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Abstract
A graph G = (V,E) is a tolerance graph if each vertex v ∈ V can be

associated with an interval of the real line Iv and a positive real number
tv in such a way that (uv) ∈ E if and only if |Iv ∩ Iu| ≥ min(tv, tu).
No algorithm for recognizing tolerance graphs in general is known. In
this paper we present an O(n+m) algorithm for recognizing tolerance
graphs that are also bipartite, where n and m are the number vertices
and edges of the graph, respectively. We also give a new structural
characterization of these graphs based on the algorithm.

1 Introduction and Notation

A graph G = (V,E) consists of a set V , called vertices and a collection E of
edges, which are unordered pairs of elements of V . We assume throughout
this paper that our graphs are simple and finite. In other words, |V | is always
finite, and E is a set which contains no edge of the form (vv). The order of
G is |V | and we will denote this throughout the paper as n. Similarly, the
size of G is |E| which we will denote by m. A graph is a tree if it contains
no cycles, and a tree in which there is at most one vertex incident with
multiple edges will be called a star. A graph is bipartite when the vertex set
can be partitioned into two sets so that no edge connects two vertices from
the same set. When G is a bipartite graph, we will represent a bipartition
of V as Vx and Vy, with nx = |Vx| and ny = |Vy|. When G = (Vx, Vy, E) is
bipartite with Vx = {x1, . . . xnx} and Vy = {y1, . . . , yny}, we will use A(G)
to denote the reduced adjacency matrix of G. This is the nx × ny matrix
with aij = 1 if (xiyj) ∈ E and aij = 0 otherwise.

∗Research for this article was performed while the author was a Visiting Assistant
Professor at Lehigh Univeristy

1



1.1 Tolerance graphs

Tolerance graphs were introduced in 1982 by Golumbic and Monma [7] to
model certain scheduling problems. A graph G = (V,E) is a tolerance graph
if each vertex v ∈ V can be associated with an interval of the real line Iv

and a positive real number tv in such a way that (uv) ∈ E if and only if
|Iv ∩ Iu| ≥ min(tv, tu). The collection 〈I, t〉 of intervals and tolerances is
called a tolerance representation of the graph G. A tolerance representation
is called bounded when |Iv| ≤ tv for every v ∈ V , and when G has such a
bounded tolerance representation, we will say that G is a bounded tolerance
graph.

Note that some authors (see [3], [6] and [15]) have studied a class of
graphs that they call “bipartite tolerance graphs” but which is properly
contained in the intersection of the classes of tolerance graphs and bipartite
graphs (the graph T2 in Figure 1 is a separating example, as it is both bi-
partite and a tolerance graph, but is not a “bipartite tolerance graph” as
defined in [6]). This smaller class of graphs was shown to be equivalent to
bipartite permutation graphs in [3] and [15], and it follows from a theorem
of Langley [11] that the class of bipartite permutation graphs is equivalent
to bipartite bounded tolerance graphs. As a result, we will follow the con-
vention used in [9], and we will use the phrase bipartite tolerance graph for
the intersection of tolerance graphs and bipartite graphs, and the phrase
bipartite bounded tolerance graph for the smaller class that is equivalent to
bipartite permutation graphs.

Additional background and results on tolerance graphs can be found in
the recent book by Golumbic and Trenk [9]. Although tolerance graphs and
related topics have been studied extensively, the problem of characterizing
tolerance graphs remains open, as does tolerance graph recognition [9]. It
was shown in [10] that every tolerance graph has a polynomial sized integer
representation, and hence Tolerance Graphs recogniion is in NP. However,
this result gives no information on how to construct an algorithm that rec-
ognizes when a graph has a tolerance representation.

The class of cycle free tolerance graphs was characterized in [8].

Theorem 1.1 (Golumbic, Monma and Trotter, [8]). Let T be a tree. Then T
is a tolerance graph if and only if T contains no induced subgraph isomorphic
to T3, in Figure 1.

For bipartite graphs which contain cycles, Busch [5] gave the following
characterization.

Theorem 1.2 (Busch [5]). A bipartite graph G is a tolerance graph if and
only if there exists a set of consecutively ordered stars S1, S2, . . . , St which
partition the edges of G.
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Figure 1: The trees T2 and T3

1.2 Asteroidal triples and consecutive orderings

We will call a collection of sets U consecutively orderable if the sets can be
indexed U1, U2, . . . Uk so that whenever x ∈ Ui ∩ Uk then x ∈ Uj for every
i ≤ j ≤ k. A collection of sets together with such an ordering will be referred
to as consecutively ordered. In this paper, the collections of sets will generally
be subsets of the vertex set of a graph and in order to conserve notation
we will say that a set of subgraphs G1, . . . Gk is consecutively ordered when
V (G1), . . . , V (Gk) is consecutively ordered.

