Solutions to Homework 910

Combinatorics (Math 446) Fall 2004 Lehigh University

2.1.9 (a) For induction the basis is $\hat{F}_0 = 1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\hat{F}_1 = 1 = 1 + 0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Then using induction, Pascal's identity and the recurrence for \hat{F} we get for $n \ge 2$

$$\begin{split} \hat{F}_n &= \hat{F}_{n-1} + \hat{F}_{n-2} \\ &= \sum_{j=0}^{n-1} \binom{n-1-j}{j} + \sum_{k=0}^{n-2} \binom{n-2-k}{k} \\ &= \binom{n-1-0}{0} + \sum_{j=1}^{n-1} \binom{n-1-j}{j} + \sum_{k+1=1}^{n-1} \binom{n-1-(k+1)}{(k+1)-1} \\ &= 1+0 + \sum_{i=1}^{n-1} \left(\binom{n-1-i}{i} + \binom{n-1-i}{i-1} \right) \\ &= \binom{n-0}{0} + \binom{n-n}{n} + \sum_{i=1}^{n-1} \binom{n-i}{i} \\ &= \sum_{i=0}^n \binom{n-i}{i} \end{split}$$

Combinatorially, \hat{F}_n counts the number of 1,2 sequences summing to n. Partition the sequences by the number of 2's in the sequence. If there are i 2's then there are n - i terms in the sequence, of which i are 2's. So we pick the locations for the 2's in $\binom{n-i}{i}$ ways. Summing over i gives the identity.

(b) For induction the basis is $\hat{F}_{0+2} = 2 = 1 + 1 = 1 + \hat{F}_0$. Then, using induction and the recurrence for \hat{F}_n we get for $n \ge 1$

$$\hat{F}_{n+2} = \hat{F}_{n+1} + \hat{F}_n = (1 + \sum_{i=0}^{n-1} \hat{F}_i) + \hat{F}_n = 1 + \sum_{i=0}^n \hat{F}_i.$$

Combinatorially, \hat{F}_{n+2} counts the number of 1, 2 sequences summing to n+2. There is one sequence of all 1's. Partition the remaining sequences by the first occurrence of a 2. If the first 2 appears after *i* 1's then the sequence begins with *i* 1's and a 2 with the rest of the sequence an arbitrary 1, 2 sequence summing to (n+2) - i - 2 = n - i; there are \hat{F}_{n-i} of these. Summing over *i* we get $\hat{F}_{n+2} = 1 + \sum_{i=0}^{n} \hat{F}_{n-i} = 1 + \sum_{i=0}^{n} \hat{F}_{i}$.

2.2.4 The homogeneous part $a_n = 3a_{n-1} - 2a_{n-2}$ has characteristic polynomial $x^2 - 3x + 2 = (x-1)(x-2)$ with roots 1, 2. From proposition 2.2.10 we see that there is a particular solution of the form $P(n)n^r 2^n$ where r = 1 and P(n) is a polynomial with degree 1, i.e., a constant, call it *P*. Thus we get that our solution is of the form $a_n = c_1(1^n) + c_2(2^n) + Pn2^n = c_1 + c_22^n + Pn2^n$. From $a_0 = a_1 = 1$ we get $a_2 = 3a_1 - 2a_0 + 2^2 = 3(1) - 2(1) + 4 = 5$. Then using the general form we get $1 = a_0 = c_1 + c_2$; $1 = a_1 = c_1 + 2c_2 + 2P$ and $5 = a_2 = c_1 + 4c_2 + 8P$. This system of 3 equations in 3 unknowns has solution $c_1 = 5, c_2 = -4, P = 2$ and we get $a_n = 5 - 4 \cdot 2^n + 2n2^n = 5 - 4 \cdot 2^n + n2^{n+1}$.

