
Math 163 Introductory Seminar - Lehigh University - Spring 2008 - Assignment 1 Solutions
Due Wednesday January 23

1. Let W be a set of men and M a set of women (with the same number of men and women,
|W | = |M | = n) and E a set of pairs (w,m) with w ∈ W and m ∈ M .

If there are subsets R ⊆ W and S ⊆ M such that |R| + |S| < n and every pair in E contains
at least one member of R ∪ S (that is, for each (w, m) ∈ E either w ∈ R or m ∈ S or both),
then there is no matching of the men and women with each pair from E. The marriage theorem
shows that the converse also holds: if there is no matching of the men and women then there
are R and S as described in the previous sentence.

Another condition is as follows: If there is a set T of women who ‘like’ strictly less than |T | men
then there is no matching of the men and women. More formally, if there is T ⊆ W such that
|{m|(w, m) ∈ E for some w ∈ T}| < |T | then there is no matching of the men and women. Use
the marriage theorem to prove that the converse also holds: if there is no matching of men and
women then there is a set T as described in the previous sentence.

If there is no matching then by the marriage theorem there are subsets R ⊆ W and S ⊆ M
such that |R| + |S| < n and for each (w, m) ∈ E either w ∈ R or m ∈ S or both. So, if
(w, m) ∈ E and w ∈ W − R then m ∈ S. Thus {m|(w,m) ∈ E for some w ∈ W − R} ⊆ S.
Then, using |S| < n − |R| and |W − R| = n − |R| we have |{m|(w, m) ∈ E for some w ∈
W −R}| ≤ |S| < n− |R| = |W −R| and so T = W −R give the desired set.

2. Prove by induction that the Fibonacci numbers satisfy the following formula:
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We prove that the formula is correct using mathematical induction. Since F0 = 1√
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5 = 1 the formula holds for n = 0 and n = 1. For n ≥ 2, by induction
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. Hence by induction the formula holds for all n = 0, 1, . . ..



3. Prove by induction that
∑n

i=1 i2 = n(n+1)(2n+1)
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When n = 1 we have
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