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Abstract

A ranking on a graph is an assignment of positive integers to its vertices such that any path between
two vertices of the same rank contains a vertex of strictly larger rank. A ranking is locally minimal if
reducing the rank of any single vertex produces a non ranking. A ranking is globally minimal if reducing
the ranks of any set of vertices produces a non ranking. A ranking is greedy if, for some ordering of
the vertices, it is the ranking produced by assigning ranks in that order, always selecting the smallest
possible rank. We will show that these three notions are equivalent. If a ranking satisfies one property
it satisfies all three. As a consequence of this and known results on arank numbers of paths we improve
known upper bounds for on-line ranking.

1 Introduction

A ranking on a graph is an assignment of positive integers to its vertices such that any path between two
vertices of the same rank contains a vertex of strictly larger rank. A ranking is locally minimal if reducing
the rank of any single vertex produces a non-ranking. A ranking is globally minimal if reducing the ranks
of any set of vertices produces a non-ranking. A ranking is greedy if, for some ordering of the vertices, it is
the ranking produced by assigning ranks in that order, always selecting the smallest possible rank. We will
show that these three notions are equivalent. If a ranking satisfies one property it satisfies all three.

The rank number of a graph is the minimum size of a largest label among all rankings. Such a ranking
will necessarily be minimal. Ranking was introduced in [5] motivated by separator trees and VLSI layout.
The arank number of a graph is the maximum size of a largest label among all minimal rankings. The
arank number was introduced in [4] using locally minimal as the definition of minimal. For on-line ranking,
the vertices are presented in some order and a rank is assigned to each vertex in turn based only on the
information from the previously presented vertices. For each choice of an on-line algorithm to assign the
ranks, there is a worst case ordering, producing the largest label among all possible orderings. An algorithm
that minimizes this worst case label is optimal and this value is called the on-line ranking number. On-line
ranking was introduced in [10]. Given the equivalences above the arank number is the largest label for the
worst ordering when the greedy algorithm is used. Hence the arank number is an upper bound for the online
ranking number. Clearly the ranking number is a lower bound for on-line ranking number. As noted above,
using known result for aranking we give slight improvements to known upper bounds for online ranking paths
and cycles.

The path condition applied to edges shows that rankings are proper colorings. For ordinary graph coloring
we can similarly consider locally minimal, globally minimal, and greedy colorings by replacing ‘rank’ with
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‘color’ and ‘ranking’ with ‘proper coloring’. The equivalence of globally minimal and locally minimal in this
case is clear, if reducing the colors on a set of vertices produces a coloring then reducing only a vertex whose
original color was among the smallest also produces a proper coloring. The equivalence of minimal and
greedy for coloring is also fairly straightforward. This seems to have first been shown in [3]. For rankings
we need to work a little harder to show the equivalences as we need to consider all paths whose ends have
the same rank that contain a vertex whose rank has been reduced.

2 Notions of Minimality

We first introduce some basic notation formalizing the descriptions given in the introduction.

If G is a simple, undirected graph, a labeling f : V — Z% is a ranking if f(u) = f(v) implies that every
u — v path contains a vertex w such that f(w) > f(u). A ranking f is locally minimal if for all u € V(G),
a labeling ¢ satisfying g(v) = f(v) when u # v and g(u) < f(u), is not a ranking. A ranking f is globally
minimal if a labeling ¢ satisfying g(v) < f(v) for all v with at least one strict inequality is not a ranking.
Using the order f < g if and only if f(v) < g(v) for every v € V(G) we note that f is globally minimal
exactly it is minimal with respect to <.

Given a ranking f on G, a vertex s of G is a drop vertex of order k for f iff the function f* defined by

[ (s):=f(s)—k and f*(v):=f(v)forallv#s inV

is again a ranking. In this case, we will call f* a drop of f. Using this notion, a ranking is locally minimal
exactly when it has no drop vertex.

The equivalence of locally minimal and globally minimal rankings was first stated in [6] with the proof
deferred to an unpublished manuscript [7]. We include the proof here for completeness.

Theorem 1 Let f be a ranking on a graph G = (V, E). Then f is locally minimal if and only if it is globally
manimal.

Proof. That every globally minimal ranking is locally minimal is immediate from the definitions. To
show the converse we will show if f is not globally minimal then it is not locally minimal by showing that if
g is a ranking with g < f and g # f, then there is a drop f* of f with g <X f* < f.

