
Solutions to Homework 9
Combinatorics (Math 446) Fall 2004 Lehigh University

1.1.8 (a) The number of even elements in [n] is bn/2c. So there are 2bn/2c subsets avoiding
odd elements and 2n − 2bn/2c contain at least on eodd number.

(b) If {a1, a2, . . . , ak} is a subset of [n] with no consecutive integer we may assume that the
labels are such that a1 < a2 < · · · ak. Indeed aj > aj−1+1. Define b1, b2, . . . , bk by bi = ai−i+1
for i = 2, 3, . . . , k. Observe that the bi are distinct (since aj > aj−1 + 1) and correspond to a
subset of n−k+1 and that this process can be reversed so that we have a bijection between k
subsets of [n] with no consecutive integer and k subsets of n−k+1. So the answer is

(
n−k+1

k

)
.

(c) If and element is in Ai then it is in Aj for all j ≥ i. Thus we specify the lists by specifying
for each element the index of the first subset for which it appears. For A0 ⊂ A1 ⊂ · · · ⊂ An

in order to maintain ⊂ at least one element can be added for each of the n ⊂’s. Since there
are n elements we must have A0 = ∅ and one element added for each other subscript yielding
n!. For A0 ⊆ A1 ⊆ · · · ⊆ An there are n + 1 subscripts for when each element first appears or
it may not appear at all. Thus the list corresponds to a list of length n from n + 2 symbols.
So the answer is (n + 2)n.

1.1.22 Assume poker hands here. So in two-pair the remaining card is a different rank from
the ones in the pair, in three-of-a-kind the remaining two cards are different ranks (to avoid
a full house) and different from the rank of the three (to avoid four-of-a-kind), a straight is
not a straight flush and a flush is not a straight flush. There are 123,552 two-pair hands,
54,912 three-of-a-kind, 10,200 straights and 5,108 flushes. With

(
52
5

)
= 2, 598, 960 hands the

probabilities are respectively .047539, .021129, .003925, .001965.

To get the counts:

two-pair:
(

13
2

)
ways to pick the ranks for the pair and

(
4
2

)(
4
2

)
to pick the suits for the two

cards of each of the pairs, 11 choices (different from the pairs) for the rank of the remaining

card and 4 choices for its suit - total is

(
13

2

)(
4

2

)(
4

2

)
(11)(4) = 123, 552

three-of-a-kind: 13 ways to pick the rank for the three and
(

4
3

)
= 4 ways to pick the suits

of the three cards,
(

12
2

)
ways to pick two different ranks from the remaining 12 ranks for the

other two cards and (4)(4) ways to pick their suits - total is (13)(4)

(
12

2

)
(4)(4) = 54, 912

straights: 10 possible ranks to start with and 45 − 4 ways to pick the suits of the five cards
(the minus 4 omits the 4 cases of straight flushes where all suits are the same) - total is
10(45 − 4) = 10, 200

flushes: 4 choices for the flush suit and
(

13
5

)
ways to pick five cards of this suit and then omit

the (10)(4) straight flushes - total (4)

(
13

5

)
− (10)(4) = 5, 108

1.1.33 There are several simple ways to count the number of placements of m distinct flags
on r flagpoles. Here are two similar ones:



Version 1: If the labels on the flags are removed we have a placement of m indistinct flags on
r flagpoles. The number of such placements is the number of non-negative integral solutions
to

∑r
i=1 xi = m with the xi indicating how many flags are on pole i. (This then equals the

number of m element multisets of an r set.) There are
(

m+r−1
m

)
such solutions. For each

such unlabelled placement there are m! ways to label the flags. Hence we get
(

m+r−1
m

)
m! =

(m + r − 1)!/(r − 1)! = r(m)

Version 2: Each placement of flags on the poles corresponds to an anagram of with m distinct
symbols (the labels on the flags) along with one symbol | repeated r−1 times. The lists between
the | give the placements of the flags on each of the poles. There are (m+r−1)!/(r−1)! = r(m)

such anagrams.

