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Abstract

A graph is a probe interval graph if its vertices can be partitioned into probes and nonprobes
with an interval associated to each vertex so that vertices are adjacent if and only if their
corresponding intervals overlap and at least one of them is a probe. A graph G = (V, E) is a
tolerance graph if each vertex v ∈ V can be associated to an interval Iv of the real line and a
positive real number tv such that uv ∈ E if and only if |Iu ∩ Iv| ≥ min{tu, tv}. In this paper
we present O(|V | + |E|) recognition algorithms for both bipartite probe interval graphs and
bipartite tolerance graphs. We also give a new structural characterization for each class which
follows from the algorithms.

1 Introduction

We discuss undirected, finite, simple graphs G with vertex set V (G) and edge set E(G), or G = (V,E)
may be written meaning V = V (G) and E = E(G). If G is a bipartite graph with partite sets X
and Y , we will write G = (X, Y, E) to indicate this, and denote |X| by nx and |Y | by ny

A graph G is a probe interval graph if there is a partition of V (G) into P and N and a collection
{Iv : v ∈ V (G)} of closed intervals of R in one-to-one correspondence with V (G) such that, for
u, v ∈ V (G), uv ∈ E(G) if and only if Iu ∩ Iv 6= Ø and at least one of u, v belongs to P . The sets
P and N are called the probes and nonprobes, respectively, and the collection of intervals together
with such a partition will be referred to in this paper as a probe interval representation, but we may
omit the “probe interval” if the context makes it clear.

The probe interval graph model was invented in connection with the task called physical mapping
faced in connection with the human genome project, cf. work of Zhang and Zhang et al. [25, 26, 27].
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The recognition of probe interval graphs has received a bit of attention recently. Here is an
overview of some of the recent results about probe interval graph recognition. The number of vertices
of a given graph is referred to by n and the number of edges by m. If the vertex partition V (G) =
(P,N) into probes and nonprobes is specified as part of the input, the problem of recognizing whether
G is a probe interval graph is called the partitioned probe interval graph problem, and this problem is
solvable in time O(n2) via a method involving modified PQ-trees, see [17] by Johnson and Spinrad.
Another method given in [20] by McConnell and Spinrad uses modular decomposition and has
complexity O(n + m log n). An O(m2) algorithm for recognizing (non-partitioned) cocomparability
probe interval graphs is given in [5], by Brown and Langley, which uses a modified algorithm of
Golumbic and Lipshteyn [12] that recognizes graphs that are both weakly chordal1 and chordal
probe 2. In [9], Chang, Kloks, Liu, and Peng, give an algorithm for recognizing whether a non-
partitioned graph is a probe interval graph is presented; complexity is shown to be polynomial, but
is not carefully analyzed.

A graph G = (V,E) is a tolerance graph if to each vertex v ∈ V there can be associated both
a closed interval Iv of the real line and positive real number tv such that uv ∈ E if and only
if |Iu ∩ Iv| ≥ min{tu, tv}. Tolerance graphs were introduced by Golumbic and Monma in [11]
as a generalization of interval graphs and to model certain scheduling problems. We will denote
the collection of intervals {Iv : v ∈ V } and tolerances {tv : v ∈ V } corresponding to tolerance
graph G = (V,E) as 〈I, t〉 and refer to it as a tolerance representation of G, but call it simply a
representation if the context is clear. If tolerance graph G has a representation in which |Iv| ≤ tv
for every v ∈ V , then G is a bounded tolerance graph. Additional results and background on
tolerance graphs and on probe interval graphs can be found in the book by Golumbic and Trenk [14].
Although tolerance graphs have been studied extensively, the problem of characterizing tolerance
graphs remains open [14], as does tolerance graph recognition. It was shown by Hayward and
Shamir in [15] that tolerance graphs have a polynomial sized integer representation. So the problem
of tolerance graph recognition is in NP, but this result gives no information on how to construct
an algorithm that recognizes when a graph has a tolerance representation. In the case of tolerance
graphs which are bipartite, a characterization was given by Busch in [7] which we present here as
Theorem 1.1, and in [8], by Busch and Isaak, this theorem was used to give a linear time recognition
algorithm for bipartite tolerance graphs. We reproduce that algorithm in Section 3, and include
several lemmas that were stated without proof in [8].

The results supporting our algorithms will show subtle distinctions between probe interval graphs
and tolerance graphs. Note that any probe interval graph is a tolerance graph [14]: Note that it
can be shown that every probe interval graph has a representation so that no two intervals share
an endpoint (see, for example, Lemma 1.5 in [14]). Thus, by choosing a representation for the
probe interval graph G with all endpoints distinct we can define tolerances tv = ε if v is a probe
and tv = ∞ if v is a nonprobe, where ε is the smallest distance between endpoints to obtain a
tolerance representation of G. But not every tolerance graph is a probe interval graph, see Figure
1. One of the subtle distinctions mentioned is represented in the two characterizations that follow
these definitions. A collection of sets S is consecutively orderable if the sets in the collection can be
indexed S1, S2, . . . , Sk so that whenever x ∈ Si ∩ Sk then x ∈ Sj for every i ≤ j ≤ k. We call a
collection of sets together with such an ordering consecutively ordered. When the collections of sets
are subsets of vertices of a given graph, we will conserve notation and say that the set of subgraphs
G1, G2, . . . , Gk is consecutively ordered when {V (G1), V (G2), . . . , V (Gk)} is. A K1,n, for n ≥ 1, will
be called a star and a vertex of maximal degree will be called the center of the star. Obviously, when

1A graph G is weakly chordal if neither G nor its complement contains an induced cycle of order k ≥ 5.
2A graph is chordal probe if its vertices can be partitioned into two sets P (probes) and N (nonprobes) with N an

independent set and G can be extended to a chordal graph by adding edges between nonprobes.
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n = 1 the vertex identified as the center is arbitary, but the center of the star is unique provided that
n > 1. We next define a consecutive star partition, the key structure used in the characterization of
bipartite tolerance graphs.

Definition 1 Given a graph G = (V,E), a set G = {G1, G2, . . . , Gt} of consecutively ordered stars
that partition the edges of G, will be referred to as a consecutive star partition (CSP) of G.

Next, we note that bipartite tolerance graphs are precisely the class of bipartite graphs which
admit a CSP.

Theorem 1.1 (Busch, [7]) A bipartite graph G is a tolerance graph if and only if it has a consecutive
star partition.

Now, let G be a bipartite graph with vertex partition (U,N), not necessarily a bipartition, where
G(N) is an independent set. A U -star is either a star with a vertex of maximal degree in U and
pendants in N (note that this permits a star with n = 1 as defined above), or a K2 with both
vertices in U .

Definition 2 Given a graph G = (V,E) and a vertex partition (U, N), a set G = {G1, G2, . . . , Gt}
of consecutively ordered U -stars will be referred to as a consecutive U -star partition (CUSP) of G.

Just as bipartite tolerance graphs are characterized in terms of CSPs, we now state a character-
ization of bipartite probe interval graphs in terms of CUSPs.

Theorem 1.2 (Brown, Lundgren, [6]) A bipartite graph G is a probe interval graph if and only if
it has a consecutive U -star partition.

