Solutions to Homework 910
Combinatorics (Math 446) Fall 2004 Lehigh University

2.1.9 (a) For induction the basis is Fy = 1 = (8) and Fi =1=1+0= ((1)) + ((1]) Then using
induction, Pascal’s identity and the recurrence for F we get for n > 2
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Combinatorially, F,, counts the number of 1,2 sequences summing to n. Partition the se-
quences by the number of 2’s in the sequence. If there are ¢ 2’s then there are n — ¢ terms in
the sequence, of which ¢ are 2’s. So we pick the locations for the 2’s in (”;Z) ways. Summing
over ¢ gives the identity.

(b) For induction the basis is F0+2 —2=1+1=1+ F,. Then, using induction and the
recurrence for F), we get for n > 1
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Combinatorially, F,, o counts the number of 1,2 sequences summing to n + 2. There is one
sequence of all 1’s. Partition the remaining sequences by the first occurrence of a 2. If the
first 2 appears after ¢ 1’s then the sequence begins with ¢ 1’s and a 2 with the rest of the
sequence an arbitrary 1,2 sequence summing to (n+2) —i—2 = n—1; there are Fn_i of these.
Summing over ¢ we get ﬁn+2 =14+37, E, =1+ > E.

2.2.4 The homogeneous part a, = 3a,_1 — 2a,_» has characteristic polynomial 22 — 3z + 2 =
(x—1)(z—2) with roots 1,2. From proposition 2.2.10 we see that there is a particular solution
of the form P(n)n"2" where r = 1 and P(n) is a polynomial with degree 1, i.e., a constant, call
it P. Thus we get that our solution is of the form a,, = ¢;(1™)+c2(2")+Pn2™ = ¢1+c92"+ Pn2™.
From ag = a; = 1 we get ay = 3a; — 2a9 + 2% = 3(1) — 2(1) + 4 = 5. Then using the general
form we get 1 = ag = ¢4 +¢o; 1 = a3 = ¢+ 2¢0 + 2P and 5 = as = ¢ + 4cy + 8P.
This system of 3 equations in 3 unknowns has solution ¢; = 5,¢c0 = —4, P = 2 and we get
Ap=5—4-2"+2n2" =5 —4-2" + n2"tL,



Using generating functions we get
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Then, solving for A(z) we get
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Then using partial fractions we get
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The coefficient of 2™ in 1/(1—x) is 1, the coefficient of ™ in 1/(1—2z) is 2" and the coefficient
of ™ in 1/(1 — 2x)? is (n + 1)2" (the last using 1/(1 — 2)" = Y40 (Sizl)zs with z = 2z and
t = 2 and s = n). Hence the coefficient of 2" is a,, = (5)(1) + (=6)(2") + (2)(n + 1)2" =

5— 42" 4 np2ntl

3.1.6 Define a < b if and only if b — a > 2. Each k subset of [n] with no consecutive integers
corresponds to a sequence 1 < a; < az < -+ < a < n. Let g1 = a1, g1 = n — a, and
for i = 2,3,...,k let g; = a;, — a;_1. The properties of the a; imply that the g, are non-
negative integers and in addition g; > 1 and g¢o,93,...,9r_1 are each at least 2. Note also
that S5 g, = a1 + (ag — a1) + (a3 — az) + -+ + (ax — ax_1) + (n — ax) = n. So by looking
at these gaps and recalling what we did for multisets we could directly determine b, ; (which
we won't do here) and we can also use generating functions, getting the function as we did
for multisets, with terms of the form 22 + 22 + - - - corresponding to ¢; > 2 and then use the
expansion for multisets to evaluate as follows:
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Then b, is the coefficient of 2™ which is the coefficient of z in the last sum which is

((ankI:rl)Jrk) _ (n—llzﬂ)

3.3.9 See also example 3.3.8 in the text for a different presentation of the solutions to the
questions involving a,, .
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(a) In the solution to 1.1.33 on the previous homework we showed a,, =
similar manner to the version 1 proof we see that placing the unlabelled flags corresponds to
positive integral solutions to .7 ; #; = k with the z; indicating how many flags are on pole
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i (and hence positive in this case). This is (n_1> and for each such solution we can label the

flags in k! ways so we get b, = (ij)k;'

(b) The exponential generating function for number of ways to place the flags on a single
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one flag must be on the pole the initial 0! = 1 term is omitted and we get (z+z*+2°+---) =

x/(1 — x). Thus for n poles we get
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(c) From (b) we see that a,/k! is the coefficient of z* in (1/(1 — z))™ which is ("H,j*l)
and hence a, ) = k:!("+£_1). Also from (b) we see that b, /k! is the coefficient of z* in
(x/(1—z))™ which is the coefficient of ¥~ in (1/(1 —z))™ which is ("Jré’,jjz))_l) = ((1]:711)) and
hence b, = k:!(kil) = k:!(kil).
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3.4.9 (a) The Ferrers diagram for a partition of 2r + k into r + k parts has r + k rows so r + k
of the dots are in the first column and at most r dots are not in the first column. Delete the
first column to obtain a Ferrers diagram for an arbitrary partition of r. Conversely, given a
Ferrers diagram for an arbitrary partition of r, add a first column of » + k rows to obtain
a Ferrers diagram for a partition of 2r + k into r + k& parts. Thus po, ik 41 is equal to the
number of partitions of r, independent of k.

(b) Given a partition of r + k into k parts delete the first column of its Ferrers diagram to get
a diagram for a partition of r with at most k rows. Taking the conjugate yields a diagram for
a partition of r with at most k columns. It is straightforward to see that this can be reversed
SO pr4k i counts the partitions of r into parts of size at most k.



(c) Use the notation (y1,7y2,...,7) with 1 < <~y <--- <, and > ; = n for a partition
of n into k parts (with the 7; indicating the sizes of the parts). Let v/ = ~;+4— 1. Then the ~/
are distinct and > v/ = > v+ (1+24---(k—1)) =n+ (k—1)k/2. Hence the ' correspond
to a partition of n + (k — 1)k/2 into distinct parts. This can be reversed for n > k, given a
partition of n+ (k—1)k/2 into distinct parts (represented by ~; such that 1 <] <4 < -7,
with > v/ = n+ (k — 1)k/2) letting v; = v — i + 1 yields the 7; for a partition of n into k
parts. Hence for n > k, p,x counts the number of partitions of n + (k — 1)k/2 into distinct
parts. Letting n = r + k yields the result in the problem.

(d) A partition of n into k parts either has a part of size one or it does not. If it does, deleting
a 1 leaves a partition of n — 1 into k — 1 parts. If it does not, subtracting 1 from each part
leaves a partition of n — k into k parts. It is straightforward to check that this can be reversed
so that this is indeed a bijection. In terms of Ferrer’s diagrams, we delete the last row if it
has size 1 (leaving a diagram with 1 less dot and 1 less row) or delete the first column if the
last row has at least 2 dots (leaving a diagram with n — k dots and k rows).

4.1.17 For the fall the number of assignments is the number of anagrams of the 2n symbols
1,1,2,2,...,n,n. If ¢ appears in locations r and s then professor i teaches courses r and s.
This number is (2n)!/2".

Let A; denote the event that professor i teaches the same courses in the spring as in the fall. If
gx counts the number of ways that a given set of k professors teach the same course then this
is the number of ways of assigning the remaining n — k professors courses which from above is

(2n—2k)!/2"~*. Hence the number of events with none of the A; is f(0) = S7_o(—1)* (Z)gk =

ZZ:O(—l)k@) (2n — 2k)!/2"=*. The probability is just this answer divided by the answer in
the first paragraph.



