Solutions to Homework 6
Combinatorics (Math 446) Fall 2004 Lehigh University

28. Assume that the equilateral triangles have side length s. The heuristic starts
with a minimum spanning tree. Since the distance between any two points is at least
s, a minimum spanning tree has weight at least s(2m — 2). Thus the spanning tree
consisting of the path 1,2m —1,2,2m —2,3,2m —3,....m+2,m —1,m+ 1,m is
minimum. With this, the only two odd degree vertices are 1 and m and the heuristic
adds the edge between them with weight s(m — 1). The result is a Hamiltonian path,
so there is no shortcutting and the heuristic produces a Hamiltonian path of length
s(2m —2+m—1) = s(3m — 3). A minimum weight Hamiltonian tour has weight at
least s(2m — 1) as each edge has weight at least s and there are 2m — 1 edges. Given

€, take m > P + — then it can be checked (with some straightforward algebra) that

€
—3/2 > —¢(2m—1). Thus, for such m we have 3m—3 = (2m—1)+.5(2m—1)—3/2 >
(2m — 1)+ (.5 —€)(2m — 1) as needed.

29. (6.2.4) We give three different proofs:

Proof 1: Let M* be a maximum matching and M maximal. M* has 2| M*| vertices
as ends and M has 2|M|. So at least 2|M*| — 2| M| vertices of M* are not ends of
edges of M. If |[M| < |M*|/2 then 2|M*| — 2|M| > |M*| and since more than |M*|
vertices are not covered by M, both ends of some edge of M* are not covered by M.
This edge could then be added to M contradicting maximality.

Proof 2: By maximality, the vertices that are ends of edges in M cover all edges (an
edge not covered could be added to M). Thus there is a vertex cover of size at most
2|M|. So 2|M| > B(G). Since also we have 3(G) > o/(G) (weak duality) we get
2|M| > o(G).

Proof 3: Let M* be a maximum matching and M maximal. Consider the symmetric
difference MAM*. There are at least | M*| — | M| augmenting paths in this symmetric
difference. Since M is maximal none of these paths consists of a single edge from
M*. Thus each augmenting path contains at least one edge from M and we get
M| = M7 — |M] = |M] > [M7]/2.

30. (6.2.24) Show that Tutte’s condition holds. This implies the existence of a
I-factor. Note that G — S is connected for |S| < r and in particular that G is
connected. If 1 < |S| < r then odd(G — S) < 1 and we have odd(G — S) < |S].
Since G is connected and has even order odd(Gs) = 0 when S = () and we have
odd(Gg) < |S| for S = 0. For |S| > r construct a bipartite graph H with parts
S = {vy,vq,...,vs} and the components Cy,Cy, ...,Cy with t = odd(G — S). Put an
edge between v; and Cj if there is at least one edge between v; and a vertex of Cj.
Since there is no K 41 the degree of each v; in H is at most r. Since deleting fewer



than r vertices does not disconnect the graph, the degree of each C; in H is at least
r. If H has e edges, counting the edges in two ways we get sr > e > tr. So s > t,
which is |S| > 0dd(Gs). So Tutte’s condition holds in all cases.

31. (6.3.6) (a) Consider the matrix

Ot O = —
W O B~
D = U
0 g W W Ww
W O U = O

We can find an initial cover by taking u;, = max; row; for all 7, yielding

00000
6/2 2 230
4133010
5/4 1020
914 35 20
813520 5

where the underlined zeros correspond to a matching. If we let R = {(} and T =
{3,4,5} the minimum ¢ of the uncovered elements is equal to 1. Thus, we decrease
u; by 1, for all ¢ and increase vs, v4, v5 by 1, yielding

00111
5011230
3/12 2010
41300 2 0
813 25 20
712 4 2 0 5

Here, we let R = {0} and T = {2,3,4,5}. This gives ¢ = 1, so we decrease u; by 1
for all 7 and increase vy, v3, v4, v5 by 1, yielding the final solution

01222
4l0 12 30
2/1 2010
3/2 0020
712 2 5 2 0
6/1 4205

where ¢(u,v) =29 = w(M).