Chordal Bipartite

biconvex

AT−free

convex

T3

T2

H1

Chordal Bipartite

convex

T2

H1

T3

T3

H2

H2

Interval Bigraph

Bipartite Probe Interval

Bipartite Tolerance

H10

H12

H10 H12

Figure 1: Hierarchy of Chordal Bipartite graphs with separating examples.
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Now, we discuss another subtle distinction between bipartite tolerance graphs and bipartite probe
interval graphs. The distinction lies in the structure of blocks of a bipartite tolerance graph and in
the maximal 2-edge connected subgraphs of a bipartite probe interval graph. First some definitions
and a relationship of Tucker’s on which we will capitalize.

If G = (X, Y, E) is a bipartite graph with X = {x1, x2, . . . , xnx
} and Y = {y1, y2, . . . , yny

}, then
the nx × ny matrix M = [mij ] with mij = 1 if xiyj ∈ E(G) and mij = 0 otherwise is the reduced
adjacency matrix of G. M has the consecutive 1’s property for rows (columns) if the columns (rows)
of M can be permuted so that the 1’s in every row (column) appear consecutively. A matrix with
the consecutive 1’s property for rows or for columns is called convex and so is the bipartite graph
which corresponds to the matrix. When M is the reduced adjacency matrix for bipartite G, an
arrangement of columns so that the 1’s in each row occur consecutively corresponds to an ordering
of Y so that the vertices in the neighborhoods Nx = {N(x1), N(x2), . . . , N(xnx)} are consecutively
ordered; that is, if yi ∈ N(xr) and yk ∈ N(xr), then yj ∈ N(xr) for i ≤ j ≤ k. In this case, we
say G is Y -consecutive; analogously, G is X-consecutive if the vertices in the neighborhoods Ny can
be consecutively ordered, or equivalently, if M has the consecutive 1’s property for columns. Thus,
if G is X- or Y -consecutive, we say G is convex. If G is both X- and Y -consecutive, we say G is
biconvex.

An asteroidal triple (or AT) in a graph G is a set of three vertices x, y, z ∈ V (G) with a path
between any two that contains no vertex adjacent to the third.

Tucker established a nice relationship between consecutive 1’s in (0, 1)-matrices and asteroidal
triples in the corresponding bipartite graphs when the matrices are thought of as reduced adjacency
matrices.

Theorem 1.3 (Tucker, [24]) For a bipartite graph G = (X, Y, E) the following are equivalent:

1. The reduced adjacency matrix of G has the consecutive 1’s property for columns (respectively
rows);

2. G is X-consecutive (respectively Y -consecutive);

3. G has no asteroidal triple contained in X (respectively no AT contained in Y ).

This result will be very useful because of what it implies about the structure of collections of
consecutively orderable stars. Namely, for bipartite G = (X, Y, E), as a consequence of Theorem 1.3
if there is no asteroidal triple in X (respectively Y ) then there is a collection of stars which partition
the edges of G all of whose centers are in X (respectively in Y ) that can be consecutively ordered.
For example, if M is the reduced adjacency matrix for G and the columns of M have been labeled so
that the 1s in each row are consecutive, each column j corresponds to a star Sj , and S1, S2, . . . , Sny

is consecutively ordered.
Algorithms which determine if an m×n matrix has the consecutive 1’s property for rows recognize

convex graphs in O(n + m) time. Such algorithms also form the basis of the first recognition
algorithms for interval graphs, due to Booth and Lueker [1]. The algorithm of Booth and Lueker,
and other algorithms to identify the consecutive 1’s property, can easily be used to determine if
a collection of subgraphs G = {G1, G2, . . . , Gt} of G can be consecutively ordered. If V (G) =
{v1, v2, . . . , vn}, simply construct the n × t vertex-graph incidence matrix M = [mij ] with mij = 1
if vi ∈ Gj and mij = 0 otherwise. Then G is consecutively orderable if and only if M has the
consecutive 1’s property for rows. Thus, when G is part of the input and G is a collection of stars or
U -stars which partition the edges of G, this relationship can be used to determine if G is a tolerance
graph or probe interval graph using Theorem 1.3. But an arbitrary tolerance graph or probe interval
graph has many partitions of its edges into stars or U -stars, not all of which can be consecutively
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ordered. Therefore the above procedure cannot be used to efficiently decide if an arbitrary bipartite
graph is a tolerance graph or probe interval graph.

In order to contextualize our results, Figure 1 shows the relationships between some subclasses
of chordal bipartite graphs with separating examples between each class. Recall that a graph G is
chordal bipartite when G contains no induced Ck for any k 6= 4, and note that the class of chordal
bipartite graphs properly contains the class of graphs which are both chordal and bipartite (which
is the set of forests). For other definitions, and more detail about these and other definitions, we
refer the reader to [3].

The chain on the left is reproduced from [2], while the right-hand column is due to results of
Brown [4], Busch [7], Müller [19], and Sheng [21]. The classes of bounded bipartite tolerance graphs3,
bipartite permutation graphs, unit interval bigraphs, and asteroidal-triple-free (AT-free) bipartite
graphs are all equivalent, see Hell and Huang [16], and Golumbic and Trenk [14] for details about
these classes of graphs and their equivalence.

The graphs T3 and H10 of Figure 1 will be particularly important for the structural description of
bipartite tolerance and bipartite probe interval graphs. Their relevance is indicated by the following
results of Golumbic, Monma, and Trotter, and of Sheng.

Theorem 1.4 (Golumbic, Monma, Trotter, [13]) Let T be a tree. T is a tolerance graph if and only
if T does not contain an induced subgraph isomorphic to T3 of Figure 1.

Theorem 1.5 (Sheng, [21]) Let T be a tree. T is a probe interval graph if and only if T does not
contain an induced subgraph isomorphic to T3 or H10 of Figure 1.

Our algorithms will be based partially on the following facts, which will be developed in Section 3
and Section 4. In the case of 2-connected bipartite graphs, the classes of convex graphs and tolerance
graphs are identical; in the case of 2-edge-connected bipartite graphs, the classes convex and probe
interval are identical. The former fact was observed in [8] and is this paper’s Lemma 2.3; the latter
is Lemma 2.5.

2 Results for the Algorithms

We will characterize bipartite graphs whose edges can be partitioned into either sets of stars which
can be consecutively ordered, or into sets of consecutively orderable U -stars, and thereby obtain
conceptually simple linear time algorithms for bipartite tolerance graphs and bipartite probe interval
graphs. These algorithms rest ultimately on Theorem 1.2 and Theorem 1.1 and Lemma 2.6 and
Lemma 2.7. Lemmas 2.1 and 2.3 first appeared in [8]; their proofs are included here for completeness
and to emphasize the similarity between bipartite tolerance graphs and bipartite probe interval
graphs.

Lemma 2.1 If G = (X, Y, E) is a connected bipartite tolerance graph with CSP S = S1, S2, . . . , St,
then V (Si) ∩ V (Si+1) is a cut set of G for each i ∈ {1, 2, . . . , t− 1}.

