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37. This is clearly a hereditary system: if S has size at most k and is not a subset of
any of the Ai then any S ′ ⊂ S also has these properties. To see that it is non-empty
we need an extra condition, that |E| ≥ k. Then if |Ai| < k for all i all size k subsets
of E are bases. If |Ai| ≥ k for some i, choose x 6∈ Ai (which exists as we assumed
Ai 6= E) and X ⊆ Ai with |X| = k − 1. Then X ∪ {x} is a base. It has size k and if
it was contained in any Aj then |Aj ∩ Ai| ≥ k − 2.

Let B1 and B2 be two bases and e ∈ B1−B2. Let B2−B1 = {f1, f2, . . . , ft}. If B−e+fi

is not a base then, since its size is k, for some Aσ(i) we have B1−e+fi ⊆ Aσ(i). Assume
that B−e+fi is not a base for all fi ∈ B2−B1. For fi and fj in B2−B1 we get sets Aσ(i)

and Aσ(j) with the size k−1 set B1−e a subset of both. The intersection condition then
implies Aσ(i) = Aσ(j) (if they were distinct their intersection would be too large). So all

of the Aσ(i) are the same set, call it A. Now B2 ⊆
⋃t

i=1(B1− e+ fi) ⊆
⋃t

i=1 Aσ(i) = A
contradicting B2 a base. Thus B1− e + fi is a base for some i and the base exchange
axiom holds.

38. Let {e1, e2, . . . , et} = B1 − B2 and {f1, f2, . . . , ft} = B2 − B1. Construct a
bipartite graph H with parts B1 − B2 and B2 − B1. Put an edge in H between ei

and fj if B1 − ei + fj is a base. A perfect matching in H gives the bijection. Use
Hall’s Theorem to show that H has a perfect matching. Consider S ⊆ B1 −B2. The
B2 is an independent set in (B1 ∪ B2) − S. Thus we can augment the independent
set B1 − S to an independent set (B1 − S) ∪ T of size B2 in (B1 ∪ B2) − S. Note
that T ⊆ B2 − B1 and has size |S|. Consider fj ∈ T . B1 + fj contains a circuit
and this circuit must intersect S as otherwise it is a subset of the independent set
(B1 − S) ∪ T . So for some ei ∈ B1 − B2 we have B1 − ei + fj a base. This implies
that T is contained in the neighborhood of S in H. So Hall’s condition holds in H
and we can find a perfect matching.

39. 18.1.23(a) By monotonicity of the rank function r(X) ≤ r(X + e + f) so we need
to show r(X) ≥ r(X + e + f) from r(X + e) = r(X + f) and submodularity. By
submodularity r((X + e) ∩ (X + f)) + r((X + e) ∪ (X + f)) ≤ r(X + e) + r(X + f)
which implies r(X) + r(X + e + f) ≤ r(X) + r(X) and cancelling gives r(X+e+f) ≤
r(X) as needed.

18.1.23(d) Assume that x ∈ C1 ∩ C2. If (C1 ∪ C2)− x does not contain a circuit and
is thus independent. By uniqueness ((C1 ∪ C2)− x) + x = C1 ∪ C2 contains at most
one circuit, a contradiction.



40. (18.2.2(a)): Note that S is independent in both dual matroids M∗
1 and M∗

2 . By the
intersection formula there is some set Y attaining the minimum |S| = r∗1(Y ) + r∗2(Y ).
Putting Y into the intersection formula for the original matroids M1 and M2 we get
|I| ≤ r1(Y ) + r2(Y ). With |S| = |E| − |S| and |E| = |Y |+ |Y | we get

|I|+ |S| ≤ r1(Y ) + r2(Y ) + |E| − (r∗1(Y ) + r∗2(Y ))

=
(|Y | − r∗1(Y ) + r1(Y )

)
+

(|Y | − r∗2(Y ) + r2(Y )
)

= r1(E) + r2(E)

where the last equality follows from the dual rank formula.

Similarly let X attain the minim in the intersection formula to get |I| = r1(X)+r2(X)
and in the duals we have |S| ≤ r∗1(X)+r∗2(X). With |S| = |E|− |S| this gives a lower
bound on |S|. Then

|I|+ |S| ≥ r1(X) + r2(X) + |E| − (r∗1(X) + r∗2(X))

=
(|X| − r∗2(X) + r2(X)

)
+

(|X| − r∗1(X) + r1(X)
)

= r2(E) + r1(E)

where the last equality follows from the dual rank formula. Combining we get |I| +
|S| = r1(E) + r2(E).