(b) Consider the matrix
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We can find an initial cover by taking u; =
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If we let R = {0} and T = {1, 3}, we have

increase vy, v3 by 1, yielding

S ] 0 o
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m
0
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1
2

ax; row; for all 7, yielding

NN O = = O

N = W NN O

€ = 1, so we decrease u; by 1 for all 7 and
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Then, if we let R = {0} and T = {1,2,3,4}, we have ¢ = 1, so we decrease u; by 1
for all ¢+ and increase v, v9,v3, v4 by 1, yielding

2

Ot oY 1 O
[ el el V)

1

[l ORI N B e R )

2

N =N O

— = RO O =

O = O O o

Finally, we let R = {1,2,5} and T' = {1}, giving ¢ = 1, and yielding the final solution
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where ¢(u,v) = w(M) = 36.
(b) Consider the matrix

1 2 3 45
6 7 8 7 2
1 3 445
36 2 87
4 1 3 5 4

We can find an initial cover by taking u; = max; row; for all 4, yielding

N OO N O
— =IO O OO
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3
1
2
2
4

Ot 00 Ot 0o Ot
— O R N R o
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If we let R = {0} and T' = {3,4,5}, we have ¢ = 1, so we adjust the cover and the
excess graph, accordingly, yielding

NG BN N
IO =~ W~ W o
W=~ OoONO
N OO RO N R~
IO M = =
_ =0 OO =

Then, if we let R = {2,4} and T' = {4,5}, we have € = 1, leading to the final solution

0012 2
3121110
7110 01 6
312 0010
6(3 05 01
410 3 2 0 1

where ¢(u,v) = w(M) = 28

32. (6.3.8) Create a bipartite graph with parts {uj,us, ..., u,} and {vy,vq,...,v,}
and the weight on edge w;v; equal to max{0, z;+y; —t}. The weights are the overtime,
if any, for the corresponding pairing of routes. Thus we solve the problem by finding
a minimum weight perfect matching.



Label so that vy < 29 < --- < x, and y; > yo > --- > y,. To show that a best
solution is to pair the i’* shortest with the i longest we need to show that matching
using edges u;v; for ¢ = 1,2,...,n is minimum. We will show this using induction.
If n = 1 the result is trivial. For n > 1 if uyv; is in the matching delete this edge
and use induction on the remaining edges. We will show that there exists a minimum
matching pairing u,v; and the apply induction as in the previous sentence to establish
the result. Assume that u,v; and v;u; are in the minimum matching with weight c¢*.
Switching these edges to match w;v; and u,v; yields a matching with weight ¢ such that
c¢*—c = max{0, z,+y; —t}+max{0, z;+y; —t} —max{0, x; +y; —t } —max{0, z;+y; —t}
(as all other weights remain unchanged). With xz; < x; and y; > y; we get

Case 1: If @; + y; <t then each of z1 + y1, x; + y;j, 1 + y; is at most ¢. In this case
the weights on all four edges are 0 and ¢* — ¢ = 0.

Case 2: x; +y; < t. Then z; +y; <t and the weights on edges u;y; and u;y; are 0.
As also z1 + y1 < z; + y; the weight on edge uqv; is at most that on edge u;y; and
c—c>0.

Case 3: x1 +y1 < t. Then 21 +y; <t and the weights on edges w v, and w;v; are
0. As z; +y; < x; + 11 the weight on edge u,;v; is at most that on edge w;y; and
c—c>0.

Case 4: None of the above. Then The weights on edges u vy, u;v;, u;v; are respectively
Tty —tx+y; —ta,+y —tand ¢ —c= (max{0, 1 +y; —t}) + (x;i +y1 —t) —
(x1+y1 —t) — (:cl-—l—yj —t) = (maX{O,xl +yj —t}) — (x1+yj —t) > 0.

Thus in each case switching does not increase the weight and we get a minimum
matching using the edge uv; and as noted above by induction the result follows.

33. (6.3.11) Form a bipartite graph with bipartition U = {uy,us,...,u,} and V =
{vps|r = 1,2,...;kand s = 1,2... k.}. Put the weight on edge u;v,s to be t if
seminar r is the t** highest seminar on the list of student 7. A minimum weight
perfect matching is stable under this definition of stable. (Here we put student ¢ in
seminar 7 if w; is matched to v,s for some s.) If student 7 in seminar r and student
7" in seminar v’ want to switch then ¢ prefers " and ¢’ prefers r so for any s, s’,s”,s”
we have weight(u;v,s) > weight(u;vg) and also weight(u;yvygn) > weight(wyvygm).
Thus the matching after the switch has lower weight, a contradiction.

Note - one can also check that a ‘greedy’ approach, going through the list of students

and assigning the highest ranked seminar with an available slot will produce a stable
matching.