3What Brandstädt et. al. are calling “bipartite tolerance graphs” are actually bounded bipartite tolerance graphs.
Some authors (see [3, 10, 22]) use “bipartite tolerance graphs” for this class, but as indicated, the class is properly
contained in the intersection of the classes of tolerance graphs and bipartite graphs. We have followed the convention
used in [14] and used the phrase “bipartite tolerance graph” for the intersection of tolerance graphs and bipartite
graphs, and the phrase “bipartite bounded tolerance graph” for the smaller class.
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Proof. Put L = V (G) \
⋃t

j=i+1 V (Sj) and R = V (G) \
⋃i

j=1 V (Sj). Since S partitions the edges of
G, both L and R must be nonempty. Any edge incident with a vertex of L must be contained in a
star Sj with j ≤ i, and any edge incident with a vertex of R is contained in a star Sj with j ≥ i + 1.
Thus, no edge connects L and R and V (G) \ (L ∪R) = V (Si) ∩ V (Si+1) is a cut-set.

Lemma 2.2 If G = (X, Y, E) is a connected bipartite probe interval graph with X ∪ Y partitioned
into U and independent set N and having CUSP U = U1, U2, . . . , Ut with respect to this partition,
then each Ui that is a K2 with both ends in U is a cut-edge of G.

Proof. In [18] it is shown that the largest induced cycle in a probe interval graph is a 4-cycle. Note
that the only way to partition a 4-cycle into consecutive stars is via two K1,2’s. Since G is bipartite
and each Ui is an induced subgraph, no Ui which is a K2 with both vertices contained in U is part
of a cycle in G.

Lemma 2.3 For G a 2-connected bipartite graph, G is a bipartite tolerance graph if and only if G
is X-consecutive or Y -consecutive.

Proof. Assume that G = (X, Y, E) is a 2-connected tolerance graph. Then by Theorem 1.1 G has
a CSP, say S = S1, S2, . . . , St. With ci denoting the center of Si, assume without loss of generality
that c1 ∈ X. If ci ∈ X for 1 ≤ i ≤ t, then G is clearly X-consecutive. So let i be the minimal index
with ci ∈ Y . Thus, Y ∩V (Si) = {ci}, X∩V (Si−1) = {ci−1}, and V (Si)∩V (Si−1) ⊆ {ci, ci−1}. Since
G is 2-connected, |V (Si) ∩ V (Si−1)| ≥ 2 by Lemma 2.1, and so V (Si) ∩ V (Si−1) = {ci, ci−1}. Since
each star is an induced subgraph of G, ci and ci−1 are adjacent in both Si and Si−1, contradicting
the fact that S partitions the edges of G.

Now assume Nx is consecutively ordered and let X = {x1, x2, . . . , xnx} correspond to this order-
ing. Let Si be the subgraph induced on N [xi] := N(xi)∪{xi} for 1 ≤ i ≤ t. Since G is bipartite, each
induced subgraph is a star, and because each xi is in a unique Si, the set of stars S is consecutively
ordered and clearly partition the edges of G. Therefore, G is a tolerance graph.

The partition of V (G) into U ∪N , as in Theorem 1.2, results in a probe-nonprobe partition: U
becomes the probe set and N becomes the nonprobe set (see Theorem 4.1 in [6]). This fact together
with the next theorem gives Lemma 2.5. Recall that a bipartite graph is convex provided that it is
either X-consecutive or Y -consecutive.

Theorem 2.4 (Brown, Lundgren, [6]) Let G be a bipartite graph with bipartition V (G) = (X,Y ). G
is a probe interval graph with probe-nonprobe partition corresponding to the given bipartition if and
only if G is convex; specifically, if G is X-consecutive, then the probes correspond to X (similarly
for Y ).

For the recognition of bipartite probe interval graphs, we proceed in a fashion similar to that
used for bipartite tolerance graphs, but instead of maximal 2-connected subgraphs, we must focus
on the maximal 2-edge-connected subgraphs. If each maximal 2-edge-connected subgraph is convex
then each has a CSP, following the remarks after Theorem 1.3, but we must organize the CSPs so
that the centers of their stars can become the U -set as in Theorem 1.2, and so that no edge, and
in particular no cut-edge of G, requires both endpoints be in N . This has implications on how
the cut-edges of G are oriented with respect to G’s bipartition and in which parts asteroidal triples
lie. These implications will be precisely laid out in Lemma 4.3. Presently, we give the analogue of
Lemma 2.3 for bipartite probe interval graphs.
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Lemma 2.5 For G a 2-edge-connected bipartite graph, G is a probe interval graph if and only if G
is convex.

Proof. Let G be a 2-edge-connected bipartite probe interval graph having CUSP U = {U1, . . . , Ut}
with respect to the partition V (G) = U ∪N , where G(N) is an independent set. U has no Ui which
is a K2 contained in U , by Lemma 2.2 since G is 2-edge-connected. Thus, with ci the center of Ui,
ci ∈ U and Ui \ {ci} ⊆ N , for each 1 ≤ i ≤ t, and so no ci is adjacent to cj for 1 ≤ i < j ≤ t.
Therefore U ∪N is a bipartition and G is convex by Theorem 2.4.

If G = (X, Y, E) is convex with, say, Nx consecutively ordered, then we can take Y = U and
X = N and the collection {y} ∪N(y), y ∈ Y forms a consecutive U -star partition.

Lemmas 2.3 and 2.5 are the conceptual basis for the algorithms we present. Before presenting the
algorithms, we develop some notation and identify substructures that will used by the algorithms
and necessary for the statement of the structural characterizations that follow.

For the next lemmas we introduce the notation Gk− which stands for the graph obtained from
G by iteratively deleting vertices of degree one k times; that is, if PG denotes the set of pendant
vertices of G, then G1− = G − PG, and G2− = G1− − PG1− . We will need to identify asteroidal
triples contained in one or the other partite set of bipartite G = (X, Y, E). We denote by ATX an
asteroidal triple {x, y, z} ⊆ X, and by ATY, we mean an asteroidal triple {x, y, z} ⊆ Y .

Lemma 2.6 Let G be bipartite so that G2− is 2-connected. Then G is a tolerance graph if and only
if G is convex.

Proof. Every convex graph is a tolerance graph, so it suffices to show the reverse containment also
holds. So assume G is a tolerance graph and G2− is 2-connected, but G is not convex. By Theorem
1.1, there is a CSP S = {S1, S2, . . . , St}. If ci ∈ X for 1 ≤ i ≤ t or ci ∈ Y for 1 ≤ i ≤ t, then G is
convex. Otherwise, for some minimal index i, ci and c1 are from different partite sets of G, noting
that we can take centers for Sjs that are K2s arbitrarily. Among all such CSPs of G, we choose S
so that the index i is as large as possible and observe that this implies that |V (Si)| > 2. Then by
the same reasoning used in the proof of Lemma 2.3, V (Si−1) ∩ V (Si) ⊂ {ci−1, ci} and this implies
that ci−1ci ∈ E is a cut-edge of G. Since G2− is 2-connected, the only cut-edges of G are pendant
edges of G and pendant edges of G1−. If ci−1ci is a pendant edge, then ci−1 is pendant in G since
|V (Si)| > 2 implies that deg(ci) > 1. Thus, E(Si−1) = {ci−1ci} and i = 2. But by re-assigning
the center of S1 to be c2, we obtain a CSP where S1 and S2 have centers in the same partite set,
contradicting our choice of S with i maximal. Thus, we can assume that ci−1ci is a pendant edge
of G1−, and so either ci−1 or ci is pendant in G1−.

