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4. Let G be a bipartite graph with bipartition X, Y . Hall’s condition is |T | ≤ |N(T )| for all
T ⊆ X. Prove that when |X| = |Y | this is a necessary condition for G to have a perfect
matching.

We need to show that if G has a perfect matching then |T | ≤ |N(T )| for all T ⊆ X. Label
the vertices so that the matching is x1y1, x2y2, . . . , xnyn. Then, for any T = {xi|i ∈ I}
we have that {yi|i ∈ I} ⊆ N(T ) because the edges x1y1, x2y2, . . . , xnyn are all in G. Thus
|T | = |{xi|i ∈ I}| = |{yi|i ∈ I}| ≤ |N(T )|.
5. Let G be a bipartite graph with bipartition X, Y having |X| = |Y |. Prove that the sufficiency
of Hall’s condition for a perfect matching implies the sufficiency of the marriage condition. That
is prove that the statement: (If G does not have a perfect matching then there is a T ⊆ X such
that |T | > |N(T )|) implies the statement (If G does not have a perfect matching then G has a
vertex cover C with |C| < n).

If G does not have a perfect matching then by Hall’s Theorem there there is T ⊆ X with
|T | > |N(T )|. By the definition of neighborhood there are no edges between T and Y −N(T ).
Thus every edge has an end in X − T or Y − (Y − N(T )) = N(T ) (or both). So C =
(X − T ) ∪N(T ) is a vertex cover. Using |N(T )| < |T | and |X − T |+ |T | = |X| = n we get
|C| = |X −T |+ |N(T )| < (n− |T |) + |T | = n So C = (X −T )∪N(T ) is a vertex cover with
size less than n.

For completeness here also is a solution to problem 1 using this notation. That is, a proof
that the sufficiency of the marriage condition implies the sufficiency of Hall’s condition:

If G does not have a perfect matching then by the marriage theorem there is a vertex cover
C = R ∪ S with R ⊆ X and S ⊆ Y with |C| < n. Since R ∪ S is a vertex cover there
are no edges between X − R and Y − S. Thus the neighborhood of X − R is contained
in Y − (Y − S) = S. That is N(X − R) ⊆ S. Then |N(X − R)| ≤ |S|. Using also
n > |C| = |R| + |S| and we get |N(X − R)| ≤ |S| < n − |R| = |X − R|. Thus T = X − R
has |T | > |N(T )|.
6. Use induction to prove that the Fibonacci numbers satisfy

∑n−1
i=0 F2i+1 = F2n.

We show this for n = 1, 2, . . . , by induction. For n = 1 the formula reduces to F1 = F2

which holds since both are 1. For n ≥ 2 we have
∑n−1

i=0 F2i+1 =
(∑n−2

i=1 F2i+1

)
+ F2(n−1)+1 =

F2(n−1) +F2(n−1)+1 = F2n−2 +F2n−1 = F2n. The second equality follows by induction and the
last by the Fibonacci recurrence (and the others are elementary algebra). Thus by induction
the formula holds for n = 1, 2 . . ..

7. Prove that the Arithmetic-Geometric mean inequality implies the Geometric-Harmonic mean
inequality. That is, for positive numbers y1, y2, . . . , ym the inequality
y1+y2+···+yn

n
≥ (y1y2 · · · yn)1/n implies (y1y2 · · · yn)1/n ≥ n

1
y1

+ 1
y2

+···+ 1
yn

.

Hint - think about reciprocals.

For all of the following we assume that the xi and yi are positive numbers. Use the
Arithmetic-Geometric mean inequality x1+x2+···+xn

n
≥ (x1x2 · · · xn)1/n to show the Geometric-



Harmonic mean inequality (y1y2 · · · yn)1/n ≥ n
1

y1
+ 1

y2
+···+ 1

yn

. Let xi = 1
yi

for i = 1, 2, . . . , n.

Then applying the Arithmetic-Geometric mean inequality substituting xi = 1
yi

we get
1

y1
+ 1

y2
+···+ 1

yn

n
≥

(
1
y1

1
y2
· · · 1

yn

)1/n

. Cross multiplying yields (y1y2 · · · yn)1/n ≥ n
1

y1
+ 1

y2
+···+ 1

yn

.

8. Derive a formula for
∑n

i=1 i3 as follows. Note that n4 =
∑n

i=1 (i4 − (i− 1)4) and then expand
the (i − 1)4 term. The expression being summed now has terms involving i, i2, i3. Use known
formulas for

∑n
i=1 i2,

∑n
i=1 i,

∑n
i=1 1 to get a formula for

∑n
i=1 i3.

Use the properties of a telescoping series for the first equality and the expansion of (i−1)4 to
get n4 =

∑n
i=1 (i4 − (i− 1)4) =

∑n
i=1 (i4 − (i4 − 4i3 + 6i2 − 4i + 1)) = 4

∑n
i=1 i3−6

∑n
i=1 i2+

4
∑n

i=1 i − ∑n
i=1 1. Then moving terms and substituting

∑n
i=1 1 = n,

∑n
i=1 i = n(n+1)

2
,∑n

i=1 i2 = n(n+1)(2n+1)
6

we get 4
∑n

i=1 i3 = n4 + 6 (n)(n+1)(2n+1)
6

− 4 n(n+1)
2

+ n = n4 + n(n +
1)(2n + 1) − 2n(n + 1) + n = n(n3 + (2n2 + 3n + 1) − (2n + 2) + 1) = n(n3 + 2n2 + n) =

n2(n2 + 2n + 1) = n2(n + 1)2. Thus
∑n

i=1 i3 = n2(n+1)2

4
.


