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and hence that
k. inst‘“cs C ser.

This shows us how we can construct a serial relation from any
relation of the same sort as complete succession; or, indeed, from
any relation agreeing with it in only one respect.

%01 F.iost“R {R|R,|R G R} Cser.
Proof.
Tt is easy to show that
F:ainst‘PB.=.
— —
a=p'P . B=p'P“B.(Hzy).zca.yef.aPy (1)
from the definitions of inst and 7. From this we can deduce
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Also, we find from (1) that
F:ainst‘PB. Binst‘Py.D.
— - -
uzp‘Pu“aiﬂgp‘Pn“ﬁ")':P‘ !e{"y'
(qw, g, u,v) .z ea.y,ueB.vey.oPy.uPv.
This implies
F:ainst‘PR. Bivst‘Py.D.
- -
a=p'P“a.ry=p'P,y.(qz,v) . zea.vey.aoP | Py | Pu

This, together with (1), gives us
| F.inste“R (B | R, | B G R) C trans 3)

Ry +he definiticane af tnet and +- we frd +hat
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Norbert Wiener (1894 - 1964)

e PhD from Harvard 1913 (age 18)
e Went to work with Bertrand Russell in Cambridge

Wrote 3 papers on the theory of measurement in psychology

Moved on to other areas of mathematics

Papers lost, results reporved 1960's

Papers rediscovered in 1990's by Fishburn



e Bertrand Russel and Alfred North Whitehead:
Principia Mathematica (1910-1913)

e Attempt to develop all of mathematics from basic axioms

e Doomed in 1931 by Godel's Incompleteness Theorem
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Dem.
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Pl l=Fflay).yeé.E—t'yel]
[#548] =2.3F.Prop

The above proposition is occasionally useful. It is used at least three
times, in #113'66 and %120°123472.
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A Contribution to the Theory of Relative Position*. By NORBERT
WieNER, Ph.D. (Communicated by Mr G. H. Hardy.)

[Received 14 March 1914.]

The theory of relations is one of the most interesting depart-
ments of the new mathematical logic. The relations which have
been most thoroughly studied are the series: that is, relations
which are contained in diversity, transitive, and connected or, in
Mr Russell’s symbolism, those relations R of which the following
proposition is true:

RGJ.RGR.RuRwI[C“R=CRTCR.

Cantor, Dedekind, Frege, Schroder, Burali-Forti, Huntington,
Whitehead, and Russell, are among those who have helped to
give us an almost exhaustive account of the more fundamental
properties of series. There is a class of relations closely allied to
series, however, which has received very scant attention from the
mathematical logicians. Examples of the sort of relation to which
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5. In conclusion, let us consider whab bearing all this work of ours
can bave on experimental psychology. One of the great defects under
which the latter science at present labours is its propensity to try to answer
questions without first trying to find out just what they ask. The experi-

mental investigation of Weber’s law is a case in point: what most experi-
menters do take for granted before they begin their experiments js
infinitely more important and interesting than any results to which their
experiments lead. Oue of these unconscious assumptions is that sensa-
tions or sensation-intervals can be measured, and that this process of
measurement can be carried out in one way only. As a result, each new
experimenter would seem to have devoted his whole energies to the in-
vention of & method of procedure logically irrelevant to'evarything that
had gone before : one man asks his subject to state when two intervals
between sensations of a given kind appear different; another bages his

whole work on an experiment where the observer’s only problem is to
divide a given colour-interval into two equal parts, and so on indefinitely,
while even where the experiments are exactly alike, no two people choose
quite the same method for working up their results. Now,. it we make- a
large number of comparisons of sensation-intervals of a given sort with
reference merely to whether one seems larger than another, the methods
of measurement given in this paper indicate perfectly unambiguous ways
of working up the results so as to obtain some quantitative law such as

that of Weber,[ without introducing such bits of mathematical stupidity as

treating & “just noticeable difference™ as an “infinitesimal,” and have
the further merit of always indicating some tangible mathematical conclu-
sion, no matter what the outcome of the comparisons may be.

MassacruseTTs INsTITUTE oF TECHNOLOGY.




R. Duncan Luce Example (1956) from Econometrica

OO0 o

Add one grain of sugar at a time

Cannot distinguish between consecutive cups

Can distinguish first and last

Indifference is not transitive!



Reference to Petri
1899

The traveling salesman meets the traveling archaeologist.