If ci is pendant in G1−, then let P = {p1, . . . , pr} be the set of pendant edges of G incident with
ci. Note that the graph induced on

⋃i−1
j=1 V (Sj)− ci is the component of G− (ci−1ci) which contains

G2−. In this case S∗ = S1, . . . , Si−2, (Si−1 − ci), (ci−1ci), p1, p2, . . . , pr is a CSP of G. By assigning
the center of (ci−1ci) to be ci−1 and the center of each pa to be the pendant vertex of G, all the
centers of S∗ are from the same partite set of G and hence G is convex.

Similarly, if ci−1 is pendant in G1−, let P = {p1, . . . , pr} be the pendant edges of G inci-
dent with ci−1. Observe that the graph induced by

⋃i−1
j=1 Sj has edge set F ⊆ P ∪ {(ci−1ci)}

and since S partitions the edges of G, we conclude that i − 1 ≤ |F | ≤ r + 1. Furthermore,
G2− is contained in the component of G − (ci−1ci) induced by

⋃t
j=i V (Sj) − ci−1 and S∗ =

p1, . . . , pr, (cici−1), (Si − ci−1), Si+1, . . . , St is a CSP of G. By assigning the center of (ci−1ci) as
ci and the center of each pa as the pendant vertex of G for each 1 ≤ a ≤ r, we note that the first
star of S∗ with central vertex in the partite set of G containing ci−1 has index i∗ > r + 2 ≥ i,

7



contradicting our choice of S.

Lemma 2.6 along with the comments following Theorem 1.3 justify the algorithm for bipartite
tolerance graphs. Briefly, if we examine the blocks of G2−, assuming no T3 of Figure 1 in G, and
find each to be convex, then we may find a CSP for each block and assemble the CSPs to form one
for G. Lemmas 3.1, and 3.3 of Section 3 will detail how the assembly is done.

Lemma 2.7 Let G be a bipartite graph so that G2− is 2-edge-connected. Then G is a probe interval
graph if and only if G is convex.

Proof. As every convex graph is also a probe interval graph, it suffices to prove the reverse contain-
ment holds as well. So assume G is a probe interval graph and G2− is 2-edge connected, but G is
not convex. Then G has a CUSP S = {S1, S2, . . . , St} by Theorem 1.2; suppose further that S was
chosen to have the fewest possible K2s in U and t minimal. If Si is a K2 in U , then by Lemma 2.2
Si is a cut-edge, and so this edge is not an edge of G2−. Now, in a manner similar to that in Lemma
2.6, via choosing i minimal, we can show that deleting this edge creates pendant edges which we
can rearrange to form a new CUSP with one less K2 in U . So by minimality of i, no such Si exists,
and the CUSP S establishes that G is either X-consecutive or Y -consecutive and hence convex.

Lemma 2.7 forms the basis for the algorithm for bipartite probe interval graphs. Briefly, assuming
no T3 of Figure 1, we examine the maximal 2-edge-connected subgraphs of G2− to ensure each is
convex. If each such maximal 2-edge-connected subgraph is convex, then an additional check is made
to ensure that the CUSPs from these subgraphs can be assembled to form a CUSP for G. Lemma
4.5 shows how the CUSPs can be assembled, and the additional check required in this algorithm is
based on the structure described in Lemma 4.3.

G

B B∗

aa

a′

bb b′b′′ cc c′ c′′
dd

d′

Figure 2: A graph with block B and its corresponding B∗. ∂1B = {a, d}, ∂2B = {b, c}. We claim
G is not a tolerance graph because {b′′, a′, c′} and {d′, c′′, b′} are asteroidal triples from different
partite sets.

2.1 Bipartite Tolerance Graphs Structure Theorem

Recall that a block of a connected graph G is a maximal subgraph with no cut-vertex; so a maximal
2-connected subgraph. Clearly, every block of a connected graph is either 2-connected or a cut-edge
or an isolated vertex in the trivial case where G ∼= K1. Let B be a block of connected G and define
the boundary of B denoted ∂B as the set of vertices of B whose neighborhood is not contained in
B; that is, ∂B = {v ∈ V (B) : N(v) 6⊆ V (B)}. In other words, ∂B is the set of cut-vertices of G that
belong to B. We partition ∂B into two sets, ∂1B, and ∂2B as follows:

• ∂2B contains the vertices of B in at least two blocks of G1−;
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• ∂1B = ∂B − ∂2B. In other words, ∂1B consists of vertices adjacent to at least one pendant
vertex and that are not in ∂2B.

For each block B of G, we define the induced subgraphs B′ and B∗ of G as follows:

• For each vertex u in ∂1B include a vertex u′ ∈ N(u) \V (B); the graph induced on B together
with these new vertices will be denoted by B′.

• For each vertex v ∈ ∂2B include vertices v′ ∈ N(v) \ V (B) and v′′ ∈ N(v′) \ {v} in B∗. Note
that because v′ /∈ V (B), degB∗(v′) = 2 and degB∗(v′′) = 1.

See Figure 2 for an illustration. Observe that when G is 2-connected, then ∂2B = Ø and B∗ = G.
More generally, Lemma 2.6 implies that if G is a bipartite tolerance graph and B is any block of
G, then B∗ is convex. The proof of correctness for our algorithm for bipartite tolerance graphs
immediately yields the following structural result, as indicated in [8].

Theorem 2.8 Let G be a bipartite graph. G is a tolerance graph if and only if, for any block B of
G, B∗ is convex and T3 of Figure 1 is not an induced subgraph of G.

G

H1
H2

H3

Ĥ1

Ĥ2

Ĥ3

c
c

c

c′

c′′

ĉ

e e

e

y

y
yy′y′′ŷ

z

xx

x

x′
1

x′′
1

x̂1

x′
2 x′′

2 x̂2

a

a

a

b

b

b

g

g

d

d

h

h

h

Figure 3: A bipartite graph G with X the darkened vertices. The darkened edges cx and xy are
cut-edges of G2− and hence belong to E−. The set {a, b, x} is an ATX and {z, g, d} is an ATY. G is
not a probe interval graph because it has an induced T3, but Γ = G−{c, h, e} is not a probe interval
graph because Γ− xy has H1 in the same component as x and H2 in the same component as y.

2.2 Bipartite Probe Interval Graph Structure Theorem

Let G be a connected bipartite graph and let E− = {xiyi | 1 ≤ i ≤ t} be the set of cut edges of
G2−. Let H be a component of G−E−, and note that H may be an isolated vertex. The boundary
of H, ∂H, is defined as above, and it is easy to see that ∂H ⊆ {xi, yi | 1 ≤ i ≤ t}. Now, for each
such induced subgraph H of G, we construct the induced subgraph Ĥ of G by including vertices
w′, w′′, ŵ /∈ V (H) for each ww′ ∈ E− and w ∈ ∂H so that the graph induced on {w, w′, w′′, ŵ} is
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a path of length three (henceforth 3-path). Ĥ is an induced subgraph of G because, by definition,
ww′ ∈ E−, and either w′′, ŵ can be chosen from other components of G2− − E−, or one or both of
these vertices can be chosen from V (G) \ V (G2−). See Figure 3 for an illustration.