To show (x + y)(n) =
∑n

k=0

(
n
k

)
x(k)y(n−k) consider placing n distinct flags onto a set of x + y

flagpoles. We count this in two ways. Directly we get (x + y)(n) from the first part of
the problem. Alternatively, note that there are k flags on the first x poles where k can be
0, 1, 2, . . . , n. For each such k we choose the k flags on the first x poles in

(
n
k

)
ways and then

place the flags on the first x poles in x(k) ways and place the remaining n− k flags on the last
y poles in y(n−k) ways. So for each k we have

(
n
k

)
x(k)y(n−k) ways of placing the flags. Summing

over k we get the identity.

1.1.36 The period of a sequence of length n is the smallest k such that the sequence can
be written as n/k copies of an identical string of length k. Call two sequences equivalent if
they are cyclic shifts of each other. It is straightforward to check that sequences in the same
equivalence class have the same period and the number in a class is equal to that period.
Since n/k is an integer the period divides the length. Thus, when the length p is a prime the
only possible periods are 1 and p. The are a period 1 strings (these are strings with every
term the same). The remaining ap − a sequences are divided into equivalence classes each of
size p. So p must divide ap − a.

1.2.2 Both sides count the number of subset pairs A,B of [m + n] with A ⊂ B and |A| = k

and |B| = m + k. For the left side there are
(

m+n
m+k

)
ways to select B and then

(
m+k

k

)
ways to

select A as a subset of B. For the right side there are
(

m+n
m

)
ways to select B − A and

(
n
k

)

ways to select A from the remaining n elements.

1.2.11 Observe that the j = m term in the sum is 0. Then we obtain a recursion for f(m)

f(m) =
m−1∑

j=1

(m− j)2j−1 =
m−1∑

j=1

(m− j − 1)2j−1 +
m−1∑

j=1

2j−1 = f(m− 1) + 2m−1 − 1



Here we have used
m−1∑

j=1

2j−1 =
m−2∑

i=0

2i = 2m−1 − 1. Note that f(1) = 0. Then

f(m) = f(m− 1) + (2m−1 − 1)
= f(m− 2) + (2m−2 − 1) + (2m−1 − 1)
...

...
= f(m− i) + (2m−i − 1) + · · ·+ (2m−j − 1) + · · ·+ (2m−1 − 1)
...

...
= f(1) + (2m−(m−1) − 1) + · · ·+ (2m−j − 1) + · · ·+ (2m−1 − 1)
= 0 +

∑m−1
j=1 2m−j −∑m−1

j=1 1
= (2m − 2)− (m− 1)
= 2m −m− 1

Once we know the formula (obtained for example as above or by some other means) we can
easily prove its correctness by induction and the recursive formula we got first. (The steps
above actually prove it also, so wouldn’t be necessary. However it is useful to see how one
might arrive at the formula.) The basis for the induction is easy to check 0 = f(1) = 21−1−1.
Then, by the recursion and by induction

f(m) = f(m−1)+(2m−1−1) = (2m−1−(m−1)−1)+(2m−1−1) = 2 ·2m−1m−1 = 2m−m−1

and by induction the formula is correct.

For a combinatorial proof count the subsets of size at least 2 from [m] = {1, 2, . . . , m}. This
is 2m − 1 as there are m size 1 subsets and 1 size 0 subset omitted from all of the 2m subsets.
For the sum, partition the subsets (of size at least 2) based on the second largest element j
and sum over possible values of j. If the second largest element is j then there are 2j−1 ways
to pick the elements other than the largest two and m− j choices for the largest element for
a total of (m− j)2j−1 subsets of size at least two with largest element j.

1.2.12 (a)
(

2n
n

)
is the number of size n subsets of [2n] = {1, 2 . . . , 2n}. Alternatively, the size n

subsets of [2n] consist of complementary pairs S, S. Exactly one of each pair does not contain

2n and there are
(

2n−1
n−1

)
such sets and hence 2

(
2n−1
n−1

)
pairs.

