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2.1.9 (a) For induction the basis is F̂0 = 1 =
(

0
0

)
and F̂1 = 1 = 1 + 0 =

(
1
0

)
+

(
0
1

)
. Then using

induction, Pascal’s identity and the recurrence for F̂ we get for n ≥ 2

F̂n = F̂n−1 + F̂n−2

=
n−1∑

j=0

(
n− 1− j

j

)
+

n−2∑

k=0

(
n− 2− k

k

)

=

(
n− 1− 0

0

)
+

n−1∑

j=1

(
n− 1− j

j

)
+

n−1∑

k+1=1

(
n− 1− (k + 1)

(k + 1)− 1

)

= 1 + 0 +
n−1∑

i=1

((
n− 1− i

i

)
+

(
n− 1− i

i− 1

))

=

(
n− 0

0

)
+

(
n− n

n

)
+

n−1∑

i=1

(
n− i

i

)

=
n∑

i=0

(
n− i

i

)

Combinatorially, F̂n counts the number of 1, 2 sequences summing to n. Partition the se-
quences by the number of 2’s in the sequence. If there are i 2’s then there are n− i terms in
the sequence, of which i are 2’s. So we pick the locations for the 2’s in

(
n−i

i

)
ways. Summing

over i gives the identity.

(b) For induction the basis is F̂0+2 = 2 = 1 + 1 = 1 + F̂0. Then, using induction and the
recurrence for F̂n we get for n ≥ 1

F̂n+2 = F̂n+1 + F̂n = (1 +
n−1∑

i=0

F̂i) + F̂n = 1 +
n∑

i=0

F̂i.

Combinatorially, F̂n+2 counts the number of 1, 2 sequences summing to n + 2. There is one
sequence of all 1’s. Partition the remaining sequences by the first occurrence of a 2. If the
first 2 appears after i 1’s then the sequence begins with i 1’s and a 2 with the rest of the
sequence an arbitrary 1, 2 sequence summing to (n+2)− i−2 = n− i; there are F̂n−i of these.
Summing over i we get F̂n+2 = 1 +

∑n
i=0 F̂n−i = 1 +

∑n
i=0 F̂i.

2.2.4 The homogeneous part an = 3an−1 − 2an−2 has characteristic polynomial x2 − 3x + 2 =
(x−1)(x−2) with roots 1, 2. From proposition 2.2.10 we see that there is a particular solution
of the form P (n)nr2n where r = 1 and P (n) is a polynomial with degree 1, i.e., a constant, call
it P . Thus we get that our solution is of the form an = c1(1

n)+c2(2
n)+Pn2n = c1+c22

n+Pn2n.
From a0 = a1 = 1 we get a2 = 3a1 − 2a0 + 22 = 3(1)− 2(1) + 4 = 5. Then using the general
form we get 1 = a0 = c1 + c2; 1 = a1 = c1 + 2c2 + 2P and 5 = a2 = c1 + 4c2 + 8P .
This system of 3 equations in 3 unknowns has solution c1 = 5, c2 = −4, P = 2 and we get
an = 5− 4 · 2n + 2n2n = 5− 4 · 2n + n2n+1.



Using generating functions we get

A(x) =
∞∑

n=0

anxn

= a0 + a1x +
∞∑

n=2

anx
n

= 1 + x +
∞∑

n=2

(3an−1 − 2an−2 + 2n) xn

= 1 + x + 3x(
∞∑

n−1=1

an−1x
n−1)− 2x2(

∞∑

n−2=0

an−2x
n−2) +

∞∑

n=2

2nxn

= 1 + x + 3x(A(x)− 1)− 2x2A(x) + (2x)2
∞∑

m=0

(2x)m

= 1− 2x + (3x− 2x2)A(x) +
4x2

1− 2x

Then, solving for A(x) we get

A(x) =
1

1− 3x + 2x2

(
1− 2x +

4x2

1− 2x

)
=

1

(1− 2x)(1− x)

(
1− 2x +

4x2

1− 2x

)

Then using partial fractions we get

A(x) =
1

1− x
+

4x2

(1− 2x)2(1− x)
=

5

1− x
+

−6

1− 2x
+

2

(1− 2x)2
.

The coefficient of xn in 1/(1−x) is 1, the coefficient of xn in 1/(1−2x) is 2n and the coefficient

of xn in 1/(1− 2x)2 is (n + 1)2n (the last using 1/(1− z)t =
∑

s≥0

(
s+t−1
t−1

)
zs with z = 2x and

t = 2 and s = n). Hence the coefficient of xn is an = (5)(1) + (−6)(2n) + (2)(n + 1)2n =
5− 4 · 2n + n2n+1.

3.1.6 Define a ≺ b if and only if b− a ≥ 2. Each k subset of [n] with no consecutive integers
corresponds to a sequence 1 ≤ a1 ≺ a2 ≺ · · · ≺ ak ≤ n. Let g1 = a1, gk+1 = n − ak and
for i = 2, 3, . . . , k let gi = ai − ai−1. The properties of the aj imply that the gi are non-
negative integers and in addition g1 ≥ 1 and g2, g3, . . . , gk−1 are each at least 2. Note also
that

∑k+1
i=1 gi = a1 + (a2 − a1) + (a3 − a2) + · · · + (ak − ak−1) + (n − ak) = n. So by looking

at these gaps and recalling what we did for multisets we could directly determine bn,k (which
we won’t do here) and we can also use generating functions, getting the function as we did
for multisets, with terms of the form x2 + x3 + · · · corresponding to gi ≥ 2 and then use the
expansion for multisets to evaluate as follows:

∑

n≥0

bn,kx
n = (x + x2 + · · ·)(x2 + x3 + · · ·)k−1(1 + x + x2 + · · ·) =

x2k−1

(1− x)k+1

and
x2k−1

(1− x)k+1
= x2k−1

∞∑

m=0

(
m + (k + 1)− 1

(k + 1)− 1

)
xm = x2k−1

∞∑

m=0

(
m + k

k

)
xm.