Note that when G2− is 2-edge-connected, then E− = Ø and Ĥ = G. More generally, Lemma 2.7
implies that if G is a bipartite probe interval graph and H is any component of G2− −E−, then Ĥ
is convex. This fact is fundamental for our recognition algorithm for bipartite probe interval graphs,
as is a result we establish, Lemma 4.3, which we foreshadow here by way of examples; this result
is part of the structure theorem, Theorem 2.9, we give directly below. Note that H10 = (X, Y, E)
of Figure 1 is not convex, as it has an ATX and and ATY. It has no consecutive U -star partition,
but the structure we use in the recognition algorithm and for the structure theorem is as follows.
(H10)2− is a cut-edge, say xy with x ∈ X and y ∈ Y , so the components of (H10) − E− are Hx

and Hy, paths of order five centered at x and y, respectively. Since Ĥx and Ĥy both contain a
subgraph isomorphic to T2, we observe that Ĥx contains an ATX and Ĥy contains an ATY. Finally,
we observe that x is in the same component of H10 − xy as Hx. Our remarks in the caption of
Figure 3, about Γ− xy, illustrate another example. We call this structure a generalized H10.

Definition 3 A bipartite graph G with partition (X, Y ) is a gneralized H10 if G2− contains 2-edge
connected components Hx and Hy such that Ĥx contains an ATX and Ĥy contains an ATY, and
every cut-edge e = xy (x ∈ X, y ∈ Y ) that separates Hx and Hy has the property that x and Hx are
in the same component of G− e.

The proof of correctness of our algorithm for bipartite probe interval graphs immediately yields
the following structural result.

Theorem 2.9 Let G be a bipartite graph. Then G is a probe interval graph if and only if, for any
component H of G−E−, Ĥ is convex, T3 of Figure 1 is not an induced subgraph of G, and G does
not contain a generalized H10.

3 Recognition of Bipartite Tolerance Graphs

The following results describe the structure of how blocks of a bipartite tolerance graph are arranged
and lead to a procedure for combining the CSPs for each B′ of the graph into a CSP for the entire
graph. The results of this section all appeared without proof in [8].

Lemma 3.1 If G is a bipartite tolerance graph and B is a block of G with |∂2B| ≥ 2, then |∂2B| = 2
and B′ has a CSP with |∂2B ∩ V (Si)| = 1 for i = 1, t.

Proof. Let G be a tolerance graph and B a block of G with |∂2B| ≥ 2. Since tolerance graphs are
hereditary and B∗ is an induced subgraph of G, it is also a tolerance graph and thus has a CSP,
say, S = S1, S2, . . . , St. Take v ∈ ∂2B and let Si be the star that contains the edge v′v′′. Note
that Si must be the single edge v′v′′ or the 2-path induced on N [v′]. In either case, by Lemma 2.1,
we see that V (Si−1) ∩ V (Si) is a cut-set of B∗, and since v′′ is not in any star other than Si, and
vv′ ∈ E(B∗), we note that the set V (Si−1) ∩ V (Si) does not separate any two vertices of B. Thus,
we conclude that i = 1 or i = t, and by deleting the vertices of V (B∗) \ V (B′), we obtain a CSP S ′
of B′ with v in the first or last star.

Now observe that for any v1 6= v2 in ∂2B, the edges v′1v
′′
1 and v′2v

′′
2 are in distinct stars of S, and

so the CSP S ′ must begin at a star containing v1 and end at a star containing v2 (or vice versa),
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and consequently |∂2B| = 2.

The following corollary is a direct consequence of the contrapositive of Lemma 3.1.

Corollary 3.2 If G is a bipartite graph and B is a block of G with |∂2B| > 2, then B∗ is not convex
and G is not a tolerance graph.

Lemma 3.3 If G = (X,Y, E) is a bipartite tolerance graph, B is a block of G with ∂2B = {v},
and v is at distance at most two from every other vertex of B′, then B′ has a CSP such that v is
contained in every star.

Proof. Let G, B, and v be as stated in the hypothesis. By Lemma 2.6, B∗ is convex and so we may
assume that B∗ is Y -consecutive with X = {x1, x2, . . . , xnx} ordered so that Nx is consecutively
ordered. If v ∈ Y , then this consecutive ordering induces a set of stars each of which contains v, so
that by deleting vertices of V (B∗) \ V (B′), we obtain the desired CSP of B′. So, we may assume
that v ∈ X. In this case the degree two vertex v′ added to B′ at v is in Y and that v′′ ∈ X.
Since v′′ has degree one, it can only be adjacent to v in the consecutive ordering, and so deleting
v′′ and v′, we obtain a consecutive ordering of X − v′′ in which v is first or last. In other words,
we can assume v′′ = x1, v = x2 and N(x2) = Y . Now for each y ∈ Y − v′, let f(y) be the minimal
index i such that y ∈ N(xi). Since N(x2) = Y − v′, f(y) is defined for each such y ∈ Y − v′ and
by the consecutive ordering of Nx, N(y) = {x2, x3, . . . , xf(y)}. Thus, we can index Y − v′ so that
f(yi) ≤ f(yj) whenever i < j and with this ordering N(y1), N(y2), . . . , N(yt), Ny is consecutively or-
dered. The stars induced on these closed neighborhoods then form a CSP of B′ with v in every star.

Note that since tolerance graphs are hereditary, Theorem 1.4 implies that if G has an induced
subgraph isomorphic to T3, then it is not a tolerance graph.

3.1 The Algorithm for Bipartite Tolerance Graphs

Theorem 1.1 and the results in the preceding sections provide the basis and justification for the
following algorithm, presented originally in [8], which recognizes bipartite tolerance graphs in time
linear with respect to the number of vertices and edges of the graph. We use degH(v) for the degree
of vertex v in graph or subgraph H, and ε′H(v) for the maximum distance from v to any other vertex
of graph or subgraph H. The block cut-point graph of G is the tree T with vertices the blocks and
cut-vertices of G, and vertices adjacent if and only if they are incident in G.

The following proof of correctness for Algorithm 1 is nearly identical to the proof from [8]; again
we include it here for comparison to Algorithm 2.

Theorem 3.4 Algorithm 1 is correct and runs in O(n + m) steps, where n = |V (G)| and m =
|E(G)|.

Proof. We first show that the algorithm is correct. If G − PG contains a block B such that B∗ is
not convex, then G is not a tolerance graph by Lemma 2.6. If B∗ is convex for every block and T
is not a path, then T has a vertex of degree 3 or more. This vertex does not represent a block of
G − PG, since for such a block, |∂2B| ≥ 3 and B∗ is not convex by Corollary 3.2. Therefore, this
vertex of T represents a cut-vertex v of G − PG and is at the end of a path of length three in at
least three different blocks. Thus G contains an induced subgraph isomorphic to T3, and is not a
tolerance graph by Theorem 1.4. In all other cases the algorithm returns true and we claim that a
CSP for G can be constructed as follows.
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Algorithm 1 G is a bipartite tolerance graph.

Input: G is a connected, bipartite graph
Output: This algorithm returns true if G is a bipartite tolerance graph and returns false otherwise.

