Solutions to Homework 6 Combinatorics (Math 446) Fall 2004 Lehigh University

28. Assume that the equilateral triangles have side length s. The heuristic starts with a minimum spanning tree. Since the distance between any two points is at least s, a minimum spanning tree has weight at least s(2m-2). Thus the spanning tree consisting of the path $1, 2m - 1, 2, 2m - 2, 3, 2m - 3, \ldots, m + 2, m - 1, m + 1, m$ is minimum. With this, the only two odd degree vertices are 1 and m and the heuristic adds the edge between them with weight s(m-1). The result is a Hamiltonian path, so there is no shortcutting and the heuristic produces a Hamiltonian path of length s(2m-2+m-1) = s(3m-3). A minimum weight Hamiltonian tour has weight at least s(2m-1) as each edge has weight at least s and there are 2m-1 edges. Given ϵ , take $m > \frac{3}{4\epsilon} + \frac{1}{2}$ then it can be checked (with some straightforward algebra) that $-3/2 \ge -\epsilon(2m-1)$. Thus, for such m we have $3m-3 = (2m-1)+.5(2m-1)-3/2 \ge (2m-1)+(.5-\epsilon)(2m-1)$ as needed.

29. (6.2.4) We give three different proofs:

Proof 1: Let M^* be a maximum matching and M maximal. M^* has $2|M^*|$ vertices as ends and M has 2|M|. So at least $2|M^*| - 2|M|$ vertices of M^* are not ends of edges of M. If $|M| < |M^*|/2$ then $2|M^*| - 2|M| > |M^*|$ and since more than $|M^*|$ vertices are not covered by M, both ends of some edge of M^* are not covered by M. This edge could then be added to M contradicting maximality.

Proof 2: By maximality, the vertices that are ends of edges in M cover all edges (an edge not covered could be added to M). Thus there is a vertex cover of size at most 2|M|. So $2|M| \ge \beta(G)$. Since also we have $\beta(G) \ge \alpha'(G)$ (weak duality) we get $2|M| \ge \alpha'(G)$.

Proof 3: Let M^* be a maximum matching and M maximal. Consider the symmetric difference $M \triangle M^*$. There are at least $|M^*| - |M|$ augmenting paths in this symmetric difference. Since M is maximal none of these paths consists of a single edge from M^* . Thus each augmenting path contains at least one edge from M and we get $|M| \ge |M^*| - |M| \Rightarrow |M| \ge |M^*|/2$.

30. (6.2.24) Show that Tutte's condition holds. This implies the existence of a 1-factor. Note that G - S is connected for |S| < r and in particular that G is connected. If $1 \leq |S| < r$ then $odd(G - S) \leq 1$ and we have $odd(G - S) \leq |S|$. Since G is connected and has even order $odd(G_S) = 0$ when $S = \emptyset$ and we have $odd(G_S) \leq |S|$ for $S = \emptyset$. For $|S| \geq r$ construct a bipartite graph H with parts $S = \{v_1, v_2, \ldots, v_s\}$ and the components C_1, C_2, \ldots, C_t with t = odd(G - S). Put an edge between v_i and C_j if there is at least one edge between v_i and a vertex of C_j . Since there is no $K_{1,r+1}$ the degree of each v_i in H is at most r. Since deleting fewer

than r vertices does not disconnect the graph, the degree of each C_j in H is at least r. If H has e edges, counting the edges in two ways we get $sr \ge e \ge tr$. So $s \ge t$, which is $|S| \ge odd(G_S)$. So Tutte's condition holds in all cases.

31. (6.3.6) (a) Consider the matrix

We can find an initial cover by taking $u_i = \max_j row_i$ for all *i*, yielding

	0	0	0	0	0
6	2	2	2	3	0
4	3	3	0	1	0
5	4	1	<u>0</u>	2	0
9	4	3	5	2	0
8	3	5	2	<u>0</u>	5

where the underlined zeros correspond to a matching. If we let $R = \{\emptyset\}$ and $T = \{3, 4, 5\}$ the minimum ϵ of the uncovered elements is equal to 1. Thus, we decrease u_i by 1, for all *i* and increase v_3, v_4, v_5 by 1, yielding

Here, we let $R = \{\emptyset\}$ and $T = \{2, 3, 4, 5\}$. This gives $\epsilon = 1$, so we decrease u_i by 1 for all *i* and increase v_2, v_3, v_4, v_5 by 1, yielding the final solution

	0	1	2	2	2
4	0	1	2	3	$0 \mid$
2	1	2	<u>0</u>	1	0
3	2	<u>0</u>	0	2	0
7	2	2	5	2	0
6	1	4	2	<u>0</u>	5

where c(u, v) = 29 = w(M).

