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Relax ‘less than’
I (Bounded) Tolerance Orders - a ≺ b if the interval for a is

‘below’ the interval for b and the overlap is ‘small enough’

I Equivalently - Tolerance Orders represented by ‘less than’
on a set of parallelograms with base on two lines

I There are many variations on tolerance orders/graphs

I Tolerance graphs are intersection graphs with tolerances.
When there is a natural ordering they correspond to
tolerance orders

I Bogart wrote a half dozen papers on tolerance
graphs/orders
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� Replace parallelogram with
trapezoids to get interval
dimension 2 orders (intersection
of 2 interval orders)

N Bogart suggested extending
bounded tolerance orders
(parallelogram orders) to other
geometric figures and ‘more
lines’. Results by Bogart and his
students Ryan, Laison, Balof

≺ These problems can be viewed
as investigating when a given
order is a suborder of an
(infinite) ordered set described
by geometric objects.
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Restrictions on Intervals

Question posed by Bogart at a conference in 1989:

Given an interval order with specified bounds for each element
is there an interval representation using intervals with integral
endpoints and lengths within the specified bounds?

I Bogart’s motivation: Interval orders can model intervals in
time for scheduling, seriation etc
This talk does not begin at 10:31.41597 and last 27.1828
minutes

I Does also suggest interesting mathematics questions as a
measure of how ‘complex’ an order is
Question: Are there bounds on the dimension of interval
orders depending on bounds on interval lengths?
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events might be scheduled ‘long’ and have tolerance for
overlap.

I He also considered forcing ‘gaps’. Similar to tolerance but
with max tolerance rather than min. Models did not work.

I Question - is there an interesting ‘gap’ model

I Bogart’s motivation for generalizations of parallelogram
model more mathematical
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Question posed by Bogart at a conference in 1989:

Given an interval order with specified bounds for each element
is there an interval representation using intervals with integral
endpoints and lengths within the specified bounds?

Related questions investigated by (at least)

Fishburn (and Graham) 1983-1985: Bounded non-integral
endpoints, minimize number of lengths, graphs

Bogart and Stellpflug 1989: semiorders, minimum interval
length

Isaak 1990,1993: Bogart’s question

Pirlot 1990,1991: semiorders, minimum overall length

Mitas 1994: semiorders, minimum interval length

Pe’er and Shamir 1997: graph versions

Myers 1999: interval orders, minimum overall length
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endpoints and lengths within the specified bounds?

Create variables for left and right endpoints: l(x), r(x)

I x ≺ y ⇒ r(x) + 1 ≤ l(y)
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minimize maximization to minimize overall length, total
length of intervals etc.

• Use Farkas’ Lemma/Theorem of the Alternative for
necessary and sufficient conditions
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shortest paths in a related digraph

• ‘Characterizations’ in terms of no negative cycles in the
digraph translates to statements about the order

• Minimal forbidden suborders - harder in general

• With no upper bounds on length ⇒ proof of interval order
representation theorem (if and only if no 2 + 2)

• Graph versions:
• ‘Equivalent’ if lower bounds are all the same
• NP-hard if variable lower bounds
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Minimal forbidden suborder lists:

I Non-discrete case (arbitrary endpoints)
• represent with 1 ≤ length ≤ k if and only if no 2 + 2

and 1 + (k + 2)
• For rational q; represent with 1 ≤ length ≤ q has a

finite forbidden suborder list
• For irrational r ; represent with 1 ≤ length ≤ r has a

infinite forbidden suborder list
I Discrete case (integral endpoints) for semiorders,

represent with intervals of length k . Can describe minimal
forbidden suborders. Number of forbidden suborders is the
Catalan number 1

k+1

(2k
k

)
.

(non-discrete case covered by length 1 via scaling)
I Discrete case (integral endpoints)

• represent with 0 ≤ length ≤ k has a finite forbidden
suborder list, minimal forbidden order list is ugly

• represent with 1 ≤ length ≤ k has a infinite forbidden
suborder list
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Other Ground Sets
Question posed by Bogart:

Investigate orders based on intervals in other orders

I Investigated by Bogart, Bonin and Mitas (1994) and Mitas
(1995)

I Bogart’s motivation - ‘Consider, for example the scheduling
of meetings in rooms some distance apart with a discrete
set of stopping and starting times, say every fifteen
minutes. We can postulate that someone can travel from
one room to another in one time period, but cannot
participate in two meetings, one of which ends when the
other starts , unless they are in the same room.’

I Another motivation - compact representations of ordered
sets.

I Example above - ground set is weak orders. Question:
what if in addition bounds are placed on interval lengths?
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Other Ground Sets
Question posed by Bogart:

Investigate orders based on intervals in other orders

Order P is a Q based interval order:
Represent x and y by [l(x), r(x)] and [l(y), r(y)] and put
x ≺P y if and only r(x) �Q l(y)
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Other Ground Sets
Question posed by Bogart:

Investigate orders based on intervals in other orders

Bogart, Bonin and Mitas (1994) showed that P can be
represented by intervals in a weak (2 + 1 free) order if and only
if P does not contain a 3 + 2, N + 2, 6-element fence or a
6-element crown.
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Question posed by Bogart:

Investigate orders based on intervals in other orders

I Mitas (1995): forbidden suborder lists for interval orders in
interval (2 + 2 free) orders (list of 37 forbidden suborders);
and N free orders (list of 5 forbidden suborders).

I Based on result of Duffas and Rival on
Dedekind-MacNeille completion



Background Interval Restrictions Ground Set Extensions

Other Ground Sets

Question posed by Bogart:

Investigate orders based on intervals in other orders

I Mitas (1995): forbidden suborder lists for interval orders in
interval (2 + 2 free) orders (list of 37 forbidden suborders);
and N free orders (list of 5 forbidden suborders).

I Based on result of Duffas and Rival on
Dedekind-MacNeille completion



Background Interval Restrictions Ground Set Extensions

Conclusion

Bogart asked a number of interesting questions based on
generic ideas of ‘intervals’ in ‘orders’ which resulted in work by
a number of people
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