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28. Assume that the equilateral triangles have side length s. The heuristic starts
with a minimum spanning tree. Since the distance between any two points is at least
s, a minimum spanning tree has weight at least s(2m − 2). Thus the spanning tree
consisting of the path 1, 2m − 1, 2, 2m − 2, 3, 2m − 3, . . . , m + 2, m − 1, m + 1,m is
minimum. With this, the only two odd degree vertices are 1 and m and the heuristic
adds the edge between them with weight s(m− 1). The result is a Hamiltonian path,
so there is no shortcutting and the heuristic produces a Hamiltonian path of length
s(2m− 2 + m− 1) = s(3m− 3). A minimum weight Hamiltonian tour has weight at
least s(2m− 1) as each edge has weight at least s and there are 2m− 1 edges. Given

ε, take m >
3

4ε
+

1

2
then it can be checked (with some straightforward algebra) that

−3/2 ≥ −ε(2m−1). Thus, for such m we have 3m−3 = (2m−1)+.5(2m−1)−3/2 ≥
(2m− 1) + (.5− ε)(2m− 1) as needed.

29. (6.2.4) We give three different proofs:

Proof 1: Let M∗ be a maximum matching and M maximal. M∗ has 2|M∗| vertices
as ends and M has 2|M |. So at least 2|M∗| − 2|M | vertices of M∗ are not ends of
edges of M . If |M | < |M∗|/2 then 2|M∗| − 2|M | > |M∗| and since more than |M∗|
vertices are not covered by M , both ends of some edge of M∗ are not covered by M .
This edge could then be added to M contradicting maximality.

Proof 2: By maximality, the vertices that are ends of edges in M cover all edges (an
edge not covered could be added to M). Thus there is a vertex cover of size at most
2|M |. So 2|M | ≥ β(G). Since also we have β(G) ≥ α′(G) (weak duality) we get
2|M | ≥ α′(G).

Proof 3: Let M∗ be a maximum matching and M maximal. Consider the symmetric
difference M4M∗. There are at least |M∗|−|M | augmenting paths in this symmetric
difference. Since M is maximal none of these paths consists of a single edge from
M∗. Thus each augmenting path contains at least one edge from M and we get
|M | ≥ |M∗| − |M | ⇒ |M | ≥ |M∗|/2.

30. (6.2.24) Show that Tutte’s condition holds. This implies the existence of a
1-factor. Note that G − S is connected for |S| < r and in particular that G is
connected. If 1 ≤ |S| < r then odd(G − S) ≤ 1 and we have odd(G − S) ≤ |S|.
Since G is connected and has even order odd(GS) = 0 when S = ∅ and we have
odd(GS) ≤ |S| for S = ∅. For |S| ≥ r construct a bipartite graph H with parts
S = {v1, v2, . . . , vs} and the components C1, C2, . . . , Ct with t = odd(G− S). Put an
edge between vi and Cj if there is at least one edge between vi and a vertex of Cj.
Since there is no K1,r+1 the degree of each vi in H is at most r. Since deleting fewer



than r vertices does not disconnect the graph, the degree of each Cj in H is at least
r. If H has e edges, counting the edges in two ways we get sr ≥ e ≥ tr. So s ≥ t,
which is |S| ≥ odd(GS). So Tutte’s condition holds in all cases.

31. (6.3.6) (a) Consider the matrix

4 4 4 3 6
1 1 4 3 4
1 4 5 3 5
5 6 4 7 9
5 3 6 8 3

We can find an initial cover by taking ui = maxj rowi for all i, yielding

0 0 0 0 0
6 2 2 2 3 0
4 3 3 0 1 0
5 4 1 0 2 0
9 4 3 5 2 0
8 3 5 2 0 5

where the underlined zeros correspond to a matching. If we let R = {∅} and T =
{3, 4, 5} the minimum ε of the uncovered elements is equal to 1. Thus, we decrease
ui by 1, for all i and increase v3, v4, v5 by 1, yielding

0 0 1 1 1
5 1 1 2 3 0
3 2 2 0 1 0
4 3 0 0 2 0
8 3 2 5 2 0
7 2 4 2 0 5

Here, we let R = {∅} and T = {2, 3, 4, 5}. This gives ε = 1, so we decrease ui by 1
for all i and increase v2, v3, v4, v5 by 1, yielding the final solution

0 1 2 2 2
4 0 1 2 3 0
2 1 2 0 1 0
3 2 0 0 2 0
7 2 2 5 2 0
6 1 4 2 0 5

where c(u, v) = 29 = w(M).