A (0, 1)-matrix M has the consecutive 1’s property for rows if the columns
of M can be permuted in such a way that the 1’s in every row occur con-
secutively. Analogously, a matrix M has the consecutive 1’s property for
columns if the rows of M can be permuted in such a way that the 1’s in
every column occur consecutively. When M is the reduced adjacency matrix
of a bipartite graph, a consecutive ordering of the columns or rows repre-
sents an ordering of either Vx or Vy such that the collection of neighborhoods
Nx = N(x1), N(x2), . . . , N(xnx) or Ny = N(y1), N(y2), . . . , N(yny) is con-
secutively ordered.

Tucker [16] investigated when the reduced adjacency matrix A(G) of a
bipartite graph G = (Vx, Vy, E) has the consecutive 1’s property for rows or
columns. In this case, a row or column of A(G) represents the neighborhood
of a vertex in Vx or Vy, respectively. Thus, a permutation of the rows of
A(G) such that the 1’s in every column occur consecutively is equivalent
to an ordering the vertices of Vx = {x1, . . . , xnx} so that the collection
of sets Nx = N(x1), N(x2), . . . , N(xnx) are consecutively ordered. Tucker
calls bipartite graphs with this property X-consecutive, and analagously, a
bipartite graph is Y-consecutive when Ny = {N(y) |y ∈ Vy} is consecutively
orderable. Bipartite graphs which are either X-consecutive or Y -consecutive
are known as convex, while bipartite graphs that are both X-consecutive and
Y -consecutive are biconvex.

An asteroidal triple in a graph G = (V,E) is a triple of distinct vertices
v0, v1, v2 with the property that for each i = 0, 1, 2, there is a path from
vi+1 to vi+2 in G that contains no vertex adjacent to vi (subscript addition
is performed modulo 3). Tucker showed the following connection between
consecutive orderings and asteroidal triples.
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Theorem 1.3 (Tucker [16]). A bipartite graph G = (Vx, Vy, E) is X- con-
secutive if and only if G has no asteroidal triple contained in Vx. Similarly
G is Y -consecutive if and only if G has no asteroidal triple contained in Vy.

Algorithms which determine if a matrix has the consecutive 1’s property
for rows form the basis for the first linear recognition algorithm for interval
graphs, due to Booth and Lueker [1], and closely related algorithms also
recognize convex graphs in linear time (although such algorithms generally
avoid using adjacency matrices to preserve linear running times even for
sparse graphs). Algorithms to identify the consecutive 1’s property of a
matrix can also easily be used to determine when a collection of subgraphs
G = G1 . . . Gt of a given graph G is consecutively orderable. We simply con-
struct the “vertex-graph incidence matrix” Mn×t = [mij ] which has mij = 1
if the vertex vi is contained in V (Gj) and mij = 0 otherwise. Then G is
consecutively orderable if and only if M has the consecutive 1’s property for
rows. Thus, when G is part of the input, and G is a collection of stars which
partition the edges of G, this can be used to show that G is a tolerance graph
using Theorem 1.2. However, a tolerance graph G generally has many star
partitions (the set E, for example), not all of which can be consecutively
ordered. As a result, the above procedure cannot be used to decide if an
arbitrary bipartite graph is a tolerance graph. In the following section, we
characterize bipartite graphs whose edges can be partitioned into sets which
induce stars which are consecutively orderable. We call such a partition a
consecutive star partition (CSP), and in the process obtain a conceptually
simple linear time algorithm (O(n+m)) that recognizes the class of bipartite
tolerance graphs.

2 Bipartite Tolerance Graphs

We begin with some basic observations about consecutive star partitions
and tolerance graphs. Throughout this section we will denote a consecutive
star partition (CSP) of a graph G as S = S1, S2, . . . , St, where each Si is a
star, and we will call t the length of S. We will denote the vertex and edge
set of the star Sj as V (Sj) and E(Sj), respectively. If Si is a single edge,
we will arbitrarily designate one endpoint of this edge as ci. Otherwise, let
ci be the unique central vertex of Si.

Observation 2.1. Let G = (Vx, Vy, E) be a connected bipartite tolerance
graph with CSP S = S1, S2, . . . , St. Then V (Si) ∩ V (Si+1) is a cut-set of G
for each 1 ≤ i < t.