1: Find PG, the set of all pendant vertices of G
2: Find all blocks of G1− and construct the block cut-point graph T of G1−

3: for all blocks B of G1− do
4: Construct B′ and B∗

5: if B∗ is not convex then
6: return false
7: else
8: if degT (B) = 1 and ε′B(c) ≤ 2 for the unique cut vertex c ∈ B then
9: Delete B from T

10: end if
11: end if
12: end for
13: if T is a path then
14: return true
15: else
16: return false
17: end if

Figure 4: Algorithm 1: Bipartite tolerance graph recognition algorithm.

For each block on the path that remains of T that is adjacent to two cut-vertices u and v on
this path, the associated graph B′ has a CSP that begins at star containing u and ends at a star
containing v by Lemma 3.1. Similarly, for any blocks B on the ends of this path adjacent to only one
cut-vertex v, B′ will have a CSP that begins or ends at a star containing v. Thus, we can combine
each of these CSPs into a CSP that contains every edge in an undeleted block. Finally, each block
B that was deleted from T is adjacent to a single cut-vertex v, and by Lemma 3.3 the associated
graph B′ has a CSP with v contained in every star. Thus we can insert this CSP into our combined
CSP at the beginning or end if the first or last star already contains v, or between any two stars that
both contain v. Two such stars must exist if the first and last star do not already contain v, since
in this case v must be contained in two blocks that were not deleted from T . Because every edge of
G is in at least one graph B′, this produces a CSP for G and so G is a tolerance graph by Theorem
1.1. In addition, by the algorithm described in [7], a tolerance representation can be constructed
from this CSP.

Now we show that the algorithm requires O(n + m) steps. We use nH and mH to denote the
number of vertices and edges respectively in a graph or subgraph H. Finding the set PG requires
O(n) time, and finding the blocks and cut-vertices of G−PG and building the block cut-point graph
T can be done in O(n + m) time, see [23] by Tarjan. Using these blocks, we can also construct the
graphs B′ where B is a block of G−PG that partition the edges of G and the matrices A(B∗), where
B is a block of G−PG in O(n) time. The verification that each B∗ is convex requires O(nB′ +mB′)
time, see [2] by Branstädt, Le, and Spinrad. Determining whether degT (B) = 1, concordantly
identifying the cut vertex c adjacent to B in T can be done in constant time, and because B is
bipartite we can determine if B′ contains an induced path of length three or more that begins at v
in O(nB′) time. Thus the total running time for all of these tests is

∑
B′ O(nB′ + mB′).

After all of the above tests are complete and the appropriate blocks have been deleted from T ,
testing that the graph remaining is a path requires O(nT ) = O(n + m) steps.

An easy induction proof shows that
∑

V (G) bv ≤ 2n, where bv is the number of blocks that contain
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v ∈ V (G). Hence the total running time is

∑

B′

O(nB′ + mB′) = O

(∑

B′

(nB′ + mB′)

)
= O


m +

∑

V (G)

bv


 = O(n + m)

as desired.

4 Recognition of Bipartite Probe Interval Graphs

In this section, we develop an analogous algorithm to recognize when a bipartite graph is a probe
interval graph when the probe/nonprobe partition is not given. The algorithm requires a connected
bipartite graph G with partite sets X and Y labeled. We create G2− and its corresponding block
cut-point graph BC(G2−). For probe interval graphs we are interested in maximal 2-edge-connected
subgraphs (including isolated vertices incident only with cut edges of G2−) and so we use BC(G2−)
to identify the set E− of cut-edges of G2−, and then form the bipartite graph BC∗(G2−), whose
vertices represent maximal 2-edge-connected subgraphs and cut-edges of G2− with an edge between
two vertices provided that a cut-edge and a 2-edge-connected subgraph intersect. Note that T3

of Figure 1 has the property T 2−
3 = BC(T 2−

3 ) = BC∗(T 2−
3 ) = K1,3. Lemma 4.1 shows that if

BC∗(G2−) is not a path, G has an induced T3. The converse however is not true, as shown in Figure
5; F = G− {u, v, w} has BC∗(F 2−) a path, yet F has an induced T3.

Lemma 4.1 Let G be a probe interval and H a component of G − E−. Then no more than two
cut-edges of G2− may be incident to H.

Proof. Suppose H has at least three cut edges w1w
′
1, w2w

′
2, w3w

′
3 of G2− incident to it with w1, w2, w3

not necessarily distinct. Each edge wiw
′
i is incident to a trivial 2-edge-connected (2EC) component,

the vertex w′i, or is incident to a non-trivial 2EC component. If wiw
′
i is incident to the trivial

component w′i, then (1) wi is incident to a path of length 3 〈wi, w
′
i, w
′′
i , ŵi〉 with deg(ŵi) = 1, or

(2) is incident to a path of length at least 2 connecting H to another non-trivial 2EC component,
or (3) to a path of length at least 4 terminating at a pendant vertex. A non-trivial 2EC component
contains at least an induced 4-cycle. Thus we may find an induced path of length 3 from each of
w1, w2, w3. So, regardless of whether w1, w2, w3 are distinct, G will have an induced T3 and cannot
be probe interval.

The following corollary is a consequence of Lemma 4.1 and will justify steps 4 and 5 of the
algorithm of Figure 6.

Corollary 4.2 Suppose G is a bipartite probe interval graph and H = {H1, H2, . . . ,Ht+1} is the set
of components of G2− minus E−. The elements of E− can be indexed e1, e2, . . . , et, with ei joining
Hi and Hi+1, for 1 ≤ i ≤ t, and H1 and Ht are incident to only one cut edge of G2−.

The contrapositive of the following Lemma gives the generalized H10 structure described in
Definition 3. It will also play a key role in the proof for correctness of our probe interval graph
recognition algorithm.

Lemma 4.3 Let G be a bipartite graph with partition (X,Y ), and let Hx and Hy be components of
G − E− such that Ĥx contains an ATX and Ĥy contains an ATY. If G is a probe interval graph
then there is some edge e = xy that separates Hx and Hy such that y is in the same component of
G− e as Hx.
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Figure 5: A graph for which BC∗(G2−) is not a path. Circled vertices in BC(G2−) correspond to
cut vertices; in BC∗(G2−) they are maximal 2-edge-connected subgraphs.

Proof. Let G be a minimal counter-example. Then G is a probe interval graph which satisfies the
hypothesis, but has no edge as indicated. Then G has a CUSP S = {S1, S2, . . . , St} by Theorem 1.2;
suppose further that S was chosen to have the fewest possible K2s in U and note that since G has
an ATX and an ATY, there must be some Sj which is a K2 contained in U , by Theorem 2.4. Note
that by reversing our indexed order of S if necessary, we may assume Hx is in the graph induced by⋃j−1

i=1 Si. We now choose the minimal index j such that Sj is a K2 in U . If the center of Sj−1 is in
Y , then either Hy is also in the graph induced by

⋃j−1
i=1 Si contradicting our choice of G as minimal,

or the edge Sj satisfies the lemma. On the other hand, if the center of Sj−1 is in X, then by our
choice of j, every star Si with i < j has center in X, including all the stars which include edges of
Hx, contradicting Theorem 1.3.

The next result complements Lemma 2.7 and Lemma 4.1 and will justify steps 7 through 13 in
Algorithm 2 of Figure 6.