Consider the set of differing vertices D := {v € V : g(v) < f(v)}. Let m = min{f(v) : v € D}. Let s be
a vertex in D such that f(s) = m. We shall show that s is a drop vertex of order k := f(s) — g(s). Indeed,
define the function f* by

[ (s):==g(s) and f*(v):=f(v) forallv#s inV

We must show that f* is again a ranking. Let u # v be vertices of G with f*(u) = f*(v), and let P be a
path between u and v. We must show that P contains a vertex w with f*(w) > f*(u). First suppose that
neither u or v is s, and note that f(u) = f*(u) = f(v) = f*(v). Since f is a ranking, there is a w on P with
f(w) > f(u) = f(v). If w # s, we are done since f*(w) = f(w) > f(u) = f*(u). Thus suppose w = s. Then
f(s) > f(u) = f(v), so by the minimal choice of m and s, it follows that f(u) = g(u) = g(v) = f(v). Since g is
aranking, there is a vertex  on P with g(z) > g(u) = g(v). If & = s, then f*(z) = g(z) > g(u) = f(u) = f(v)
as desired. If z # s, then f*(z) = f(x) > g(x) > g(u) = f(u) = f(v) as desired.

Hence we may assume without loss of generality that u = s. Then f(v) = f*(v) = f*(s) = g(s) < f(s).
By the minimal choice of m and s, it follows that f(v) = g(v). Since g is a ranking and g(s) = g(v), there
must be a vertex w on P with g(w) > g(s). Thus since w # s, we have

fr(u) = g(s) < g(w) < f(w) = f*(w)



as desired. Therefore f* is a ranking and hence a drop of f with g < f* < f. m

We can now refer to without specifying locally or globally. However we will continue to do so in order to
make clear what we are assuming in the proofs.

3 Minimal = Greedy

We now prove that minimal rankings are greedy. It is convenient to use globally minimal rather than locally
minimal. The proof that greedy rankings are globally minimal can easily be used to also show that they are
locally minimal. However, for the converse it seems that we need to use globally minimal rather than locally
minimal or else the proof also needs to essentially include the proof of Theorem 1.

We will use the fact that a ranking restricted to an induced subgraph is a ranking of the induced subgraph.
We will also use a special case of a basic lemma from [4]: two vertices with the largest rank must be in different
components as any path connecting them would not contain a vertex of larger rank.

Theorem 2 Let f be a ranking on a graph G = (V, E). Then f is greedy if and only if it is globally minimal.

Proof. Only if: Index the vertices so the greedy algorithm applied to the ordering vy, vo, ..., v, produces
the ranking f. If f is not globally minimal consider g < f and let ¢ be the smallest index with g(v;) < f(v;).
Since g is a ranking of the subgraph induced by {vi,vs,...,v;} and g(v;) = f(v;) for j =1,2,...,i—1 the
greedy algorithm could have assigned v; the rank g(v;), contradicting the assumption that the the greedy
algorithm yields the ranking f on this ordering.

If: Consider f which is globally minimal. Select any indexing of the vertices so that f(v;) < f(v;)
whenever ¢ < j and apply the greedy algorithm to the ordering vy, v, ..., v,. Let g be the resulting ranking.
We will show that g = f. Then since f is globally minimal we will have g = f, showing that f is greedy.

If g £ f, let i be the smallest index such that g(v;) > f(v;). Since the greedy algorithm could not assign
the rank f(v;) to v; there must be a vertex v; with j < ¢ and g(v;) = f(v;) such that there is a v; — v; path
in the subgraph induced by {v;,vs,...,v;} containing no vertices given rank greater than f(v;) by g. By
the choice of i we have f(vy) = g(vx) for k = 1,2,...,i— 1. So f(v;) = f(v;) and there is a path in the
subgraph induced by {v1, va,...,v;} containing no vertices given rank greater than f(v;) by f. Since v; and
v; are in the same component of the subgraph induced by {v1,vq,...,v;}, they cannot have largest rank. So
fok) > f(vi) = f(v;) for some k € {1,2,...,i}. But this contradicts the selection of the indexing. m

4 Upper bounds for the on-line ranking number

We use the following notation: x,(G) for the ranking number of G, ¥,.(G) for the arank number of G and
X:(G) for the on-line ranking number of G.

As noted in the introduction, our results show that the arank number provides an upper bound on the
online ranking number and the ranking number is a trivial lower bound. With our notation this becomes

Corollary 3 For any graph G, x»(G) < x:(G) < . (G).

A problem of interest is to determine the on-line ranking number of paths P,, and cycles C,, on n vertices.
The arank number of paths was determined as ¢, (P,) = [logy (n + 1)] + |logy (n 41 — (2U°g2 "J_l))J in
[9]. For cycles, it was shown in [8] that ,.(C},) either equals ¥,.(P,) or ¥,.(P,) + 1.

Corollary 4 x}(P,) < ¢,(P,) = |logy (n+ 1)] + |log, (n + 1 — (2les2n=1)) |
Ur(Cn) < 4n(Po) + 1= |logy (n+1)] + [logy (n+1— (2Los2"171)) | 4 1.



Corollary 4 improves on the bounds x*(P,) < 2 |logyn| + 1 and x}(C,) < 2 |logyn| + 1 from [1] when
n > 16

The best lower bounds for online ranking paths and cycles are 1.619logon — 1 < xX(P,) [2] and
|logy (n + 1) < x*(Cy) when n = 2% and [log, (n+ 1)] + 1 < x3(C,,) when n # 2% [1]
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