(b) Consider the matrix
7 8 9 8 7
8 7 6 7 6
9 6 5 4 6
8 5 7 6 4
7 6 5 5 5

We can find an initial cover by taking ui = maxj rowi for all i, yielding

0 0 0 0 0
9 2 1 0 1 2
8 0 1 2 1 2
9 0 3 4 5 3
8 0 3 1 2 4
7 0 1 2 2 2

If we let R = {∅} and T = {1, 3}, we have ε = 1, so we decrease ui by 1 for all i and
increase v1, v3 by 1, yielding

1 0 1 0 0
8 2 0 0 0 1
7 0 0 2 0 1
8 0 2 4 4 2
7 0 2 1 1 3
6 0 0 2 1 1

Then, if we let R = {∅} and T = {1, 2, 3, 4}, we have ε = 1, so we decrease ui by 1
for all i and increase v1, v2, v3, v4 by 1, yielding

2 1 2 1 0
7 2 0 0 0 0
6 0 0 2 0 0
7 0 2 4 4 1
6 0 2 1 1 2
5 0 0 2 1 0

Finally, we let R = {1, 2, 5} and T = {1}, giving ε = 1, and yielding the final solution

3 1 2 1 0
7 2 0 0 0 0
6 0 0 2 0 0
6 0 1 3 3 0
5 0 1 0 0 1
5 0 0 2 1 0



where c(u, v) = w(M) = 36.

(b) Consider the matrix
1 2 3 4 5
6 7 8 7 2
1 3 4 4 5
3 6 2 8 7
4 1 3 5 4

We can find an initial cover by taking ui = maxj rowi for all i, yielding

0 0 0 0 0
5 4 3 2 1 0
8 2 1 0 1 6
5 4 2 1 1 0
8 5 2 6 0 1
5 1 4 2 0 1

If we let R = {∅} and T = {3, 4, 5}, we have ε = 1, so we adjust the cover and the
excess graph, accordingly, yielding

0 0 1 1 1
4 3 2 2 1 0
7 1 0 0 1 6
4 3 1 1 1 0
7 4 1 6 0 1
4 0 3 2 0 1

Then, if we let R = {2, 4} and T = {4, 5}, we have ε = 1, leading to the final solution

0 0 1 2 2
3 2 1 1 1 0
7 1 0 0 1 6
3 2 0 0 1 0
6 3 0 5 0 1
4 0 3 2 0 1

where c(u, v) = w(M) = 28

32. (6.3.8) Create a bipartite graph with parts {u1, u2, . . . , um} and {v1, v2, . . . , vn}
and the weight on edge uivj equal to max{0, xi+yj−t}. The weights are the overtime,
if any, for the corresponding pairing of routes. Thus we solve the problem by finding
a minimum weight perfect matching.



Label so that x1 ≤ x2 ≤ · · · ≤ xn and y1 ≥ y2 ≥ · · · ≥ yn. To show that a best
solution is to pair the ith shortest with the ith longest we need to show that matching
using edges uivi for i = 1, 2, . . . , n is minimum. We will show this using induction.
If n = 1 the result is trivial. For n > 1 if u1v1 is in the matching delete this edge
and use induction on the remaining edges. We will show that there exists a minimum
matching pairing u1v1 and the apply induction as in the previous sentence to establish
the result. Assume that u1vj and v1ui are in the minimum matching with weight c∗.
Switching these edges to match u1v1 and uivj yields a matching with weight c such that
c∗−c = max{0, x1+yj−t}+max{0, xi+y1−t}−max{0, x1+y1−t}−max{0, xi+yj−t}
(as all other weights remain unchanged). With x1 ≤ xi and y1 ≥ yj we get

Case 1: If xi + y1 ≤ t then each of x1 + y1, xi + yj, x1 + yj is at most t. In this case
the weights on all four edges are 0 and c∗ − c = 0.

Case 2: xi + yj ≤ t. Then x1 + yj ≤ t and the weights on edges uiyj and u1yj are 0.
As also x1 + y1 ≤ xi + y1 the weight on edge u1v1 is at most that on edge uiy1 and
c∗ − c ≥ 0.

Case 3: x1 + y1 ≤ t. Then x1 + yj ≤ t and the weights on edges u1v1 and u1vj are
0. As xi + yj ≤ xi + y1 the weight on edge uivj is at most that on edge uiy1 and
c∗ − c ≥ 0.

Case 4: None of the above. Then The weights on edges u1v1, uivj, uiv1 are respectively
x1 + y1− t, xi + yj − t, xi + y1− t and c∗− c = (max{0, x1 + yj − t}) + (xi + y1− t)−
(x1 + y1 − t)− (xi + yj − t) = (max{0, x1 + yj − t})− (x1 + yj − t) ≥ 0.

Thus in each case switching does not increase the weight and we get a minimum
matching using the edge u1v1 and as noted above by induction the result follows.

33. (6.3.11) Form a bipartite graph with bipartition U = {u1, u2, . . . , un} and V =
{vrs|r = 1, 2, . . . , k and s = 1, 2 . . . , kr}. Put the weight on edge uivrs to be t if
seminar r is the tth highest seminar on the list of student i. A minimum weight
perfect matching is stable under this definition of stable. (Here we put student i in
seminar r if ui is matched to vrs for some s.) If student i in seminar r and student
i′ in seminar r′ want to switch then i prefers r′ and i′ prefers r so for any s, s′, s′′, s′′′

we have weight(uivrs) > weight(uivr′s′) and also weight(ui′vr′s′′) > weight(ui′vrs′′′).
Thus the matching after the switch has lower weight, a contradiction.

Note - one can also check that a ‘greedy’ approach, going through the list of students
and assigning the highest ranked seminar with an available slot will produce a stable
matching.