(b) Both sides count the number of pairs R,S where R ⊆ S ⊆ [n] and |R| = l. For the right

side we select R in
(

n
l

)
ways and for each choice there are 2n−l ways to select S − R from

[n] − R. For the left side sum over all possible sizes for S. Select S in
(

n
k

)
ways and then

select R from S in
(

k
l

)
ways.

(c) Consider all length n strings with entries from [q] except for the string of all q’s. Call two
strings equivalent if they are identical except for the last entry that is not q. There are q − 1
strings in each equivalence class and hence (qn − 1)/(q − 1) equivalence classes. The left side
also counts this. The last non q entry can be in location k for k = 1, 2, . . . , n, for each the
first k − 1 terms can be selected in qk−1 ways and each such choice completed with a non q
term followed by all q’s determines an equivalence class. Summing over possible choices of k
gives the left side.



(d) There is a typo; the upper limit in both sums should be n.

Both sides count the number of size 3 subsets of [n + 1]. For the sum on the right partition
the sets based on the largest element. It can be i + 1 for i = 2, 3, . . . , n. For each such choice
there are

(
i
2

)
ways to pick the smaller two elements. Summing gives the right side. (Note

that
(

1
2

)
= 0 so we can add i = 1 to the sum.) For the sum on the left partition based on the

middle element (in terms of value). It can be i + 1 for i = 1, 2, . . . , n. For each such choice
there are i choices for the smaller element and (n + 1)− (i + 1) = n− i choices for the larger
element. Summing give the left side.

1.3.4 The arrangement of people corresponds to a 2 × n array A with entries 1, 2, . . . , 2n
(corresponding to height order) increasing in rows and columns; a1j < a1j′ and a2j < a2j′ for
j < j′ and a1j < a2j for j = 1, 2, . . . , n. Given such an array, construct a list b1, b2, . . . , b2n

by letting bi = 1 if i appears in row 1 and bi = 0 if i appears in row 2. So the bi sequence
has 2n terms of which half are one and half are zero. If bi = 1 and i appears in a1j′ then
a1j < a1j′ < a1j′′ and a1j′ < a2j′ < a2j′′ for for j < j′ < j′′. So 1, 2, . . . , i−1 appear in columns
before column j′ and all entries in row 1 are of this type. Thus we have j′− 1 ones appearing
before bi and at most j′ − 1 zeros appearing before bi. If bi = 0 and i appears in a2j′ then
a1j < a1j′ < a2j′ and a2j < a2j′ < a2j′′ for for j < j′ < j′′. So 1, 2, . . . , i − 1 appear either in
row 1 or before column j′ in row 2 and all entries in the first j′ columns of row one are of this
type. Thus we have at least j′ ones and at most j′− 1 zeros preceding bi. In each case we set
that the initial segment condition for ballot sequences is satisfied. This map can be reversed:
given a ballot sequence, b1, b2, . . . , b2n let a1,j be the subscript on the jth one and a2,j be the
subscript on the jth zero. It is easy to see that this is the inverse map, so to establish that we
have a bijection we need to check that the inverse images are arrays that increase in rows and
columns. The definition makes them increase in rows and the initial segment property makes
them increase on columns.

1.3.23 A sequence in which A is always ahead must begin AA. Deleting the initial A yields a
sequence with a− 1 A’s for which A is never behind. Adding an A at the start of a sequence
for which A is never behind yields a sequence in which A is always ahead. This is a bijection
between between ‘always ahead’ sequences with a A’s and ‘never behind’ sequences with a−1
A’s. Using the ballot problem (with a−1 replacing a) and dividing by the total number

(
a+b
a

)

of sequences we get the probability

(
(a−1)+b

a−1

)
−

(
(a−1)+b
(a−1)+1

)
(

a+b
a

) =
a− b

a + b