Observation 2.2. Let G be a 2-connected bipartite graph. Then G is a
tolerance graph if an only if G is convex.

Observation 2.2, together with the hereditary property of bipartite toler-
ance graphs, shows that every 2-connected subgraph of a bipartite tolerance
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graph must be convex. Recall that a block of a graph G is a maximal
subgraph of G with no cut-vertex. It is easy to see that every block of a
connected graph is either 2-connected, a cut-edge or an isolated vertex (in
the trivial case where G = K1). We will define the boundary of a block B,
denoted B(B) as the set of vertices in B with N(v) 6⊆ B. In other words, the
boundary of a block B is the set of cut-vertices of G that are also in B. If PG

is the set of pendant vertices of G, we will partition the boundary of B into
two sets B1(B) = {v ∈ B(B) | N(v) \B ⊆ PG} and B2(B) = B(B) \ B1(B).

Let B be a block of a graph G. We will define B′ as the graph induced
by the vertices of B, together with the vertices in PG adjacent to B. We
then define a graph HB from B′ by adding two new vertices v′ and v′′ to B′

for each vertex v ∈ B2(B), along with the edges (vv′) and (v′v′′). Note that
HB is an induced subgraph of G, and that if B2(B) = ∅ then B = G.

Our algorithm is based on the following Lemma, which is a slight exten-
sion of Observation 2.2.

Lemma 2.3. If G is a bipartite tolerance graph, then for every block B of
G, HB is convex.

The next two Lemmas describe the structure how the blocks of a bipartite
tolerance graph are arranged, which leads to a procedure for combining the
CSPs for each B′ into a CSP for the graph G.

Lemma 2.4. If G is a bipartite tolerance graph and B is a 2-connected block
of G with |B2(B)| ≥ 2, then B2(B) = {u, v} and B′ has a CSP with that
begins with a star containing u and ends at a star containing v.

As a corollary, we note a direct consequence of the contrapositive of the
above result.

Corollary 2.5. If G is a bipartite graph and B is a 2-connected block of G
with |B2(B)| > 2, then HB is not convex, and G is not a tolerance graph.

Lemma 2.6. If G is a bipartite tolerance graph, and B is a block of G with
B2(B) = {v} and v is at distance two or less from every other vertex of B′,
then B′ has a CSP such that v is contained in every star.

3 Class Hierarchies

In this section, we consider how various sub-classes of chordal bipartite
graphs relate to the class of bipartite tolerance graphs and the implica-
tions of these relationships on the problem of recognizing bipartite tolerance
graphs. We begin by noting some basic inclusions from [3]. Recall that the
class of bipartite permutation graphs is equivalent to the class which we
denote as bipartite bounded tolerance graphs.
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(permutation ∩ bipartite) ⊂ biconvex ⊂ convex ⊂ chordal bipartite

As noted in [2], both biconvex and convex graphs can be recognized in
linear time by using PQ-trees or other algorithms for the consecutive ones
property, and bipartite bounded tolerance graphs can also be recognized in
linear time [15]. The class of chordal bipartite graphs can be recognized in
polynomial time, but no linear time algorithm is presently known [14].

Next, we note a refinement of the above hierarchy due to a combination
of the results of Brown [4], Busch [5], Müller [12], and Sheng [13].

convex ⊂ (probe interval ∩ bip.) ⊂ (tolerance ∩ bip.) ⊂ interval bigraph

Although convex graphs may be recognized in linear time, the best
known algorithms for the class of bipartite probe-interval graphs and for
the class of interval bigraphs are polynomial. In the case of 2-connected
bipartite graphs, Observation 2.2 indicates that we have convex = toler-
ance ∩ bipartite, and so in this restricted case, the first two inclusions
above become equality. This equivalence leads us to consider blocks. By
considering the blocks of a graph, and how they are arranged, we can utilize
the linear time recognition of convex graphs to give a conceptually simple
linear time recognition algorithm for all bipartite tolerance graphs in the
next section.

Furthermore, it is easy to show that within the subclass of 2-edge-
connected bipartite graphs, convex = probe-interval ∩ bipartite. This
equality suggests a similar approach to the one we take below may provide
a linear time algorithm for the class of bipartite probe-interval graphs. It is
less certain that our approach can be extended to give a linear time recog-
nition algorithm for the class of interval bigraphs or the class of chordal
bipartite graphs.

