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12. (a) If b is a 99 digit number how many bits are needed to represent it? That is, if b is a 99
digit number, how many digits are needed when it is represented base 2? Your answer will be
a range of several numbers. Consider how log (common logarithm, base 10) and lg (logarithm
base 2) relate to the number of digits. Use this and basic facts about logarithms. We have
not discussed basic rules for logarithm manipulation in class. If you do not recall these use any
inanimate source that you like.
(b) Answer as in part (a) except for a t − 1 digit number. Your answer should be a range of
numbers specified by two values written in terms of t and some logarithms.

Note that b has t − 1 digits if t − 2 ≤ log b < t − 1. So b has blog bc + 1 digits where
bxc is the floor function which is the largest integer less than or equal to x. Similarly the
number of bits needed to represent b is blg bc+1. A basic logarithm identity is loga b = logc b

logc a
.

So in particular we have log10 b = log2 b
log2 a

. Using log for log base 10 and lg for log base

2 we get log b = lg b
lg 10

. If b has 99 digits then 98 ≤ log b < 99. Substituting this gives

98·lg 10 ≤ lg b < 99 lg 10 with lg 10 ≈ 3.32193 we get (approximately) 325.54 ≤ lg b < 328.86.
So is has between 326 and 329 bits. Replacing 98 and 99 above with t−2 and t−1 we get that
(t−2) · lg 10 ≤ lg b < (t−1) · lg 10 or (approximately) (t−2) ·3.32193 ≤ lg b < (t−1) ·3.32193.
The number of bits is between b(t− 2) · lg 10c+ 1 and b(t− 1) · lg 10c+ 1. (If (t− 1) · lg 10
was an integer we would need b(t − 1) · lg 10c bits instead of b(t − 1) · lg 10c + 1 but since
lg 10 is irrational this will never happen so the bound b(t−1) · lg 10c+1 is correct for all t. )

13. What is the smallest k such that the Fibonacci number Fk has at least 99 digits? What does
this tell you about the number of steps in the Euclidean algorithm in the worst case if the smaller
of the two numbers for which you determine the gcd has 99 digits? Recall that Fk is the integer

closest to 1√
5

(
1+
√

5
2

)k

. As in the previous problem, think about how the number of digits relates

to the common logarithm and find and use some basic facts about logarithms.

As in the previous problem we need the smallest k such that log Fk ≥ 98. Using Fk ≈
1√
5

(
1+
√

5
2

)k

along with the basic log identities log ab = log a + log b and log bk = k log b we

get log

(
1√
5

(
1+
√

5
2

)k
)

= log 1√
5

+ k log 1+
√

5
2

. With log 1√
5
≈ .34948 and log 1+

√
5

2
≈ .208988

we get log 1√
5

+ k log 1+
√

5
2

≥ 98 when (approximately) k ≥ 470.59. This expression is
less than 98 when k ≤ 470 and at least 98 when k ≥ 471. Observe that with Fk =
1√
5

(
1+
√

5
2

)k

− 1√
5

(
1−√5

2

)k

we get that 1√
5

(
1+
√

5
2

)k

is an overestimate of Fk when k is even and

and underestimate when k is odd. So our computations showing 1√
5

(
1+
√

5
2

)k

with k = 471

is at least 1098 and with k = 470 is less than 1098 show that F471 has at least 99 digits and
that F470 has at most 98 digits.

14. Prove that for positive integers a1, a2, . . . , ak, c we have that a1x1 + a2x2 + · · ·+ akxk = c
has a an integer solution only if c is a multiple of the greatest common divisor gcd(a1, . . . , ak)
of the ai.



We need to show that if there is an integer solution then c is a multiple of gcd(a1, . . . , ak). Let
g = gcd(a1, . . . , ak) then for i = 1, 2 . . . , k there exist integers hi with ai = ghi since g divides
each of the ai. If x∗1, x

∗
2, . . . , x

∗
k satisfy a1x

∗
1 +a2x

∗
2 + · · ·+akx

∗
k = c then substituting ai = ghi

we get g(h1x
∗
1 +h2x

∗
2 + · · ·+hk) = a1x

∗
1 +a2x

∗
2 + · · ·+akx

∗
k = c. Since (h1x

∗
1 +h2x

∗
2 + · · ·+hk)

is an integer, c is a multiple of g = gcd(a1, . . . , ak).

