
Linear Programming Duality Theorem from the Theorem of the Alternative for Inequalities:

(Notes for Math 446, Fall 2004 Lehigh University.)

We will assume the Theorem of the Alternative for Inequalities in the following form:

Exactly one of the following holds:

(I) Ax ≤ b,x ≥ 0 has a solution x
(II) yA ≥ 0, y ≥ 0, yb < 0 has a solution y

and use this to prove the following duality theorem for linear programming.

In what follows we will assume that A is an m×n matrix, c is a length n row vector,
x is a length n column vector of variables, b is a length m column vector and y is a
length n row vector of variables. We will use 0 for zero vectors, 0 for zero matrices,
and I for identity matrices where appropriate sizes will be assumed and clear from
context.

We will consider the following primal linear programming problem max{cx|Ax ≤ b,x ≥ 0}
and its dual min{yb|yA ≥ c,y ≥ 0}. (It can be shown that we can use maximum
instead of supremum and minimum instead of infimum as these values are attained
if they are finite.)

The primal is feasible if the polyhedron {x|Ax ≤ b,x ≥ 0}, called the feasible region,
is non-empty and infeasible otherwise. Similarly, the dual is feasible if {y|yA ≥ c, y ≥
0} is non-empty. The primal is unbounded if the problem is feasible and the maximum
does not exist and the dual is unbounded if it is feasible and the minimum does not
exist.

Weak Duality Theorem of Linear Programming: If both the primal and dual
are feasible then max{cx|Ax ≤ b,x ≥ 0} ≤ min{yb|yA ≥ c, y ≥ 0}.
Proof: For any feasible x∗ and y∗ we have

cx∗ ≤ (y∗A)x∗ = y∗(Ax∗) ≤ y∗b

where the first inequality follows since x∗ ≥ 0 and y∗A ≥ c and the second inequality
follows since y∗ ≥ 0 and Ax∗ ≤ b. 2

Strong Duality Theorem of Linear Programming: If both the primal and dual
are feasible then max{cx|Ax ≤ b,x ≥ 0} = min{yb|yA ≥ c,y ≥ 0}.
Proof: By weak duality we have max ≤ min. Thus it is enough to show that there
are primal feasible x∗ and dual feasible y∗ with cx∗ ≥ y∗b. We get this if x∗,y∗ is a
feasible solution to

Ax ≤ b,x ≥ 0,yA ≥ c,y ≥ 0, cx ≥ yb. (1)
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We can write (1) as A′x′ ≤ b′,x′ ≥ 0 where

A′ =




A 0

−c bT

0 −AT


 and x′ =

[
x
yT

]
and b′ =




b
0

−cT


 (2)

By the Theorem of the Alternative for Inequalities if (2) has no solution then

y′A′ ≥ 0,y′ ≥ 0,y′b′ < 0 (3)

has a solution. Writing
y′ =

[
r s t

]

(3) becomes

rA− sc ≥ 0, sbT − tAT ≥ 0, r ≥ 0, s ≥ 0, t ≥ 0, rb− tcT < 0. (4)

If we show that (4) has no solution then (1) must have a solution and we will be done.

Observe that s is a scalar (a number) as are rb and tcT . Assume that (4) has a
solution r∗, s∗, t∗ and reach a contradiction.

Case 1: s∗ = 0. Then r∗A ≥ 0, r∗ ≥ 0. By the Theorem of the Alternative and since
Ax ≤ b,x ≥ 0 has a solution we must have r∗b ≥ 0. Then, with r∗b− t∗cT < 0 we
must have t∗(−cT ) < 0. Now, t∗(−AT ) ≥ 0, t∗ ≥ 0, t∗(−cT ) < 0. By the Theorem
of the Alternative there is no solution to (−AT )z ≤ (−cT ),z ≥ 0. This contradicts
dual feasibility (taking as z the transpose of any dual feasible solution).

Case 2: s∗ 6= 0. Let r′ = r∗/s∗ and t0 = (t∗/s∗)T . Then, from (4) we have

r′A ≥ c, At′ ≤ b, r′ ≥ 0, t′ ≥ 0, r′b− ct′ < 0.

But r′b − ct′ < 0 implies ct′ > r′b contradicting weak duality. Thus, (4) has no
solution and hence (1) has solution. 2

We can in fact easily show that if either the primal or the dual has a finite optimum
then so does the other. (This will be a homework problem.) Weak duality shows that
if the primal or dual is unbounded then the other must be infeasible. Thus there are
four possibilities for a primal-dual pair: both infeasible; primal unbounded and dual
infeasible; dual unbounded and primal infeasible; both primal and dual with equal
finite optima.

Complementary Slackness Theorem: If x∗ is optimal for the primal and y∗ is
optimal for the dual then for i = 1, 2, . . . ,m and j = 1, 2, . . . , n:
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(i) Either (RowiA)x� = bi or y∗i = 0
(ii) Either y∗(ColumnjA) = cj or x∗j = 0.

Proof: From strong duality cx∗ = y∗b and thus the inequalities in the proof of weak
duality must hold with equality. Writing out y∗(Ax∗) − y∗b = 0 as a sum we get
m∑

i=1

y∗i ((RowiA)x� − bi) = 0. Since y∗ ≥ 0 and Ax∗ − b ≥ 0 each term is non-

negative. Hence, for equality each term must be zero and (i) follows. We get (ii) in
a similar manner. 2

The terminology in the previous theorem comes from slack variables. Using slack
variables s, Ax ≤ b,x ≥ 0 is equivalent to Ax + Is = b, s ≥ 0,x ≥ 0. The ith

entry of s records the slack (the gap) between the ith entry of Ax and the uth entry of
b. The complementary slackness theorem (part (i)) states that for each i, either the
slack in the ith inequality is zero (equality holds) or the corresponding dual variable
is zero.
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