Figure 2: The block structure of G − PG for a bipartite tolerance graph
G. The dashed ovals represent 2-connected blocks and the gray vertices are
pendant in G.
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4 An algorithm to recognize bipartite tolerance
graphs

In broad terms, for a bipartite tolerance graph G, the lemmas in Section
2 impose a structure on the blocks of G − PG, as well as a structure on
the arrangement of those blocks. We illustrate this informally in Figure 2.
After removing the pendant vertices, Corollary 2.5 implies that the blocks
of G − PG can be arranged in a nearly linear structure. To make this
notion more precise, we now present an algorithm that recognizes bipartite
tolerance graphs.

Algorithm 1 Determine if G is a bipartite tolerance graph.
Require: G is a connected, bipartite graph
1: Find PG, the set of all pendant vertices of G.
2: Find all the blocks of G−PG and construct the block-cutpoint graph T .
3: for all blocks B of G− PG do
4: Construct B′ and HB

5: if HB is not convex then
6: return false
7: else
8: if dT (B) = 1 and εB′(c) ≤ 2 for the unique cut-vertex c ∈ B then
9: Delete B from T

10: end if
11: end if
12: end for
13: if T is a path then
14: return true
15: else
16: return false
17: end if

Theorem 4.1. Algorithm 1 is correct, and runs in O(n + m) steps.

Proof. First, we show that the algorithm is correct. If G − PG contains a
block B such HB is not convex, then G is not a tolerance graph by Lemma
2.3. If HB is convex for every block B, but T is not a path after all applicable
blocks have been deleted, then T contains a vertex of degree three or more.
This vertex does not represent a block of G− PG, since for such a block B,
|B2(B)| ≥ 3 and so HB is not convex by Corollary 2.5. So this vertex in
T represents a cut-vertex v, and v is at the end of at least three paths of
length three. Furthermore, the edges of these paths incident with v are each
in different blocks of G. Thus, G contains an induced subgraph isomorphic
to T3, and hence is not a tolerance graph by Theorem 1.1. In all other
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cases, the algorithm returns true. In such cases, either G is a star and hence
obviously a tolerance graph, or we can construct a CSP for G as follows:

Since each block of T has a corresponding HB that is convex, each HB is
clearly also a tolerance graph. Thus, for each block that is adjacent to two
cut-vertices u and v on this path, the associated graph B′ has a CSP that
begins at a star containing u and ends at a star containing v by Lemma 2.4
as applied to HB. For any blocks B on the ends of this path adjacent to
only one cut vertex v, the same argument used in the proof of Lemma 2.4
guarantees that B′ will have a CSP that begins or ends at a star containing
v. Thus, we can easily combine each of these CSPs into a CSP that contains
every edge in an undeleted block. Finally, each block B that was deleted
from T is adjacent to a single cut-vertex v, and by Lemma 2.6 as applied
to HB, the associated graph B′ has a CSP with v contained in every star.
Thus we can insert this CSP into our combined CSP at the beginning or
end if the first or last star already contains v, or between any two stars that
both contain v. Two such stars must exist if the first and last star do not
already contain v, since in this case v must be contained in two blocks that
were not deleted from T . Because every edge of G is in exactly one graph
B′, this produces a CSP for G and so G is a tolerance graph by Theorem
1.2.

It now remains to show that the algorithm requires O(n + m) steps.
Finding the set PG requires O(n) time, and finding the blocks and cut-
vertices of G− PG and building the block-cutpoint graph T can be done in
O(n + m) time [6]. Using these blocks, we can also construct the graphs
{B′ | B is a block of G−PG} that partition the edges of G and the associated
graphs {HB | B is a block of G − PG} in O(n) time. The verification that
each HB is convex requires O(nb +mb) time, where nb and mb are the order
and size of B′, respectively. Determining if dT (B) = 1, and if so, identifying
the cut vertex c adjacent to B in T can be done in constant time, and
because B is bipartite we can determine if B′ contains an induced path of
length three or more that begins at v in O(nb) time. Thus, the total running
time for all of these tests is

∑
B′

O(nb + mb)

After all these tests are complete and the blocks staisfying the condition
in line 8 have been deleted from T , testing that the graph remaining is a
path requires O(|V (T )|) = O(n + m) steps.

