendant edge to the new vertex z in C ′

i with an edge to a vertex
of S, completing the perfect odd chain packing. Form a bipartite graph G′ on
vertex set A∪C with A containing b(vi) vertices ai1, . . . , aivi corresponding
to each vi ∈ S and each vertex ci of C corresponding to an odd component Ci

of G\S. Note that since b(S) = O(G\S), |A| = |C|. Place an edge between
ci ∈ C and ajl ∈ A if some vertex of the odd component Ci corresponding
to ci is adjacent to the vertex vj in S corresponding to ajl. Consider any
subset C ′′ of C, which we may assume to be c1, . . . cs. By relabeling, denote
the set of vertices of S adjacent to some vertex of some Ci, i = 1, . . . , s by
S′′ = v1, . . . , vt. By construction, A′′ = {ajk|1 ≤ j ≤ t, 1 ≤ k ≤ bvj} is the
set of vertices adjacent to C ′′ in G′. We have |A′′| = b(S′′) and by (3) in G,
we have b(S′′) ≥ O(G \ S′′). Since the adjacencies of the components Ci,
i = 1, . . . , s are all in S′′, we have O(G \ S′′) ≥ s. So for any C ′′ ⊆ C,

|A′′| = b(S′′) ≥ O(G \ S′′) ≥ s = |C ′′|.

By Hall’s Theorem for matching in bipartite graphs, G′ has a perfect match-
ing.

We can use the perfect matching in G′, along with the fact that the
odd components are extension perfect to construct a perfect matching in
G. (We have already noted that the even components of G \ S have a
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perfect matching.) Take any perfect matching M in the bipartite graph
G′. The vertex corresponding to an odd component Ci is adjacent to some
ajl in M . Thus, in G, some vertex x of Ci is adjacent to aj ∈ S. Since
Ci is extension perfect, there is a perfect matching in Ci with a pendant
edge from x. Take this pendant edge to be {x, aj}. Doing this for all odd
components produces a packing in which all vertices of all odd components
are odd. Additionally, from the construction of the bipartite graph G′ and
from the choice of pendant edges, each vertex v ∈ S has degree b(s) in the
packing, and since b(S) is odd, the vertices of S also have odd degree. 2

We can now state as a corollary a general min-max formula

Corollary 2 Given a graph G and odd positive degree constraints b on
V (G), the maximum size of an odd chain packing in G is equal to

min
S⊆V

|V | − (O(G \ S)− b(S)) = min
S⊆V

|V |+ b(S)−O(G \ S).

Proof: We have previously noted that min ≤ max holds. To show that
equality holds, let m denote the maximum over subsets S of V (G) of O(G \
S)− b(S). So |V | −m is the value of the minimum in the statement of the
corollary. Form G′ by taking G and a vertex disjoint copy of Km (the com-
plete graph on m vertices) and joining every vertex of G to every vertex of
Km. Let b(x) = 1 for x ∈ V (Km). The parity of m and V (G) are the same,
so |V (G′)| is even. Thus (3) holds for ∅ in G′. Consider S 6= ∅, S ⊆ V (G′).
If S does not contain V (Km), then G \ S is connected and O(G′ \ S) is
0 or 1. Since S 6= ∅, b(S) ≥ 1 and (3) holds in this case. If S contains
V (Km), then for S′ = S \V (Km), we have O(G′ \S) = O(G\S′). Note that
b(S) = b(S′) + m. Now, O(G \ S′) − b(S′) ≤ m so O(G′ \ S) ≤ b(S) holds.
By the theorem, G′ has a perfect odd subtree packing. Such a packing re-
stricted to G is a chain packing in G with minS⊆V |V | + b(S) − O(G \ S)
odd vertices. 2

By Remark 1, the min-max formula holds for odd subtree packing. Note
that the min-max formula for chain packing reduces to the Tutte-Berge
formula for matching; since the size of a maximum chain packing when all
constraints are one is twice the size of a maximum matching (the matching
counts edges and the packing counts odd vertices).

Finally, we note that a direct formula can be obtained when even degree
constraints are retained. For this, let E(S) be the number of vertices v in
S with b(v) even. Then, in a manner similar to the above proofs, it is not

13



difficult to see that the maximum size of a general chain packing is equal to

min
S⊆V

|V | − E(S)− (O(G \ S)− b(S)) = min
S⊆V

|V |+ b(S)− E(S)−O(G \ S).

5 Conclusion

We have seen that a min-max formula holds for chain packing and odd sub-
tree packing. We are also able to show that a decomposition along the lines
of that of Edmonds and Gallai for matching (see for example [11]) holds
for chain packing (in preparation), but do not have a similar result for odd
subtree packing. The reduction to b-matching leaves open the problem of
finding an efficient algorithm in the weighted case of odd subtree packing.
It would also be natural to consider which other matching ‘results’ have in-
teresting analogues when extended to chain packing or odd subtree packing.

Acknowledgements

The author thanks Endre Boros for suggesting the study of odd subtrees as
a special case of chain packing and an anonymous referee for suggesting the
reduction described in Section 3. The author thanks Fred S. Roberts, Endre
Boros, and an anonymous referee for their helpful comments.

References
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