Using generating functions we get

$$\begin{aligned} A(x) &= \sum_{n=0}^{\infty} a_n x^n \\ &= a_0 + a_1 x + \sum_{n=2}^{\infty} a_n x^n \\ &= 1 + x + \sum_{n=2}^{\infty} (3a_{n-1} - 2a_{n-2} + 2^n) x^n \\ &= 1 + x + 3x (\sum_{n-1=1}^{\infty} a_{n-1} x^{n-1}) - 2x^2 (\sum_{n-2=0}^{\infty} a_{n-2} x^{n-2}) + \sum_{n=2}^{\infty} 2^n x^n \\ &= 1 + x + 3x (A(x) - 1) - 2x^2 A(x) + (2x)^2 \sum_{m=0}^{\infty} (2x)^m \\ &= 1 - 2x + (3x - 2x^2) A(x) + \frac{4x^2}{1 - 2x} \end{aligned}$$

Then, solving for A(x) we get

$$A(x) = \frac{1}{1 - 3x + 2x^2} \left(1 - 2x + \frac{4x^2}{1 - 2x} \right) = \frac{1}{(1 - 2x)(1 - x)} \left(1 - 2x + \frac{4x^2}{1 - 2x} \right)$$

Then using partial fractions we get

$$A(x) = \frac{1}{1-x} + \frac{4x^2}{(1-2x)^2(1-x)} = \frac{5}{1-x} + \frac{-6}{1-2x} + \frac{2}{(1-2x)^2}.$$

The coefficient of x^n in 1/(1-x) is 1, the coefficient of x^n in 1/(1-2x) is 2^n and the coefficient of x^n in $1/(1-2x)^2$ is $(n+1)2^n$ (the last using $1/(1-z)^t = \sum_{s\geq 0} \binom{s+t-1}{t-1} z^s$ with z = 2x and t = 2 and s = n). Hence the coefficient of x^n is $a_n = (5)(1) + (-6)(2^n) + (2)(n+1)2^n = 5 - 4 \cdot 2^n + n2^{n+1}$.

3.1.6 Define $a \prec b$ if and only if $b - a \ge 2$. Each k subset of [n] with no consecutive integers corresponds to a sequence $1 \le a_1 \prec a_2 \prec \cdots \prec a_k \le n$. Let $g_1 = a_1, g_{k+1} = n - a_k$ and for $i = 2, 3, \ldots, k$ let $g_i = a_i - a_{i-1}$. The properties of the a_j imply that the g_i are nonnegative integers and in addition $g_1 \ge 1$ and $g_2, g_3, \ldots, g_{k-1}$ are each at least 2. Note also that $\sum_{i=1}^{k+1} g_i = a_1 + (a_2 - a_1) + (a_3 - a_2) + \cdots + (a_k - a_{k-1}) + (n - a_k) = n$. So by looking at these gaps and recalling what we did for multisets we could directly determine $b_{n,k}$ (which we won't do here) and we can also use generating functions, getting the function as we did for multisets, with terms of the form $x^2 + x^3 + \cdots$ corresponding to $g_i \ge 2$ and then use the expansion for multisets to evaluate as follows:

$$\sum_{n\geq 0} b_{n,k} x^n = (x+x^2+\cdots)(x^2+x^3+\cdots)^{k-1}(1+x+x^2+\cdots) = \frac{x^{2k-1}}{(1-x)^{k+1}}$$

and

$$\frac{x^{2k-1}}{(1-x)^{k+1}} = x^{2k-1} \sum_{m=0}^{\infty} \binom{m+(k+1)-1}{(k+1)-1} x^m = x^{2k-1} \sum_{m=0}^{\infty} \binom{m+k}{k} x^m$$

Then $b_{n,k}$ is the coefficient of x^n which is the coefficient of x^{n-2k+1} in the last sum which is $\binom{(n-2k+1)+k}{k} = \binom{n-k+1}{k}$.

3.3.9 See also example 3.3.8 in the text for a different presentation of the solutions to the questions involving $a_{n,k}$.

(a) In the solution to 1.1.33 on the previous homework we showed $a_{n,k} = k! \binom{n+k-1}{k}$. In a similar manner to the version 1 proof we see that placing the unlabelled flags corresponds to positive integral solutions to $\sum_{i=1}^{n} x_i = k$ with the x_i indicating how many flags are on pole i (and hence positive in this case). This is $\binom{k-1}{n-1}$ and for each such solution we can label the flags in k! ways so we get $b_{n,k} = \binom{k-1}{n-1}k!$.