(b) Let G be a bipartite graph with bipartition U1, U2 and let MUi
be the partition

matroid with a set of edge independent if and only if the endpoints in Ui are distinct.
Thus the ranks of the matroids are |Ui|. A set of edges is independent in both MU1

and MU2 if and only if the edges have distinct ends in both U1 and U2. That is,
if they form a matching. A set of edges is spanning in Ui if every vertex in Ui is
the end of at least one of the edges (if not then edges incident to such a vertex are
not in the span as adding them increases the rank). Thus a set of edges spanning
both matroids is an edge cover of the vertices. For both of these the correspondence
goes both ways so we have α′(G) = |I| and β′(G) = |S|. Then from part (a) we get
α′(G) + β′(G) = |I|+ |S| = rU1(E) + rU2(E) = |U1|+ |U2| = n(G). Note that the set
of vertices not covered by a set of edges independent in both matroids must form an
independent set as otherwise we could add an edge. Thus α(G) ≥ n(G) − α′(G) =
n(G) − (n(G) − β′(G)) = β′(G). Since independent vertices must be covered by
distinct edges we also have α(G) ≤ β′(G). Thus α(G) = β′(G).

41. Do 18.2.3: Let k denote the number of paths in a minimum disjoint path partition,
n the number of vertices in G and use α for α(G) and β for β(G). A set of edges is
independent in both the head and tail partition matroids MH and MT if and only if
all indegrees and outdegrees are at most one. That is, if and only if the edges form
disjoint paths. In any forest with t components (possibly including some isolated



vertices, which will correspond to trivial paths in the path partition) the number of
edges is n− t. Thus k = n− |I| where I is a maximum size set independent in both
matroids. Recall also Gallai’s identity α+β = n. Then using the matroid intersection
formula k = n − |I| = α + β − |I| = α + β −minX⊆E

{
rH(X) + rT (X)

}
. From this

k ≤ α will follow if we show β ≤ minX⊆E

{
rH(X) + rT (X)

}
. An independent set in

the head partition matroid corresponds to a set of edges that induce a graph where
every indegree is at most 1. That is, an inforest. Similarly, an independent set in the
tail partition matroid corresponds to an outforest. For a given set of edges X let S be
a maximal independent set in X. We have rH(X) = |S|. Let RH be the set of vertices
with indegree 1 in the graph induced by S. Note that |RH | = |S| = rH(X). These
vertices cover the edges of X. Adding an edge not covered by RH to S would increase
the indegree of a vertex with indegree 0 and hence we would still have an independent
set, contradicting maximality of S. In a similar manner we get a set RT of rT (X)
vertices covering the edges of X by looking at the tail partition matroid. Then RH∪RT

is a vertex cover of the edges and β ≤ |RH ∪ RT | ≤ |RH | + |RT | = rH(X) + rT (X)
and the result follows as this holds for all X.

42. Given a rainbow spanning tree and a partition V1, V2, . . . , Vk there are at least
k−1 edges joint the parts as the tree is spanning. Since the edges must have different
colors we have at least k − 1 colors. It remains to show that if this color condition
holds there is a rainbow spanning tree.

Let M1 be the cycle matroid on the edges of G and let M2 be the partition matroid on
the edges with a set independent if and only if the edges have different colors. Then a
set that is independent in both matroids is a rainbow forest. A common independent
set of size |V | − 1 would be a rainbow spanning tree. Thus the result follows from
matroid intersection if minX⊆E{r1(X) + r2(X)} ≥ |V | − 1 as this would imply a
common independent set of size |V | − 1. We will show that r1(X) + r2(X) ≥ |V | − 1
for all X. The graph G′ induced by a set X of edges yields a partition of the vertices
V1, V2, . . . , Vk with two vertices in the same part if and only if they are in the same
component of G′. Since each component has a spanning tree there is a forest with
|V | − k edges among the edges of X. That is, r1(X) ≥ |V | − k (in fact it is equal).
The set X contains the set of edges between the parts of the partition and thus
by assumption contains edges of at least k − 1 colors. Thus r2(X) ≥ k − 1. So
r1(X) + r2(X) ≥ (|V | − k) + (k − 1) = |V | − 1 as needed.