An easy induction proof shows that
∑

V (G) bv ≤ 2n, where bv is the
number of blocks which contain the vertex v. Hence the total running time
of the algorithm is

∑
B′

O(nb + mb) = O(
∑
B′

nb + mb) = O(m +
∑
V (G)

bv) = O(m + n)

as desired.
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Note that this algorithm also gives a new structural characterization of
bipartite tolerance graphs, which we give in the following theorem:

Theorem 4.2. Let G be a connected bipartite graph. Then G is a tolerance
graph if and only if:

(i) For every block B of G, HB is convex
and

(ii) For each cut vertex v, G contains no induced subgraph isomorphic
to the graph T3 in Figure 1 in which v is the vertex of degree three.

As indicated in the proof of Theorem 4.1, Algorithm 1 can easily be
modified to provide a CSP of G when G is a bipartite tolerance graph. This
CSP can then be combined with the algorithm in [5], to give a tolerance rep-
resentation of the graph G. Although this representation is not guaranteed
to be polynomial in the size of G, such a polynomial sized representation
is guaranteed by the result of [10]. Since the algorithm in [5] is clearly not
optimal, it seems likely that there is an efficient algorithm that will convert
the CSP into a polynomial sized tolerance representation of G, which could
then be used to certify the correctness of the algorithm.

When Algorithm 1 returns false, we can also certify this reult, either
by identifying an induced subgraph of G isomorphic to T3, or by giving an
induced subgraph HB of G that is not convex. Although we do not have
complete list of such obstructions, we can identify an asteroidal triple of HB

that is contained in Vx and an asteroidal triple of HB contained in Vy. This
certifies that HB is not convex, and hence that G is not a tolerance graph
by the contrapositive of Lemma 2.3.
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Appendix A: Proofs

• Proof of Observation 2.1

Proof. Choose u ∈ V (Sa) \ V (Si+1) for a ≤ i and v ∈ V (Sb) \ V (Si)
for b ≥ i + 1. We will prove the stronger claim that V (Si) ∩ V (Si+1)
separates u and v. Let P be a path from u to v. Then P must
contain some edge (wz) such that w ∈ V (Sc) for c ≤ i and z ∈ V (Sd)
for d ≥ i + 1. Let St be the unique star which contains (wz). If
t ≤ i, then we have z ∈ V (St) ∩ V (Sd) for t ≤ i < d, and so by the
consecutive ordering of S, z ∈ V (Si)∩ V (Si+1). Similarly, if t ≥ i + 1,
w ∈ V (Si)∩V (Si+1). Since P was chosen arbitrarily, every path from
u to v contains some vertex of V (Si) ∩ V (Si+1).

• Proof of Observation 2.2.

Proof. Assume G = (Vx, Vy, E) is a tolerance graph. Then G has a
CSP S = S1, S2, . . . , St. Without loss of generality, assume c1 ∈ Vx.
If ci ∈ Vx for each 1 ≤ i ≤ t, then for any vertex x ∈ Vx, x is the
center of each star it appears in, and since these stars must all be
consecutive, they can combined into one star. Hence, we can assume
that each vertex of Vx is in a unique star, and hence each star is the
graph induced by the closed neighborhood of some vertex of Vx, and
so G is X-consecutive.

So we can assume that for some index i, ci ∈ Vy and let i be the
minimal such index. Thus, Vy∩V (Si) = {ci} and Vx∩V (Si−1) = {ci−1}
and since G is bipartite, V (Si) ∩ V (Si−1) ⊆ {ci, ci−1}. Furthermore,
because S is a partition of the edges of HB, either V (Si)∩V (Si+1) ⊆ Vx

or V (Si) ∩ V (Si+1) ⊆ Vy. Thus, |V (Si) ∩ V (Si−1)| = 1, and since this
set is a cut-set by Observation 2.1, G is not 2-connected.

For the converse, assume thatNx is consecutively ordered, and let Vx =
{x1, v2, . . . xnx} correspond to this ordering. Let Si be the subgraph of
G induced on N [xi] = N(xi)∪{xi} for 1 ≤ i ≤ t. Since G is bipartite,
each induced subgraph is a star, and because each xi is in a unique
V (Si), the set of stars are consecutively ordered and clearly partition
the edges of G. Thus, G is a tolerance graph.

• Proof of Lemma 2.3

Proof. Assume G = (Vx, Vy, E) is a bipartite tolerance graph, and let
B be a block of G. Since HB is isomorphic to an induced subgraph
of G, and tolerance graphs are hereditary, it follows that HB is also a
bipartite tolerance graph. Then by Theorem 1.2, HB has a consecutive
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star partition. Let S = S1, S2, . . . St be such a CSP with t maximum.
If |V (Si) ∩ Vx| = 1 for 1 ≤ i ≤ t, then each star has a central vertex
in Vx, and just as in the proof of Observation 2.2, Nx is consecutively
orderable. Similarly, if |V (Si) ∩ Vy| = 1 for 1 ≤ i ≤ t, then Ny is
consecutively orderable. In either case, G is convex.