(b) The exponential generating function for number of ways to place the flags on a single flagpole is $(0! + 1!\frac{x}{1!} + 2!\frac{x^2}{2!} + 3!\frac{x^3}{3!} + \cdots) = (1 + x + x^2 + x^3 + \cdots) = 1/(1 - x)$ and if at least one flag must be on the pole the initial 0! = 1 term is omitted and we get $(x + x^2 + x^3 + \cdots) = x/(1 - x)$. Thus for *n* poles we get

$$A(x) = \sum_{k \ge 0} \frac{a_{n,k}}{k!} x^k = \left(\frac{1}{1-x}\right)^n$$

and

$$B(x) = \sum_{k \ge 0} \frac{b_{n,k}}{k!} x^k = \left(\frac{x}{1-x}\right)^n.$$

(c) From (b) we see that $a_{n,k}/k!$ is the coefficient of x^k in $(1/(1-x))^n$ which is $\binom{n+k-1}{k}$ and hence $a_{n,k} = k! \binom{n+k-1}{k}$. Also from (b) we see that $b_{n,k}/k!$ is the coefficient of x^k in $(x/(1-x))^n$ which is the coefficient of x^{k-n} in $(1/(1-x))^n$ which is $\binom{n+(k-n)-1}{(k-n)} = \binom{k-1}{(k-n)}$ and hence $b_{n,k} = k! \binom{k-1}{k-n} = k! \binom{k-1}{n-1}$.

3.4.9 (a) The Ferrers diagram for a partition of 2r + k into r + k parts has r + k rows so r + k of the dots are in the first column and at most r dots are not in the first column. Delete the first column to obtain a Ferrers diagram for an arbitrary partition of r. Conversely, given a Ferrers diagram for an arbitrary partition of r, add a first column of r + k rows to obtain a Ferrers diagram for a partition of 2r + k into r + k parts. Thus $p_{2r+k,r+k}$ is equal to the number of partitions of r, independent of k.

(b) Given a partition of r + k into k parts delete the first column of its Ferrers diagram to get a diagram for a partition of r with at most k rows. Taking the conjugate yields a diagram for a partition of r with at most k columns. It is straightforward to see that this can be reversed so $p_{r+k,k}$ counts the partitions of r into parts of size at most k. (c) Use the notation $(\gamma_1, \gamma_2, \ldots, \gamma_k)$ with $1 \leq \gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_k$ and $\sum \gamma_i = n$ for a partition of n into k parts (with the γ_i indicating the sizes of the parts). Let $\gamma'_i = \gamma_i + i - 1$. Then the γ'_i are distinct and $\sum \gamma'_i = \sum \gamma_i + (1 + 2 + \cdots + (k - 1)) = n + (k - 1)k/2$. Hence the γ' correspond to a partition of n + (k - 1)k/2 into distinct parts. This can be reversed for $n \geq k$, given a partition of n + (k - 1)k/2 into distinct parts (represented by γ'_i such that $1 \leq \gamma'_1 < \gamma'_2 < \cdots < \gamma'_k$ with $\sum \gamma'_i = n + (k - 1)k/2$) letting $\gamma_i = \gamma'_i - i + 1$ yields the γ_i for a partition of n into kparts. Hence for $n \geq k$, $p_{n,k}$ counts the number of partitions of n + (k - 1)k/2 into distinct parts. Letting n = r + k yields the result in the problem.

(d) A partition of n into k parts either has a part of size one or it does not. If it does, deleting a 1 leaves a partition of n - 1 into k - 1 parts. If it does not, subtracting 1 from each part leaves a partition of n - k into k parts. It is straightforward to check that this can be reversed so that this is indeed a bijection. In terms of Ferrer's diagrams, we delete the last row if it has size 1 (leaving a diagram with 1 less dot and 1 less row) or delete the first column if the last row has at least 2 dots (leaving a diagram with n - k dots and k rows).

4.1.17 For the fall the number of assignments is the number of anagrams of the 2n symbols $1, 1, 2, 2, \ldots, n, n$. If *i* appears in locations *r* and *s* then professor *i* teaches courses *r* and *s*. This number is $(2n)!/2^n$.

Let A_i denote the event that professor *i* teaches the same courses in the spring as in the fall. If g_k counts the number of ways that a given set of *k* professors teach the same course then this is the number of ways of assigning the remaining n - k professors courses which from above is $(2n-2k)!/2^{n-k}$. Hence the number of events with none of the A_i is $f(\emptyset) = \sum_{k=0}^n (-1)^k {n \choose k} g_k = \sum_{k=0}^n (-1)^k {n \choose k} (2n-2k)!/2^{n-k}$. The probability is just this answer divided by the answer in the first paragraph.