Then bn,k is the coefficient of xn which is the coefficient of xn−2k+1 in the last sum which is(
(n−2k+1)+k

k

)
=

(
n−k+1

k

)
.

3.3.9 See also example 3.3.8 in the text for a different presentation of the solutions to the
questions involving an,k.

(a) In the solution to 1.1.33 on the previous homework we showed an,k = k!
(

n+k−1
k

)
. In a

similar manner to the version 1 proof we see that placing the unlabelled flags corresponds to
positive integral solutions to

∑n
i=1 xi = k with the xi indicating how many flags are on pole

i (and hence positive in this case). This is
(

k−1
n−1

)
and for each such solution we can label the

flags in k! ways so we get bn,k =
(

k−1
n−1

)
k!.

(b) The exponential generating function for number of ways to place the flags on a single

flagpole is (0! + 1!
x

1!
+ 2!

x2

2!
+ 3!

x3

3!
+ · · ·) = (1 + x + x2 + x3 + · · ·) = 1/(1− x) and if at least

one flag must be on the pole the initial 0! = 1 term is omitted and we get (x+x2 +x3 + · · ·) =
x/(1− x). Thus for n poles we get

A(x) =
∑

k≥0

an,k

k!
xk =

(
1

1− x

)n

and

B(x) =
∑

k≥0

bn,k

k!
xk =

(
x

1− x

)n

.

(c) From (b) we see that an,k/k! is the coefficient of xk in (1/(1 − x))n which is
(

n+k−1
k

)

and hence an,k = k!
(

n+k−1
k

)
. Also from (b) we see that bn,k/k! is the coefficient of xk in

(x/(1−x))n which is the coefficient of xk−n in (1/(1−x))n which is
(

n+(k−n)−1
(k−n)

)
=

(
k−1

(k−n)

)
and

hence bn,k = k!
(

k−1
k−n

)
= k!

(
k−1
n−1

)
.

3.4.9 (a) The Ferrers diagram for a partition of 2r + k into r + k parts has r + k rows so r + k
of the dots are in the first column and at most r dots are not in the first column. Delete the
first column to obtain a Ferrers diagram for an arbitrary partition of r. Conversely, given a
Ferrers diagram for an arbitrary partition of r, add a first column of r + k rows to obtain
a Ferrers diagram for a partition of 2r + k into r + k parts. Thus p2r+k,r+k is equal to the
number of partitions of r, independent of k.

(b) Given a partition of r + k into k parts delete the first column of its Ferrers diagram to get
a diagram for a partition of r with at most k rows. Taking the conjugate yields a diagram for
a partition of r with at most k columns. It is straightforward to see that this can be reversed
so pr+k,k counts the partitions of r into parts of size at most k.



(c) Use the notation (γ1, γ2, . . . , γk) with 1 ≤ γ1 ≤ γ2 ≤ · · · ≤ γk and
∑

γi = n for a partition
of n into k parts (with the γi indicating the sizes of the parts). Let γ′i = γi + i−1. Then the γ′i
are distinct and

∑
γ′i =

∑
γi + (1 + 2 + · · · (k− 1)) = n + (k− 1)k/2. Hence the γ′ correspond

to a partition of n + (k − 1)k/2 into distinct parts. This can be reversed for n ≥ k, given a
partition of n+(k−1)k/2 into distinct parts (represented by γ′i such that 1 ≤ γ′1 < γ′2 < · · · γ′k
with

∑
γ′i = n + (k − 1)k/2) letting γi = γ′i − i + 1 yields the γi for a partition of n into k

parts. Hence for n ≥ k, pn,k counts the number of partitions of n + (k − 1)k/2 into distinct
parts. Letting n = r + k yields the result in the problem.

(d) A partition of n into k parts either has a part of size one or it does not. If it does, deleting
a 1 leaves a partition of n − 1 into k − 1 parts. If it does not, subtracting 1 from each part
leaves a partition of n−k into k parts. It is straightforward to check that this can be reversed
so that this is indeed a bijection. In terms of Ferrer’s diagrams, we delete the last row if it
has size 1 (leaving a diagram with 1 less dot and 1 less row) or delete the first column if the
last row has at least 2 dots (leaving a diagram with n− k dots and k rows).

4.1.17 For the fall the number of assignments is the number of anagrams of the 2n symbols
1, 1, 2, 2, . . . , n, n. If i appears in locations r and s then professor i teaches courses r and s.
This number is (2n)!/2n.

Let Ai denote the event that professor i teaches the same courses in the spring as in the fall. If
gk counts the number of ways that a given set of k professors teach the same course then this
is the number of ways of assigning the remaining n−k professors courses which from above is
(2n−2k)!/2n−k. Hence the number of events with none of the Ai is f(∅) =

∑n
k=0(−1)k

(
n
k

)
gk =

∑n
k=0(−1)k

(
n
k

)
(2n − 2k)!/2n−k. The probability is just this answer divided by the answer in

the first paragraph.


