Math 163 Introductory Seminar - Lehigh University - Spring 2008 - Assignment 2 Solutions
Due Monday January 28

4. Let G be a bipartite graph with bipartition X, Y. Hall's condition is |T"| < |N(T)| for all
T C X. Prove that when |X| = |Y] this is a necessary condition for G to have a perfect
matching.

We need to show that if G has a perfect matching then |T'| < |N(T)| for all ' C X. Label
the vertices so that the matching is x1y1, Zays, ..., Tpyn. Then, for any T = {z;|i € I}
we have that {y;|i € I} C N(T') because the edges x1y1, To¥ys, ..., Ty, are all in G. Thus

T = {wili € I} = Kuili € T} < [N(T)].

5. Let G be a bipartite graph with bipartition X, Y having | X| = |Y|. Prove that the sufficiency
of Hall's condition for a perfect matching implies the sufficiency of the marriage condition. That
is prove that the statement: (If G does not have a perfect matching then there is a 7" C X such
that |T'| > |N(T")|) implies the statement (If G' does not have a perfect matching then G has a
vertex cover C' with |C| < n).

If G does not have a perfect matching then by Hall’s Theorem there there is 7" C X with
|T| > |N(T)|. By the definition of neighborhood there are no edges between T"and Y — N (T').
Thus every edge has an end in X — T or Y — (Y — N(T)) = N(T) (or both). So C =
(X —=T)UN(T) is a vertex cover. Using |N(T)| < |T| and | X —T|+|T| = |X| = n we get
IC| =|X—-T|+|N(T)| < (n—|T|)+|T| =nSo C = (X —-T)UN(T) is a vertex cover with
size less than n.

For completeness here also is a solution to problem 1 using this notation. That is, a proof
that the sufficiency of the marriage condition implies the sufficiency of Hall’s condition:

If G does not have a perfect matching then by the marriage theorem there is a vertex cover
C=RUS with RC X and S C Y with |[C| < n. Since RU S is a vertex cover there
are no edges between X — R and Y — S. Thus the neighborhood of X — R is contained
inY —(Y—-95) =5 That is N(X — R) € S. Then |[N(X — R)| < |S|]. Using also
n > |C| = |R| + |S| and we get IN(X — R)| < |S|<n—|R|=|X—-R|. ThusT =X —R
has |T'| > |[N(T)|.

6. Use induction to prove that the Fibonacci numbers satisfy Z?;Ol Foivq = Fyy,.

We show this for n = 1,2,..., by induction. For n = 1 the formula reduces to F; = F,
which holds since both are 1. For n > 2 we have Z;:Ol Fop1 = (Z?;f F2i+]_) + Fop_1y41 =
Fopmy + Fopn—1y41 = Fon_a+ Fo1 = Fy,. The second equality follows by induction and the
last by the Fibonacci recurrence (and the others are elementary algebra). Thus by induction
the formula holds for n =1,2....

7. Prove that the Arithmetic-Geometric mean inequality implies the Geometric-Harmonic mean
inequality. That is, for positive numbers 41, s, ..., ¥, the inequality
Yot Fyn -
PR > (g - ya) " implies (yaye ) 2
Hint - think about reciprocals.

For all of the following we assume that the z; and y; are positive numbers. Use the
Arithmetic-Geometric mean inequality 222t > (43, - - - 1,,)1/" to show the Geometric-



Harmonic mean inequality (yiys---9n)"/™ > ——1%——. Let z; = yl fori = 1,2,...,n.

= 1,1, .41 ) &y
Y1 Y2 Yn
Then applying the Arithmetic-Geometric mean inequality substituting x; = yi we get
whmt e o (11 1\ ¢ ltiplying vields (y1ys- - - yu)V/" > 2+
- S . Cross multiplying yields (y1y2 - - - yn R

8. Derive a formula for >, i as follows. Note that n* = > | (i* — (i — 1)*) and then expand

the (i — 1)* term. The expression being summed now has terms involving 7,42, 3. Use known
formulas for 1" i, >0 4, >.r 1 to get a formula for Y " i*.

Use the properties of a telescoping series for the first equality and the expansion of (i —1)? to
getnt =" (A —(i—DH =" (- (4P +62—4i+1))=4> " B-6> " %+
437" i — Y ;1. Then moving terms and substituting » . 1 =n, Y . i = @,

Z?:l 2 — n(n+1)6( n+1) we get 42?:1 B =nti6 (n)(n+16)(2n+1) _4 n(n2+1) +n=nt+ n(n +

D2n+1)—2n(n+1)+n=nn*+2n*+3n+1)— 2n+2)+1) = n(n® +2n? +n) =
2

n?(n® 4+ 2n + 1) = n?(n +1)%. Thus 377, i° = n2(n4+1)