So we can assume that for some indices i and j, |V (Si) ∩ Vx| > 1 and
|V (Sj) ∩ Vy| > 1. Without loss of generality, assume that i < j and
choose i and j such that j − i is minimal.

We first claim that V (Si)∩V (Sj) = ∅. Otherwise, it must be the case
that (cicj) ∈ E(HB) and this edge is in either Si or Sj . But we can
then clearly create a CSP of HB that has t + 1 stars by making this
edge an additional star and inserting it immediately after Si (if (cicj)
is an edge of Si) or immediately after Sj (if (cicj) is an edge of Sj),
and removing the edge from the star in which it appears. Since this
CSP has t + 1 > t stars, we conclude that V (Si) ∩ V (Sj) = ∅ and
since HB is connected, we must have j > i + 1. Furthermore, by the
minimality of j − i, |V (Sm)| = 2 for each i < m < j.

Next, we note that for each i < m < j, either Sm is a pendant edge of
HB or a cut-edge of HB. Clearly, as HB is connected and S partitions
the edges of HB, we have |V (Sm) ∩ V (Sm±1)| = 1 for i < m < j.
So either V (Sm−1) ∩ V (Sm) ∩ V (Sm+1) = ∅ and Sm is a cut edge of
HB, or |V (Sm−1 ∩ V (Sm) ∩ V (Sm+1)| = 1, and Sm is a pendant edge
of HB. If Sm is a pendant edge for each m, then we have V (Si) ∩
V (Si+1) · · ·V (Sj−1) ∩ V (Sj)| = 1. Since we showed in the previous
paragraph that V (Si) ∩ V (Sj) = ∅, there must be some cut edge that
separates ci and cj .

Recall that |V (Si)| ≥ 3 and |V (Sj)| ≥ 3, and as a result ci and cj each
have degree at least two in HB. The only cut-edges of HB that separate
two non-pendant vertices are the edges added to B at a vertex of
B2(B), and as a result we can then conclude without loss of generality
that Si is a pendant path of length two, and so i = 1. However, in
this case, we can let S0 be the pendant edge in S1, remove this edge
from S1 to form S′1, and form a CSP S0, S

′
1, . . . , St that is longer than

S. This final contradiction establishes the lemma.

• Proof of Lemma 2.4

Proof. Assume G is a tolerance graph, and let B be a block of G with
|B2(B)| ≥ 2. Then by the hereditary property of tolerance graphs, HB

has a consecutively ordered star partition S = S1, S2, . . . , St. Choose
v ∈ B2(B), and let i be the index of the star Si that contains the
edge (v′v′′). Note that Si must either be the single edge (v′v′′) or
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the 2-path induced on N [v′]. In either case, by Observation 2.1 we
see that V (Si±1) ∩ V (Si) is a cut-set of HB, and since v′′ is not in
any star other than Si, and (vv′) ∈ E(HB), we note that the set
V (Si±1) ∩ V (Si) ⊂ {v, v′}. Since B is 2-connected, V (Si±1) ∩ V (Si)
does not separate any two vertices of B. Thus, we can conclude that
i = 1 or i = t, and by deleting the vertices of V (HB) \ V (B′), we
obtain a CSP S ′ of B′ with v in the first or last star.

The proof is complete by observing that for any v1 6= v2 in B2(B), the
edges v′1v

′′
1 and v′2v

′′
2 are in distinct stars of S, and so the CSP S ′ must

begin at a star containing v1 and end at a star containing v2 (or vice
versa), and consequently |B2(B)| = 2.

• Proof of Lemma 2.6

Proof. Relabeling if necessary, we may assume v ∈ Vx. If B′ does not
contain any induced 2K2, then B′ is a bipartite chain graph, and every
bipartite chain graph is easily shown to be asteroidal triple free and
thus also biconvex (see [15]). Therefore B′ is Y -consecutive, and has a
CSP with v in every star. If B′ does contain edges x1y1 and x2y2 that
induce a 2K2, then {v′′, v′, v, x1, y1, x2, y2} induces a subgraph of HB

isomorphic to T2 in Figure 1, and thus x1, x2, v
′′ form an asteroidal

triple in HB. Since HB is convex by assumption, we conclude that HB

is Y -consecutive, and so is B′. Thus, B′ has a CSP with v in every
star.
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