Lemma 4.4 If G is a bipartite probe interval graph, then for each maximal 2-edge-connected sub-
graph H of G2−, Ĥ as constructed in section 2.2 is convex.

Proof. Assume G is a bipartite probe interval graph with bipartition (X, Y ), choose a compo-
nent H of G − E−, and recall that Ĥ is an induced subgraph of G; thus Ĥ has a CUSP, call it
U = U1, U2, . . . , Ut, with respect to the partition (U, N). If either |V (Ui)∩X| = 1 or |V (Ui)∩Y | = 1,
for 1 ≤ i ≤ t, then this ordering gives a consecutive ordering of the neighbors of Y or of X, respec-
tively, and so Ĥ is convex. So, we assume that there are indices i < j for which |V (Ui)∩X| ≥ 2 and
|V (Uj) ∩ Y | ≥ 2, relabeling partite sets if necessary. Furthermore, from the definition of a U -star,
and using cr to denote the center of Ur, it follows that ci ∈ Y , cj ∈ X, and that for each k satisfying
i < k < j, Uk is a cut-edge of Ĥ. Since the only cut-edges of Ĥ are from E(Ĥ) \E(H), and each Uk

separates Ui and Uj , we conclude that i = 1, U1 is the path of length two induced by {w′, w′′, ŵ}
for some w ∈ ∂H ∩ Y . It then follows that c1 = w′′ and U2 is the edge ww′. Since U1 is a U -star
with more than two vertices, U ∩ V (U1) = {c1} and hence w′ ∈ N , and as U2 is also a U -star, it
follows that w ∈ U ∩ Y . But then either j = 3 and c3 = w, contradicting our assumption that
c3 ∈ X, or U3 is a cut-edge. In the latter case, it follows immediately that V (H) = {w}. But in
this case, we can conclude from Theorem 4.1 that Ĥ is isomorphic to P7, which is obviously convex.

Finally, we show that the U -stars of any CUSP for any Ĥ corresponding to bipartite probe
interval graph G must be chosen so that the vertices ŵ, w′′ of a 3-path incident to w ∈ ∂H are in
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the first or last U -star of the CUSP. The proof of this fact is very similar to Lemma 3.1, although
note that in this case we allow for the possibility that u = w.

Lemma 4.5 Suppose G is a bipartite probe interval graph and Ĥ corresponds to some maximal
2-edge-connected subgraph of G. If the CUSP for Ĥ is U = U1, U2, . . . , Ut and u, w ∈ ∂H, then
û, u′′ ∈ U1 and w′′, ŵ ∈ Ut or vice-versa.

Proof. With H,u, and w as stated, note that uu′ and ww′ are cut-edges of G2−. We argue for
û, u′′, u′, u at the (wlog) beginning of the CUSP; the argument for the 3-path incident to w is
similar. The edge uu′ does not separate any vertices of H and so U1 is either the K2 on {û, u′′}
or the 2-path induced by N [u′′] and U2 is either the 2-path induced on N [u′] or contains {u′, u},
respectively.

4.1 The Algorithm for Bipartite Probe Interval Graphs

We are now ready to present the algorithm for recognizing bipartite probe interval graphs. For G a
connected bipartite graph, note that Lemma 4.1 implies that BC∗(G2−) has maximum degree two,
and since this graph is clearly acyclic we conclude that BC∗(G2−) is path. If so, each Ĥ is tested to
ensure that it is convex, and we use the structure of BC∗(G2−) to set a variable U -Part to specify
whether the current Ĥi’s U assignment forces the U assignment of Ĥi+1. This happens if the only
possible U assignment of Ĥi forces the connection point, V (Hi) ∩ ei, to be a non-U -vertex. Then
ei ∩ V (Hi+1) must be a U -vertex. Essentially, this aspect of the algorithm tests for a generalized
H10 in G. If the algorithm returns true, then we may assemble a CUSP for G, as we show in the
proof of correctness for the algorithm.

Algorithm 2 G is a bipartite probe interval graph.

Input: Connected bipartite graph G = (X, Y, E).
Output: This algorithm returns true if G is a bipartite probe interval graph and returns false otherwise.

1: Form G2−;
2: Form BC(G2−);
3: Form BC∗(G2−);
4: If BC∗(G2−) is not a path return false;
5: Index E− = {xiyi | 1 ≤ i ≤ t} the set of cut edges of G2−,

and H = {H1, . . . , Ht+1} the components of G− E−, with xiyi separating Hi and Hi+1 (1 ≤ i ≤ t);
6: U -Part ← “”
7: For i = 1 to t + 1

8: Construct bHi from Hi

9: If bHi contains an ATX then
10: if U -Part = “X” then return false
11: else U -Part ← “Y ”

12: If bHi contains an ATY then
13: if U -Part = “Y ” then return false
14: else U -Part ← “X”
15: If i = t + 1 return true
16: If (U -Part = “X” and xi ∈ V (Hi)) or (U -Part = “Y ” and yi ∈ V (Hi) ) then U -Part ← “”
17: end for

Figure 6: Algorithm 2: Bipartite probe interval graph recognition algorithm.
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Theorem 4.6 Algorithm 2 of Figure 6 is correct and runs in O(n + m) time, where n = |V (G)|
and m = |E(G)|.

Proof. First, we show that the algorithm is correct. If the algorithm returns false, either BC∗(G2−)
is not a path, Ĥc has both an ATX and an ATY for some index c, or Ĥc has an ATX (or ATY)
and the value of U -Part is “X” (or “Y ”) for some index c. When BC∗(G2−) is not a path, G2−

contains a maximal 2-edge-connected subgraph incident with three or more edges, and G is not a
probe interval graph by Corollary 4.1; the algorithm correctly returns false in this circumstance.
When Ĥc is not convex for some index c, then G is not a probe interval graph by the contrapositive
of Lemma 4.4. In the last case, we claim that G contains a subgraph which is not a probe interval
graph by Lemma 4.3. We assume that the algorithm returns false when i = c, and without loss of
generality Ĥc contains an ATY. Since the algorithm returns false, at some previous step, U -Part
was set to “Y ” by the algorithm, which happens only if Ĥi contains an ATX for some i < c. Let
a be the maximal index a < c such that Ĥa contains an ATX. First, note that U -Part has a value
of “Y ” at every step between a and c. Otherwise, it must be reset to “Y ” at some subsequent step
prior to i = c, and this would imply that Ĥb contains an ATX for some a < b < c. It now follows
that xb ∈ V (Hb) for each index b, a ≤ b < c, otherwise yb ∈ V (Hb) and the algorithm would set
U -Part to “”. Thus, G is not a probe interval graph by the contrapositive of Lemma 4.3, as the
edges of G which separate Ha and Hc are ea, . . . , ec−1 and for each separating edge e = xy, Ha and
x are in the same component of G− e.