(b) Consider the matrix

We can find an initial cover by taking $u_i = \max_j row_i$ for all *i*, yielding

	0	0	0	0	0
9	2	1	<u>0</u>	1	2
8	<u>0</u>	1	2	1	2
9	0	3	4	5	3
8	0	3	1	2	4
7	0	1	2	2	2

If we let $R = \{\emptyset\}$ and $T = \{1, 3\}$, we have $\epsilon = 1$, so we decrease u_i by 1 for all i and increase v_1, v_3 by 1, yielding

Then, if we let $R = \{\emptyset\}$ and $T = \{1, 2, 3, 4\}$, we have $\epsilon = 1$, so we decrease u_i by 1 for all *i* and increase v_1, v_2, v_3, v_4 by 1, yielding

Finally, we let $R = \{1, 2, 5\}$ and $T = \{1\}$, giving $\epsilon = 1$, and yielding the final solution

where c(u, v) = w(M) = 36. (b) Consider the matrix

We can find an initial cover by taking $u_i = \max_j row_i$ for all *i*, yielding

	0	0	0	0	0
5	4	3	2	1	0
8	2	1	<u>0</u>	1	6
5	4	2	1	1	<u>0</u>
8	5	2	6	<u>0</u>	1
5	1	4	2	0	1

If we let $R = \{\emptyset\}$ and $T = \{3, 4, 5\}$, we have $\epsilon = 1$, so we adjust the cover and the excess graph, accordingly, yielding

	0	0	1	1	1
4	3	2	2	1	0
7	1	0	<u>0</u>	1	6
4	3	1	1	1	<u>0</u>
7	4	1	6	<u>0</u>	1
4	0	3	2	0	1

Then, if we let $R = \{2, 4\}$ and $T = \{4, 5\}$, we have $\epsilon = 1$, leading to the final solution

	0	0	1	2	2
3	2	1	1	1	0
7	1	0	<u>0</u>	1	6
3	2	0	0	1	<u>0</u>
6	3	<u>0</u>	5	0	1
4	0	3	2	0	1

where c(u, v) = w(M) = 28

32. (6.3.8) Create a bipartite graph with parts $\{u_1, u_2, \ldots, u_m\}$ and $\{v_1, v_2, \ldots, v_n\}$ and the weight on edge $u_i v_j$ equal to $\max\{0, x_i + y_j - t\}$. The weights are the overtime, if any, for the corresponding pairing of routes. Thus we solve the problem by finding a minimum weight perfect matching.

Label so that $x_1 \leq x_2 \leq \cdots \leq x_n$ and $y_1 \geq y_2 \geq \cdots \geq y_n$. To show that a best solution is to pair the i^{th} shortest with the i^{th} longest we need to show that matching using edges $u_i v_i$ for $i = 1, 2, \ldots, n$ is minimum. We will show this using induction. If n = 1 the result is trivial. For n > 1 if $u_1 v_1$ is in the matching delete this edge and use induction on the remaining edges. We will show that there exists a minimum matching pairing $u_1 v_1$ and the apply induction as in the previous sentence to establish the result. Assume that $u_1 v_j$ and $v_1 u_i$ are in the minimum matching with weight c^* . Switching these edges to match $u_1 v_1$ and $u_i v_j$ yields a matching with weight c such that $c^* - c = \max\{0, x_1 + y_j - t\} + \max\{0, x_i + y_1 - t\} - \max\{0, x_1 + y_1 - t\} - \max\{0, x_i + y_j - t\}$ (as all other weights remain unchanged). With $x_1 \leq x_i$ and $y_1 \geq y_j$ we get

Case 1: If $x_i + y_1 \leq t$ then each of $x_1 + y_1, x_i + y_j, x_1 + y_j$ is at most t. In this case the weights on all four edges are 0 and $c^* - c = 0$.

Case 2: $x_i + y_j \leq t$. Then $x_1 + y_j \leq t$ and the weights on edges $u_i y_j$ and $u_1 y_j$ are 0. As also $x_1 + y_1 \leq x_i + y_1$ the weight on edge $u_1 v_1$ is at most that on edge $u_i y_1$ and $c^* - c \geq 0$.

Case 3: $x_1 + y_1 \leq t$. Then $x_1 + y_j \leq t$ and the weights on edges u_1v_1 and u_1v_j are 0. As $x_i + y_j \leq x_i + y_1$ the weight on edge u_iv_j is at most that on edge u_iy_1 and $c^* - c \geq 0$.

Case 4: None of the above. Then The weights on edges u_1v_1, u_iv_j, u_iv_1 are respectively $x_1 + y_1 - t, x_i + y_j - t, x_i + y_1 - t$ and $c^* - c = (\max\{0, x_1 + y_j - t\}) + (x_i + y_1 - t) - (x_1 + y_1 - t) - (x_i + y_j - t) = (\max\{0, x_1 + y_j - t\}) - (x_1 + y_j - t) \ge 0.$

Thus in each case switching does not increase the weight and we get a minimum matching using the edge u_1v_1 and as noted above by induction the result follows.

33. (6.3.11) Form a bipartite graph with bipartition $U = \{u_1, u_2, \ldots, u_n\}$ and $V = \{v_{rs} | r = 1, 2, \ldots, k \text{ and } s = 1, 2, \ldots, k_r\}$. Put the weight on edge $u_i v_{rs}$ to be t if seminar r is the t^{th} highest seminar on the list of student i. A minimum weight perfect matching is stable under this definition of stable. (Here we put student i in seminar r if u_i is matched to v_{rs} for some s.) If student i in seminar r and student i' in seminar r' want to switch then i prefers r' and i' prefers r so for any s, s', s'', s''' we have $weight(u_i v_{rs}) > weight(u_i v_{r's'})$ and also $weight(u_i v_{r's''}) > weight(u_i v_{rs'''})$. Thus the matching after the switch has lower weight, a contradiction.

Note - one can also check that a 'greedy' approach, going through the list of students and assigning the highest ranked seminar with an available slot will produce a stable matching.