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Consider a system of linear equations Ax = b that has no solutions. In the text this is called
incompatible and a single equation is inconsistent if it is 0 = c where c is a constant not equal
to 0. We will refer to a system with no solution as inconsistent. The text comments that in
such a situation ‘there is nothing else to do.’ One thing that might be done is to look for a
‘best’ approximation to a solution. Generally ‘best’ refers to an x that is closest to being a
solution under some method of measuring closeness. In Chapter 4 there is discussion of the
least squares problem which is one such approach.

Another thing that we may want to do if there is no solution is to provide some certificate
of this fact. This is essentially the same as asking if there is a theorem characterizing when
a system of linear equations has a solution. One such result, sometimes called Fredholm’s
Alternative and also called the Theorem of the Alternative for linear systems is given in
section 5.7. The statement there is: ‘The linear system Ax = b has a solution if and only if b
is orthogonal to the cokernal of A.’ A second version of this which does not require the extra
terminology is given after this statement. We can write this as:

Theorem of the Alternative: ‘The linear system Ax = b has a solution if and only if
yT b = 0 for every column vector y such that yT A = 0.’

A geometric view is hidden in these statements. Consider ‘only if’: (yT b = 0 for every column
vector y such that yT A = 0) ⇒ (Ax = b has a solution). The contrapositive of this is: Not
(Ax = b has a solution) ⇒ Not (yT b = 0 for every column vector y such that yT A = 0).
This is: if Ax = b is inconsistent then there exists a yT such that yT A = 0 and yT b 6= 0.
A solution to Ax = b gives a way of writing b as a linear combination of the columns of A.
That is, b can be written as a sum of scalar multiples of the columns of A. When there is no
solution, the alternative states that there is a vector y that is orthogonal to each column of
A but not orthogonal to b.

For example consider
2x1 + x2 = b1

x1 − 3x2 = b2

3x1 + 3x2 = b3

. This is




2
1
3


 x1 +




1
−3

3


 x2 =




b1

b2

b3


. The

column vectors




2
1
3


 and




1
−3

3


 span a plane 12x − 3y − 7z = 0 in <3. If b is in the

plane then the system has a solution. For example it is easy to check that b =




1
11
−3


 is in

the plane, corresponding to
2x1 + x2 = 1
x1 − 3x2 = 11

3x1 + 3x2 = −3
having a solution x1 = 2, x2 = −3.

Alternatively, b =




2
11
−3


 is not in the plane. The equation for the plane gives us a



normal vector




12
−3
−7


, which is orthogonal to every vector in the plane. Corresponding to

this, taking the system
2x1 + x2 = 2
x1 − 3x2 = 11

3x1 + 3x2 = −3
and multiplying the first equation by 12, the

second by -3 and the third by -7 and combining the resulting equations yields 0x1 +0x2 = 12.
Since 0 6= 12 the system must be inconsistent.

Restating the Theorem of the alternative again, using the contrapositive as above we have:

Theorem of the Alternative for systems of linear equations: Exactly one of the following holds:
(I) Ax = b has a solution x
(II) yT A = 0, yT b 6= 0 has a solution y.

We can already prove the Theorem of the Alternative using what we know from chapter 1.

Proof of the Theorem of the Alternative: If x̂ satisfies (I) and ŷ satisfies (II) then
0 = 0T x̂ = (ŷT A)x̂ = ŷT (Ax̂) = ŷT b̂ 6= 0.
So both cannot hold.

Consider a factorization PA = LU where P is a permutation matrix, L is lower triangular
with the diagonal entries equal to 1 and U is in row echelon form. Such a factorization can be
found using Gaussian elimination. Observe that L is nonsingular. We can see this in several
ways: Gaussian elimination allows pivots on each diagonal entry since they are nonzero or the
determinant is 1 or forward substitution yields solutions to Lc = b for all b.

To solve Ax = b look at PAx = Pb which is L(Ux) = Pb. Since L is nonsingular we can
solve Lc = Pb with c = L−1Pb. We then try to solve Ux = c. We can solve this using back
substitution unless there is a row of U which is all 0’s with the corresponding entry of c not
zero. That is, the system Ux = c, which is equivalent to Ax = b contains an equation 0 = ci

for some ci 6= 0 so there is no solution. If this is the ith row let ỹT be the ith row of L−1P .
Then ỹT A is the ith row of L−1PA = U so it is 0T and ỹb is the ith entry ci of L−1Pb = c
which is not zero. 2

We next give an example to illustrate this



Let A = LU with

A =




3 9 3 7 −1 3
1 3 6 4 9 4
1 3 0 2 −1 1

−2 −6 6 −2 8 −1


 U =




1 3 0 2 −1 1
0 0 3 1 2 0
0 0 0 0 2 1
0 0 0 0 0 0




L =




1 0 0 0
3 1 0 0

−2 2 1 0
1 2 3 1


 L−1 =




1 0 0 0
−3 1 0 0

8 −2 1 0
−19 4 −3 1


 P =




0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0




Also let

x =




x1

x2

x3

x4

x5

x6




b′ =




11
23
1

16


 b′′ =




11
24
1

16


 .

Consider both Ax′ = b′ and Ax′′ = b′′. We have Pb′ =




1
11
16
23


 and Pb′′ =




1
11
16
24


.

Solving Lc′ = Pb′ and Lc′′ = Pb′′ we get c′ =




1
8
2
0


 and c′ =




1
8
2
1


.

Then using back substitution to solve Ux′ = c′ we get for any real numbers r, s, t


x′1
x′2
x′3
x′4
x′5
x′6




=




2
0
2
0
1
0




+




−3
1
0
0
0
0




r +




−2
0

−1/3
1
0
0




s +




−3/2
0

1/3
0
0
1




t.

Now Ux′′ = c′′ includes the inconsistency 0 = 1 in the last row. So there is no solution. The
4th row of L−1P is y′′T =

(
4 1 −19 −3

)
. We note that y′′T A =

(
0 0 0 0 0 0

)

and the 4th entry of y′′T b′′ is 1. This shows that the original system is inconsistent.