ALAN SHUCHAT
Wellesley College
Wellesley, MA 02181

An important part of an archaeologist’s work is to assign dates to finds, or deposits. For
example, the deposits may be graves in a prehistoric cemetery or strata in a trench dug at the site
of an ancient settlement. The deposits may contain artifacts such as pottery, jewelry, or tools.
Under very fortuitous circumstances, an inscription or other unambiguous characteristic of an
artifact literally labels the deposit with a date. However, such luck is not common, and so
archaeologists use mathematical and statistical techniques to help solve the problem of dating
deposits. This article describes the fairly recent development of the use of matrices and networks
to solve an ordering problem of particular interest to archaeologists called the seriation problem,
and illustrates these techniques with two examples from the archaeological literature. These same
ideas have been successfully applied in genetics, psychology, and management. Most of the work
discussed is due to D. G. Kendall, E. M. Wilkinson, and G. Laporte, but the formulations and
proofs supplied here are generally simpler than the original ones. An extensive survey of the
problem from an archaeologist’s point of view appears in [22], and an overview of the application
of mathematics to archaeology can be found in [6], [11], and [3].

(S

The seriation problem

When archaeological deposits cannot be dated by deciphering inscriptions or applying physical
or chemical techniques, but the deposits appear in stratifications, they may at least be placed in
chronological order (a seriation). However, a site may have only partial stratification or none at
all. In such cases, the archaeologist tries to order the deposits according to how their contents are
related. For example, jewelry found in the deposits may show some progression of sophistication
in manufacturing technique or style of decoration, and it is natural to associate this with a
chronological ordering.

We will consider a collection of deposits containing artifacts that have been sorted into types
by considering function, materials, shape, workmanship, style of decoration, etc. For example, a
type may consist of all bronze anklets decorated with a certain arrow motif. We assume that

(a) each type corresponds to a time interval during which it was present, and

(b) each deposit corresponds to a point in time when it was formed (or at least to a time
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Intervals
Psychophysics
- just noticeable difference

Seriation in archeology
Scheduling events
DNA sequencing

Interval Order

Interval Graph
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Intervals Interval Order

Given an order can we test if it is an interval Order? |
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Intervals Interval Order

Algorithm for testing if an order has an interval representation:
Check all possible orderings of endpoints

Check:
/1 /4/5 rarn /2 Is /6 r3 /3 r3re
/1 rn I4/5I’4/2 r5/6r3I3 r3re

lahlalsrabrslgrslsrsrg

With 6 elements, check 12—26' = W = 7,484,400 orderings



If 37 elements: How long to test all ;—?7! orderings?
1 second on my computer?
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o 1 hour on my computer?
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If 37 elements: How long to test all ;—?7! orderings?
« 1 second on my computer? NO
1 hour on my computer? NO

« 1 hour on all computers in this room?



If 37 elements: How long to test all ;—?7! orderings?
« 1 second on my computer? NO

1 hour on my computer? NO

« 1 hour on all computers in this room? NO



If 37 elements: How long to test all ;—?7! orderings?

« 1 second on my computer? NO
1 hour on my computer? NO
« 1 hour on all computers in this room? NO

1 hour on all computers in the world?



If 37 elements: How long to test all ;—?7! orderings?

« 1 second on my computer? NO
1 hour on my computer? NO
« 1 hour on all computers in this room? NO

« 1 hour on all computers in the world? NO



If 37 elements: How long to test all ;—?7! orderings?

Can NOT test quickly
with all the computers in the world!




If 37 elements: How long to test all ;—?7! orderings?

Can NOT test quickly
with all the computers in the world!

True



If 37 elements: How long to test all ;—2‘7! orderings?

Can NOT test quickly
with all the computers in the world!

True
Also true that Bill Gates is worth at least $1, but ...



| . . .
Check % orderings for interval representation

UNIVERSE-ALL computer:

All of the atoms in the known universe checking 100 billion
orderings per second



| . . .
Check % orderings for interval representation

UNIVERSE-ALL computer:

All of the atoms in the known universe checking 100 billion
orderings per second

Still not done checking all possibilities for this instance



| . . .
Check % orderings for interval representation

UNIVERSE-ALL computer:

All of the atoms in the known universe checking 100 billion
orderings per second

Still not done checking all possibilities for this instance

Use mathematical tools to make the check faster
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Intervals??

