Notes for Math 446, Fall 2004 Lehigh University: An alternate proof of Tutte's Matching Theorem. This follows the proof in exercises 6.2.41 - 6.2.43.

Recall Tutte's Theorem: A graph G has a perfect matching if and only if $odd(G-S) \leq |S|$ for all $S \subseteq V(G)$.

A graph is factor critical if every subgraph obtained by deleting a single vertex has a perfect matching.

Proof: Let G be a graph such that $odd(G - S) \leq |S|$ for all $S \subseteq V$. Let T be a maximal subset such that odd(G - T) = |T|. Such a subset exists since equality holds for the emptyset: with $S = \emptyset$ we have |S| = 0 and since $0 \leq odd(G - S) \leq |S|$ we must have equality. Note that every component of G - T is odd: If G - T has an even component C then let v be a leaf of a spanning tree of C. Then the odd components of $G - (T \cup \{v\})$ are the odd components of G - T along with $C - \{v\}$. So $|T \cup \{v\}| = |T| + 1 = o(G - T) + 1 = o(G - T \cup \{v\})$ contradicting the maximality of T. Thus G - T has no even components. If $T = \emptyset$, Tutte's condition gives no odd components and the previous observation gives no even components so G must be empty. So we may assume $T \neq \emptyset$.

Next we show that every component of G - T is factor critical. From above all components are odd. Since |C - x| is even, in C - x, o((C - x) - S) must have the same parity as |S|. Hence if o((C - x) - S) > |S| we must have $o((C - x) - S) \ge |S| + 2$. Then consider $T \cup S \cup \{x\}$ in G. Deleting this gives the odd components of G other than C along with the odd components of (C - x) - S. So $|T \cup S \cup \{x\}| = |T| + 1 + |S| \le o(G - T) + 1 + (o((C - x) - S) - 2) = o(G - T) + o((C - x) - S) - 1 = o(G - (T \cup S \cup \{x\}))$, contradicting the maximality of T. Thus, by induction there is a perfect matching in C - x.

Let H be a bipartite graph with partite sets T and \mathbb{C} where \mathbb{C} is the set of components of G - T. For $t \in T$ and $C \in \mathbb{C}$ put an edge between t and C in H if and only if $N_G(t)$ contains a vertex of C. We will show that H has a matching saturating \mathbb{C} using Hall's Theorem. For $A \subseteq \mathbb{C}$ let $B = N_H(A)$. The elements of A are odd components of G - B hence $|A| \leq o(G - B)$. Since Tutte's condition yields $o(G - B) \leq |B|$ we have $|N_H(A)| \geq |A|$.

Now, by Hall's Theorem and the previous paragraph, H has a matching that saturates \mathbf{C} . This matching yields o(G - T) = |T| pairwise disjoint edges from odd components of G - T to T. These are all of the components of G - T. These edges saturate one vertex from each component of G - T. Since the components are factor critical the vertices remaining in each component of G - T are saturated by a perfect matching. The union of these matchings along with the pairwise disjoint edges above is a perfect matching in G. \Box

The above proof actually nearly shows (with a little extra work for graphs with no perfect matching) the Gallai-Edmonds decomposition: There is a partition of the vertex set of G into parts $R_1, R_2, \ldots, R_l, T, C_1, C_2, \ldots, C_k$ such that k = |T| + def(G). The even components of G - T are the R_i and the odd components the C_j . The C_j are factor critical. Every maximum matching in G consists of perfect matchings in the R_i , |T| edges between T and |T| of the C_i and perfect matchings in $C_j - x_j$ for some x_j in C_j . Each vertex of each C_j is unsaturated in some maximum matching and all vertices in T and the R_i are saturated in all maximum matchings.