Now we claim that if the algorithm returns true, a CUSP for G may be assembled and hence
G is a bipartite probe interval graph by Theorem 1.2. Since BC∗(G2−) is path, the set E− and the
components of G− E− can clearly be indexed as indicated in the algorithm. Let Xi = V (Hi) ∩X,
Yi = V (Hi) ∩ Y , and re-label the vertices of ei = xiyi as wivi such that wi ∈ V (Hi). Since the
algorithm returns true, Ĥi is convex for each 1 ≤ i ≤ t + 1. Thus, by Lemma 4.5, H1 has a CUSP
S1 which ends at w1, Ht+1 has a CUSP St+1 which begins at vt and Hi has a CUSP Si beginning at
vi−1 and ending at wi for each 1 ≤ i ≤ t. We will show that it is possible to construct each Si with
U -Part Ui such that S = S1, e1,S2, e2, . . . ,Si, ei, . . . ,St+1 is a CUSP for G with U =

⋃t+1
i=1 Ui. To

this end, it suffices to show that the CUSPs Si can be chosen so that no ei has both vertices assigned
to N . Proceeding in a manner similar to that in Lemma 2.6, assume that among all choices of these
CUSPs we have selected ones so that the minimal index c for which ec has both its vertices in N is
as large as possible and, without loss of generality, that wc = xc and vc = yc. If Ĥc+1 contains no
ATY, then this graph has a CUSP S ′c+1 such that yc ∈ Uc+1, and by replacing Sc+1 with S′c+1 we
obtain S ′ such that ei has at least one endpoint in U for each 1 ≤ i ≤ c, contradicting our choice
of Sc+1 so that this minimal index c was maximal. Thus, we may conclude that Ĥc+1 must have
an ATY. But since the algorithm returns true, we must have (1) Ĥc+1 contains no ATX, and (2)
U -Part 6= “Y ” at the beginning of step c + 1 of the algorithm. We can eliminate the possibility
that U -Part = “X” at the beginning of step c + 1 by observing that wc = xc ∈ V (Hc), so U -Part
would be reset to “” by instruction 16 during step c. Thus, we can assume that U -Part = “” at the
end of step c and the beginning of step c + 1. From this we conclude that Ĥc contains no ATX.
Furthermore, if Ĥc contains an ATY, then Uc = Xc and wc ∈ U , contradicting our choice of c so
that no vertex of ec is in U . Thus, Hc is biconvex. Now, let a < c be the maximal index such that⋃c

i=a V (Hi) is not biconvex. If no such a exists, we can choose CUSPs S ′i so that U ′i = Xi and thus
ei has at least one vertex in U , for each 1 ≤ i ≤ c contradicting our choice of c. So a exists, and
we consider the value of U -Part at the end of step a. If U -Part = “”, then wa ∈ Ua and we simply
choose CUSPs S ′i for a < i ≤ c such that U ′i = Xi, again contradicting the choice of c so that both
ends of ec are in N . Similarly, if U -Part = “X”, then wa /∈ X and so va ∈ X. Then we can choose S ′i
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for a < i ≤ c such that U ′i = Xi, and wc ∈ U , contradicting our choice of S so that c was maximal.
Finally, if U -Part = “Y ”, then at some index b with a < b ≤ c, instruction 16 must reset U -Part to
“” on step b and this, in turn, implies that wb = yb ∈ U . In this case, we can choose CUSPs S ′i for
b < i ≤ c with U∗i = Xi and obtain a CUSP S∗ where ei has at least one vertex in U for 1 ≤ i ≤ c,
contradicting our choice of S so that c was maximal.

We now show that the algorithm requires O(n + m) steps. Clearly, constructing G2− requires
O(n) steps, and as noted previously, constructing BC(G2−) requires O(n + m) steps, which also
implies that we can determine the set E− of cut-edges of G2− in O(n + m) steps. Furthermore,
deleting an edge can be done in constant time, and as a result we can construct G − E− in O(m)
time, and determine the components of G−E− in O(n + m) time. It then follows that constructing
BC∗(G2−), determining if this graph is a path, and if so, indexing the components of G2− and edges
of E− as described in the algorithm can all be done in O(n + m) steps. Now let ni = |V (Hi)| and
mi = |E(Hi)|. Determining ∂Hi requires at most ni steps, and constructing Ĥi from Hi will require
the addition of at most 6 additional vertices and edges, since BC∗(G2−) has been checked to be a
path when Ĥi is to be constructed. As in the algorithm for bipartite tolerance graphs, testing Hi

for an ATX and an ATY will require O ((ni + 6) + (mi + 6)) steps, and determining which vertex of
ei = xiyi is in Hi and setting the new value of U -Part clearly can be done in constant time. Thus
the total time required for the algorithm is

O(n + m) +
t+1∑

i=1

O ((ni + 6) + (mi + 6)) = O(n + m) + O

(
t+1∑

i=1

((ni + 6) + (mi + 6))

)

To complete the proof, we observe
∑t+1

i=1 ((ni + 6) + (mi + 6)) ≤ O(n + m): since each vertex is in
a unique Hi,

∑t+1
i=1(ni + 6) = n + 6t + 6, and since each edge of G2− is either in E− or in a unique

Hi, we have
∑t+1

i=1(mi + 6) ≤ (m − t) + 6t + 6. Finally, since t represents the number of cut edges
of G2−, t = O(m). Therefore, Algorithm 2 runs in time O(n + m).

5 Conclusion

Algorithms 1 and 2 and the structural characterizations that result show the close relationship
between convex bipartite graphs and the classes of bipartite tolerance graphs and bipartite probe
interval graphs. We expect that Theorems 2.8 and 2.9 can be used to generate a list of mini-
mal forbidden subgraphs for the classes of bipartite tolerance and bipartite probe interval graphs,
respectively.

Specifically, our results show that if a bipartite graph is not a tolerance graph then it either
contains a T3 or an induced subgraph that is two connected after removing pendant one- and two-
edge paths and is not convex. That is, it has an asteroidal triple in both sets of the bipartition. Our
algorithm can be modified to output such graphs when found. Determining a list of minimal such
subgraphs appears to be a bit more complicated. Tucker’s list in [24] of forbidden subgraphs for an
asteroidal triple in one partite set might be a starting point for developing such a list. Our results
also show that if a bipartite graph is not a probe interval graph then it contains a T3 or an induced
subgraph that is two edge connected after removing pendent paths with one, two, or three edges,
and is not convex or a generalized H10. Our algorithm can be modified to output such graphs when
found. Developing a list of minimal forbidden subgraphs for bipartite probe interval graphs will
require such a list for minimal nonconvex graphs that are two edge connected graphs after removing
pendent paths with one, two or three edges. In addition we would need a list of minimal graphs
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containing a generalized H10. We can show that the blocks of these minimal graphs are arranged
linearly, and, except for the ends, are edges, ladders, K3,3 minus a matching, and 4 cycles with some
additional conditions as suggested by figure 7. However details of a complete characterization of
minimal generalized H10’s remain incomplete.

In theory, these observations provide a foundation for a conceptually simple certification pro-
cedure when Algorithms 1 and 2 return false. However, it seems likely that the list of forbidden
subgraphs for bipartite tolerance graphs and bipartite probe interval graphs will be large and include
subgraphs with a large number of vertices. As a result, a more nuanced certification procedure may
be desirable.

Figure 7: A generalized H10 with the darkened vertices being the X-partition. Deleting any vertex
yields a probe interval graph: removal of any pendant or cut-vertex results in a convex graph, and
removal of any other vertex leaves cut-edges of the form described in Lemma 4.3, which allows for
a CUSP which contains a K2 with both vertices in U .
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