Interval Order



Intervals?? Interval Order

Lemma

Interval Order = NO 2 + 2




Intervals?? Interval Order

Lemma

Interval Order = NO 2 + 2

Theorem (Wiener 1914, Fishburn 1971)
Interval Order < NO 2 + 2




Theorem (Wiener 1914, Fishburn 1971)
Interval Order < NO 2 + 2

o Fast algorithm to test if there is an interval
representation:
Check all size 4 subsets to see if any is a 2 + 2

o Millions of elements in a fraction of a second

o BUT: this doesn't provide a representation



Theory of Relative Position. 445

and hence that
F . instfcs C ser.

r This shows us how we can construct a serial relation from any
- relation of the same sort as complete succession; or, indeed, from
any relation agreeing with it in only one respect

*01. F.inst“R {R|Rs | R G R} Cser.
Proof.
It is easy to show that
Frainst‘’PR.=.

—> -
a=p'Pa.B=pP. “B.(qz,y) . zca.yeB.aPy (1)

WT L ﬁmN @Tﬁt z]ﬁ_‘l_-l-hﬁl’l\/l P"Fan deduce

alnst‘P B=pP“B.(qz,y) . zea.yeB.~xzP,y,

g ce iF)n of P, xP y and 2P,y are incompatible.
his ‘reduce to

Frainst’PB.D.R= p‘P SB(x) . zea. ~('1:ep‘Pse“/8)

. from which we can deduce

TH




Model Interval Order using Inequalities

h<n n<h notrn <h 2v3
h<n n<h not 3 < b

1
h<r
Rewrite as:
n —/2 S —€
r —h < —e€
— +/3 < 0
y —r3 <0
/1 —n S 0
h —n <0
kb —rn <0



We can represent an an order with intervals
=
Particular system of inequalities has a solution

Extends to:

« Constraints on interval length
e Minimize number of distinct endpoints
e Minimize ‘support’ length

(if all lengths non-trivial)

o Partial information on ordering



WAIT

o We added ‘minimize’ to a system of inequalities
o Can we do that?

o Yes ......
max 3x+4y+7z max 3x+4y+7z
x+ y—2z= 1 x+ y— z< 1
—2x+ y—3z=-3 —2x+ y—3z<-3
x—=5y+9z= 2 x—=b5y+4+9z< 2
Uninteresting Interesting
Why?? Nobel Prize

in Economics



Which has a solution?

x+ y—2z< 1 x+ y— z<
—2x+ y - 3z< -3 —2x+ y-3z<—
x—=5by+9z< 2 x—by+9z<

1
3
2



Which has a solution?

X+ y—2z25 1 x+ y— z< 1
—2x+ y - 3z< -3 —2x+ y-3z<-3
x—=5by+9z< 2 x—=by+4+9z< 2

Has a solution
for example x =1,y =2,z=1



Which has a solution?

x+ y—2z< 1 x+ y— z< 1

—2x+ y - 3z< -3 —2x+ y-3z<-3

x—=5by+9z< 2 x—=by+4+9z< 2
Has a solution Has no solution

for example x =1,y =2,z=1



Which has a solution?

x+ y—2z< 1 x+ y— z< 1

—2x+ y - 3z< -3 —2x+ y-3z<-3

x—=5by+9z< 2 x—=by+4+9z< 2
Has a solution Has no solution

for example x =1,y =2,z=1 Why not?



x4+ y— z< 1
—2x+ y - 3z< -3
x =5y +9z< 2

Has no solution



x4+ y— z< 1
—2x+ y - 3z< -3
x =5y +9z< 2

Has no solution

3( x+y—z< 1
2( —2x+ y—3z<-3
1( x—5y+9z< 2



Show

x4+ y— z< 1
—2x+ y - 3z< -3
x =5y +9z< 2

Has no solution

3( x+y—2z< 1
2( —2x+ y—3z<-3 —
1( x—5y+9z< 2



Show

x4+ y— z< 1

—2x+ y - 3z< -3

x—5/4+9z< 2

Has no solution
3( x+ y— z< 1 3x+3y —3z< 3
> —4x + 2y — 6z < —6
2( —2x+ y—3z<-3 :> x—5§//+9z§ 5

<

1( x—5y+9z< 2 Ox + 0y + 0z

—1



Show

x+ y— z< 1

—2x+ y - 3z< -3

x—5/4+9z< 2

Has no solution
3( x+ y— z< 1 3x+3y —3z< 3
2( —2x+ y—3z<-3 — _4§t%§/,18§§_8
1( x—b5y+9z< 2 Ox + 0y + 0z < —1