15. Prove that for positive integers a1, a2, . . . , ak, c we have that a1x1 + a2x2 + · · ·+ akxk = c
has a an integer solution if c is a multiple of the greatest common divisor gcd(a1, . . . , ak) of the
ai. Note that it is enough to show that there is a a solution when c = gcd(a1, . . . , ak) and then
use induction on k. You may use the k = 2 case proved in class as a basis. You may also use
the fact that gcd(gcd(a1, . . . , ak−1), ak) = gcd(a1, . . . , ak).

We need to show that if c is a multiple of gcd(a1, . . . , ak) then there is an integral solution.
We assume that we have shown the basis for the induction, a1x1 + a2x2 = c has an integer
solution if c is a multiple of gcd(a1, a2). It is enough to show that there is a solution
for g = gcd(a1, . . . , ak) since if c is a multiple of g, then c = qg for some integer q and if
x∗1, x

∗
2, . . . , x

∗
k are integers satisfying a1x

∗
1 +a2x

∗
2 + · · ·+akx

∗
k = g then qx∗1, qx

∗
2, . . . , qx

∗
k satisfy

a1(qx
∗
1)+a2(qx

∗
2)+ · · ·+ak(qx

∗
k) = qg = c. Now assume k ≥ 3. Let g′ = gcd(a1, a2, . . . , ak−1).

By induction we can assume that there exists integers v∗1, v
∗
2, . . . , v

∗
k−1 satisfying a1v

∗
1 +a2v

∗
2 +

· · ·+ ak−1v
∗
k−1 = gcd(a1, . . . , ak−1) = g′ and that there exist integers w∗

1, w
∗
2 satisfying g′w∗

1 +
akw

∗
2 = gcd(g′, ak) = gcd(gcd(a1, . . . , ak−1), ak) = gcd(a1, a2, . . . , ak) = g. Then x∗i = w∗

1v
∗
i

for i = 1, . . . , k− 1 and xk = w∗
2 are integers satisfying a1x

∗
1 +a2x

∗
2 + · · ·+ak−1x

∗
k−1 +akx

∗
k =

(a1v
∗
1 + a2v

∗
2 + · · · + ak−1v

∗
k−1)w

∗
1 + akw

∗
2 = g′w∗

1 + akw
∗
2 = g. So by induction there is an

integer solution when c = g and from the remarks above when c is a multiple of g.

16. Consider the statement that exactly one of the following holds for given integers: a1, a2, . . . , ak, c:
(I) a1x1+ · · ·+akxk = c has an integer solution x1, x2, . . . , xk; (II) yai integral for i = 1, 2, . . . , k
and yc non-integral has a solution y.
Prove directly that at most one of (I) or (II) holds.

Assume that both hold. That is, there exist integers x∗1, x
∗
2, . . . , x

∗
k with a1x

∗
1 + · · ·+akx

∗
k = c

and a number y∗ with yai an integer for i = 1, 2, . . . , k and y∗c not an integer. Then
y∗c = y∗(a1x

∗
1 + · · ·+ akx

∗
k) = y∗a1x

∗
1 + y∗a2x

∗
2 + · · ·+ y∗akx

∗
k is an integer since y∗ai and x∗i

are both integers. This a contradiction, so at most one of (I) or (II) can hold.

17. Consider the statement that exactly one of the following holds for given integers: a1, a2, . . . , ak, c:
(I) a1x1+ · · ·+akxk = c has an integer solution x1, x2, . . . , xk; (II) yai integral for i = 1, 2, . . . , k
and yc non-integral has a solution y.
This is really just a restatement of 14 and 15 above. Show this statement using those results.
By 16 it is enough to show that at least one holds. Consider two cases, whether or not c is a
multiple of gcd(a1, . . . , ak) and explain why (using 14 or 15) this gives a solution in (I) or (II).

From problem 16, at most one of (I) or (II) holds. If c is a multiple of gcd(a1, a2, . . . , ak)
then by problem 15 (I) holds. If c is not a multiple of g = gcd(a1, . . . , ak) then let y∗ = 1

g
.

Since c is not a multiple g, y∗g is not an integer. Since ai is a multiple of g for i = 1, 2, . . . , k,
y∗ai = ai

g
is an integer for i = 1, 2 . . . , k. Thus (II) has a solution.


