
Math 163 Introductory Seminar - Lehigh University - Spring 2008 - Assignment 8 Solutions
Due Monday March 31

29. Consider the variants for strong duality listed below.
B’: If both problems are feasible then :
max{cx|Ax ≤ b, x ≥ 0} = min{yb|yA ≥ c, y ≥ 0}
C’: If both problems are feasible then :
max{cx|Ax = b,x ≥ 0} = min{yb|yA ≥ c}
(a) Prove that B’ implies C’
(b) Prove that C’ implies B’

Indicate clearly which is part (a) and which is part (b) in your solution.

(a) To show (B’) implies (C’): Assuming the first and last LPs below are feasible we have

max{cx|Ax = b,x ≥ 0} = max

{
cx|

[
A

−A

]
x ≤

[
b

−b

]}

= min

{[
u v

] [
b

−b

]
| [ u v

] [
A

−A

]
≥ c,

[
u v

] ≥ 0

}

= min {yb|yA ≥ c}

The first and third equalities follow from basic manipulations and letting y = u− v for the
third equality. The second follows from (B’).

(b) To show (C’) implies (B’): Assuming the first and last LPs below are feasible we have

max {cx|Ax ≤ b,x ≥ 0} = max

{[
c 0

] [
x
s

]
| [ A I

] [
x
s

]
= b,

[
x
s

]
≥ 0

}

= min
{
yb|y [

A I
] ≥ [

c 0
]}

= min{yb|yA ≥ c,y ≥ 0}

The first and third equalities follow from basic manipulations. The second follows from (C’).

30. Consider the following version of strong duality:
A’: If both problems are feasible then : max{cx|Ax ≤ b} = min{yb|yA = c, y ≥ 0}
Use this to prove the following version of Farkas’ Lemma:

A: Exactly one of the following holds:
(I) Ax ≤ b, has a solution x
(II) yA = 0, y ≥ 0, yb < 0 has a solution y

Hints: Consider Ax ≤ b in the statement of Farkas’ lemma. Introduce a new variable z and
subtract it from each inequality and maximize z subject to these new constraints. Write down
what new A′, c′, x′, b′ are for this. Be careful to include the coefficients for the original x in
c′. Explain why this new problem is feasible and why Ax ≤ b has a solution if and only if the
maximum is at least 0. So then, if Ax ≤ b does not have a solution then the maximum is
negative and by duality so is the minimum in the dual problem. Write down the dual for the new
problem with the A′, c′,x′, b′ and show that a negative solution for this provides a solution to
yA = 0,y ≥ 0,yb < 0.



Note first that it is easy to show that at most one of (I) and (II) holds as follows: If both
(I) and (II) hold then using y ≥ 0 for the third inequality and basic substitutions for the
others we have

0 = 0x = (yA)x = y(Ax) ≤ yb < 0

a contradiction.

Use a new variable z. For i = 1, 2, . . . , m note that
∑n

j=1 aijxj ≤ bi has a solution if and
only if (

∑n
j=1 aijxj) + z ≤ bi has a solution with the value assigned to z at least 0. Then

using 1 to denote a column vector (with m rows) with every entry 1 we have that Ax ≤ b is

feasible if and only if
[

A 1
] [

x
z

]
≤ b has a solution with z ≥ 0. So Ax ≤ b is feasible

if and only if max

{[
0 1

] [
x
z

]
| [ A 1

] [
x
z

]
≤ b

}
is at least 0. Note that this linear

program is feasible since taking x = 0 and z to be at most the smallest of the bi is feasible.

Now, to show that at least one of (I) or (II) holds, assume that (I) does not hold and show
that in this case (II) holds. From the previous paragraph, if (I) does not hold the maximum
is negative in the linear program max{c′x′|A′x′ ≤ b} = min{yb|yA′ = c′,y ≥ 0} where

A′ =
[

A 1
]
, x′ =

[
x
z

]
and c′ =

[
0 1

]
. So for y∗ attaining the minimum we have

y∗b < 0 since the minimum is negative. From dual feasibility we also have y∗
[

A 1
]

=[
0 1

]
and y∗ ≥ 0. This gives y∗A = 0,y∗ ≥ 0 with y∗b < 0 and hence (II) has a solution.

31. Given pairs of data points (x1, y1), (x2, y2), . . . , (xn, yn) consider approximating lines of the
form y = mx+ b. The error ei for the ith pair is the distance between yi and the height (y value)
of the line at xi. This is ei = yi − (mxi + b). If we consider the equations b + xim = yi for
i = 1, 2, . . . , n in the variables b and m we can think of this as a system of equations Ax = b

where A =




1 x1

1 x2
...

...
1 xn


, x =

[
b
m

]
, b =




y1

y2
...

yn


. The best least squares approximation for this

system (which gives the intercept b and slope m of the best least squares line for the data) is the
solution to the normal equations AT Ax = AT b. Determine AT A (a 2 × 2 matrix) and AT b (a
2× 1 matrix). The entries will be sums of terms involving the xi and yi. Write these, first using∑

notation and then simplify the notation using x =
∑n

i=1 xi

n
, y =

∑n
i=1 yi

n
, x2 =

∑n
i=1 x2

i

n
and

xy =
∑n

i=1 xiyi

n
. Write down the system of 2 equations in the 2 unknowns m, b with coefficients

in terms of the expressions in the previous sentence. Solve this system first for m and then
determine b in terms of m (and the coefficients). Determine the least squares line for the points
(0, 2), (1, 1), (3, 4) using your results.



All sums are indexed
∑n

i=1 so we will drop the indices to make notation less cluttered.

AT A =

[
1 1 . . . 1
x1 x2 . . . xn

]



1 x1

1 x2
...

...
1 xn


 =

[
n

∑
xi∑

xi

∑
x2

i

]
= n

[
1 x

x x2

]
and

AT b =

[
1 1 . . . 1
x1 x2 . . . xn

]



y1

y2
...

yn


 =

[ ∑
yi∑

xiyi

]
= n

[
y
xy

]
.

So with x =

[
b
m

]
we get that AT Ax = AT b becomes (after canceling the n)

[
1 x

x x2

] [
b
m

]
=

[
y
xy

]
. Writing this as a system of 2 equations in the two unknowns b and m this is

b + xm = y

xb + x2m = xy
. To solve this for m, multiply the first equation by x and then subtract

the second to get 0 + x2m− x2m = x y − xy. From this we get m = x y−xy

x2−x2
. Then, writing b

in terms of m we have b = y − xm = y − x x y−xy

x2−x2
.

For the points (0, 2), (1, 1), (3, 4) we have x = (0 + 1 + 3)/3 = 4/3, y = (2 + 1 + 4)/3 = 7/3,
x2 = (0 + 1 + 9)/3 = 10/3 and xy = (0 + 1 + 12)/3 = 13/3. Hence the least squares line for

these points has slope m =
4
3

7
3
− 13

3

( 4
3
)2− 10

3

= 11
14

and intercept b = 7
3
− 4

3
11
14

= 9
7
.