There is no solution

Else 0 < —1



Show

x+ y— z< 1
—2x+ y - 3z< -3

x—5/4+9z< 2

Has no solution
3( x+y—z< 1 3x+3y:3z§_3
2( —2x+ y—3z<-3 — _4§ * %i/, + 8? é g
1( x—b5y+9z< 2 Ox + 0y + 0z < —1
There is no solution
Else 0 < —1

u=3,v=2 w=1Iis a certificate of inconsistency



Lemma (Farkas’ Lemma 1906)
A system of inequalities has a solution
& It is not inconsistent

Ax < b has a solution
oryA=0, y >0, yb <0 has solution




Can we extend Farkas’ Lemma to Optimization?

max 7x —2y + =z

x4+ y—2z<
—2x+ y - 3z< -3
x =5y +9z< 2

So max is at most 8
Aim is to find best multipliers
Called Shadow Prices/Lagrange Multipliers
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Can we extend Farkas’ Lemma to Optimization?

max 7x —2y + =z

x4+ y—2z<
—2x+ y - 3z< -3
x =5y +9z< 2

7( x+ y-2z< 1
1( —2x+ y—3z<-3 :>
2( x—5y+9z< 2
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Can we extend Farkas’ Lemma to Optimization?

max 7x —2y + =z

x+ y—2z<
—2x+4+ y -32<-3
x—5y+79z+§ 72 lay < 7
7( x+ y-2z< 1 o V352
< ) — 3z< -3
1(—2x+ y-3z5-3) = T2
2( x=5y+9z< 2 x— 2y+ z< 8

So max is at most 8
Aim is to find best multipliers
Called Shadow Prices/Lagrange Multipliers
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(Fundamental Theorem of Linear Programming Duality)

Min = Max




Linear Programming fast facts

e Name from ‘Program of resource Allocation’

Before computer programs existed
e George Dantzig developed Simplex Method for solutions 1947
e 1975 Nobel Prize in Economics

to Kantorovitch and Koopmans

Koopmans threatened to boycott since Dantzig not included
e One of the most used algorithms today




Dantzig quote:

It happened because during my first year at Berkeley | arrived late one day at one
of [Jerzy] Neyman's classes. On the blackboard there were two problems that |
assumed had been assigned for homework. | copied them down. A few days later |
apologized to Neyman for taking so long to do the homework — the problems
seemed to be a little harder than usual. I asked him if he still wanted it. He told me
to throw it on his desk. I did so reluctantly because his desk was covered with such
a heap of papers that | feared my homework would be lost there forever. About six
weeks later, one Sunday morning about eight o'clock, [my wife] Anne and | were
awakened by someone banging on our front door. It was Neyman. He rushed in
with papers in hand, all excited: "I've just written an introduction to one of your
papers. Read it so | can send it out right away for publication." For a minute | had

no idea what he was talking about. To make a long story short, the problems on the
blackboard that | had solved thinking they were homework were in fact two
famous unsolved problems in statistics. That was the first inkling | had that there
was anything special about them.




Dantzig quote:

The other day, as | was taking an early morning walk, | was hailed by Don
Knuth as he rode by on his bicycle. He is a colleague at Stanford. He
stopped and said, "Hey, George — | was visiting in Indiana recently and
heard a sermon about you in church. Do you know that you are an influence
on Christians of middle America?" | looked at him, amazed. "After the
sermon," he went on, "the minister came over and asked me if | knew a
George Dantzig at Stanford, because that was the name of the person his
sermon was about."”

The origin of that minister's sermon can be traced to another Lutheran
minister, the Reverend Schuler [sic] of the Crystal Cathedral in Los Angeles.

e told me his ideas about thinking positively, and T told him my story about
the homework problems and my thesis. A few months later | received a
letter from him asking permission to include my story in a book he was
writing on the power of positive thinking. Schuler's published version was a
bit garbled and exaggerated but essentially correct. The moral of his sermon
was this: If | had known that the problem were not homework but were in
fact two famous unsolved problems in statistics, | probably would not have
thought positively, would have become discouraged, and would never have
olved them




Shortest Paths

Find shortest path to each vertex
Can also be modeled with linear inequalities
Makes sense iff there are no negative ‘cycles’

Iff corresponds to multipliers for inequalities



Shortest Paths and Interval Orders




Shortest Paths and Interval Orders
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(Weiner 1914, Fishburn 1971)
Interval Order < NO 2 + 2

‘Proof
o Formulate as solving a system of linear
inequalities

o Observe that the system corresponds to a
shortest path problem

o Show that negative cycles = thereis a 2 + 2
Proof has advantage of extending to bounds on

interval lengths, partial information, minimizing
support....



Shortest Paths and Interval Orders

Intervals




