
Solutions to Homework 5
Combinatorics (Math 446) Fall 2004 Lehigh University

22. (a) Here we give an ad hoc argument that the maximum is 21. There are 6
vertices so at most 3 edges in a maximum matching. The weight 10 edges form two
triangles so we can take at most 2 in a matching. The remaining edges have weight
1 so the maximum is at most 21 and this can be attained by taking the two vertical
edges on the ends and the middle horizontal edge.

(b) Letting xe = 1/2 for all weight 10 edges and xe = 0 gives a feasible solution with
value 30 as is easily checked. Letting yv = 5 for all vertices gives a dual feasible
solution of value 30 as is easily checked.

(c) Let πW = 9 for each of the sets of three vertices that induce a triangle of weight
10 edges and let πW = 0 otherwise and let yv = 1/2 for all vertices. It is easy to check
that this is a dual feasible solution with value 21. (Note, a feasible integral solution
of value 21 also exists, put yv = 1 for vertices in one triangle and πW = 8 for this set
of three vertices and the other three vertices put y + v = 0 and πW = 10.)

23. Use the following procedure: Repeat II(i) or II(ii) until there are no intersections
then repeat I until there are no intersections or inclusions. We will show below that
this terminates with a minimum capacity cover with no inclusions or intersections.

I: If vj ∈ Wi let u ∈ Wi be distinct from vj with u 6∈ W . Such a u exists as |Wi| ≥ 3
and if all vertices in Wi were also in W then deleting Wi would give a smaller cover.
To get W ′ from W delete Wi and add u and Wi − {u, vj} (if it has size at least 3,
otherwise do not add it).

II(i): If Wi ∩Wj = T with |T | odd. To get W ′ from W delete Wi and Wj and add
Wi ∩Wj.

II(ii): If Wi ∩Wj = T with |T | ≥ 2 and even. Note that Wi 6= Wj or else we could
delete one to get a smaller cover. So Wi −Wj and Wj −Wi are non-empty as their
intersection has even size and they have odd size. Take any u ∈ Wi−Wj. To get W ′

from W delete Wi and Wj and add u and (Wi ∪Wj)− {u}.
If a minimum cover W has Wi ∩ Wj 6= ∅ i, j apply II(i) or II(ii) as appropriate
and repeat until there are no intersections. Note that if W ′′ intersects Wi ∪ Wj or
Wi∪Wj−{u} then it intersected either Wi or Wj or both. So this strictly decreases the
number of intersections of Wi and this part will indeed terminate with no intersections.

Given a cover with no intersections repeat I until there are no inclusions vj ∈ Wi.
Since there are no intersections u is not in any W ′

i (so no new inclusions are created)
and the number of inclusions decreases as the inclusion vj ∈ Wi is eliminated. Thus
this will terminate in a cover with no intersections or inclusions as needed.



Finally we check that each procedure is indeed a cover and does not increase the
capacity of the odd set cover so that the result will be a minimum cover with no
intersections or inclusions.

For I: Since the only deletion from W is Wi, all edges are still covered in W ′ except
possibly for those with both ends in Wi. Edges with both ends in Wi − {u, vj} are
covered by that set in W ′. All other edges with both ends in Wi have at least on end
either u or vj and thus these are covered by u and vj in W ′. The change in capacity
is capacity(W ′)− capcity(W) = 1 + (|Wi − {u, vj}| − 1)/2− (|Wi| − 1)/2 where the
1 + (|Wi − {u, vj}| − 1)/2 comes from the additions of u and Wi − {u, vj} (when this
set has size 1 and is not added the term (|Wi − {u, vj}| − 1)/2 is also 0) and the
deletion of Wi. So the capacity is unchanged by I.

For II(i): Since the only deletions from W are Wi and Wj, all edges are still covered
in W ′ except possibly for those with both ends in Wi or with both ends in Wj.
Both of these types of edges are covered by Wi ∪ Wj. The change in capacity is
capacity(W ′) − capcity(W) = (|Wi ∪ Wj| − 1)/2 − (|Wi| − 1)/2 − (|Wj| − 1)/2 ≤
(|Wi|+ |Wj| − 1− 1)/2− (|Wi| − 1)/2− (|Wj| − 1)/2 ≤= 0. The first ≤ follows since
the intersection is non-empty. So II(i) does not increase capacity.

For II(ii): Since the only deletions from W are Wi and Wj, all edges are still covered
in W ′ except possibly for those with both ends in Wi or with both ends in Wj. Both
of these types of edges are covered by Wi ∪ Wj unless one end is u in which case
the edge is covered by u. The change in capacity is capacity(W ′) − capcity(W) =
1+ (|Wi ∪Wj −{u}|− 1)/2− (|Wi| − 1)/2− (|Wj| − 1)/2 ≤ 1+ (|Wi|+ |Wj| − 2− 1−
1)/2 − (|Wi| − 1)/2 − (|Wj| − 1)/2 ≤= 0. The first ≤ follows since the intersection
has size at least 2. So II(ii) does not increase capacity.

24. We need to use the matching duality theorem to prove Tutte’s theorem: G has
a perfect matching if and only if odd(G − S) ≤ |S| for all S ⊆ V . The necessity
of the condition is straightforward and has been covered in class and in the text.
It remains to show that if odd(G − S) ≤ |S| for all S ⊆ V then G has a perfect
matching. We prove the contrapositive: if G does not have a perfect matching then
odd(G − S) > |S| for some S. If G does not have a perfect matching then by the
matching duality theorem and the disjointness result of the previous exercise there
is a disjoint odd set cover with capacity less than |V |/2 (the number of edges in a
perfect matching). Take a minimum odd set cover {W1,W2, . . . ,Wk, v1, v2, . . . , vr}.
Let S be the set of vertices in the cover and T the set of vertices not in S or one of
the Wi. Then |V | = |S|+ |T |+ ∑k

i=1 |Wi|. Every edge that does not have an end in
S has both ends in some odd set Wi in the cover. Thus the components of G − S
are the Wi and isolated vertices T , all of which are odd. So odd(G − S) = k + |T |.
From the capacity bound we have |V |/2 > capacity(W) = |S| + ∑k

i=1(|Wi| − 1)/2.



Combining all of this we get
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|Wi| = |V | > 2|S|+ 2

(
k∑
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|Wi| − 1

2

)
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k∑
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k∑
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Thus |T | > |S| − k and so |S| < |T |+ k = odd(G− S).

25. Note that shrinking a cycle creates a new vertex which becomes a root (an even
vertex) of the alternating forest. Furthermore, note that the shrunken cycle was an
even distance from the original root, so even vertices stay even in the new forest.
Thus at the end of the algorithm all odd vertices correspond to vertices of G (not
shrunken vertices). When we shrink a cycle the new vertex corresponds to an odd
cardinality set of vertices in the previous graph. Thus after repeated shrinking (a
previously shrunken cycle may be a vertex on a cycle that is shrink at a later stage
etc) the number of vertices corresponding to a shrunken cycle is odd.

At the conclusion of the algorithm there are odd vertices of the final forest v1, v2, . . . , vr,
even vertices of the final forest w1, w2, . . . , ws and vertices not in the final forest
u1, u2, . . . , ut. The vertices not in the final forest form a perfect matching in G′ and
each of the odd vertices is matched. So G′ has a maximum matching of size t/2 + r.
Some of the ui and wj vertices may be shrunken vertices resulting from repeated
shrinking. (The vi are not as noted above.) Let Wj and Ui be the sets of correspond-
ing vertices in G. If the vertex is not shrunken this set will have size 1. By repeated
applications of the shrinking lemma we get that the original graph G has a matching
of size t/2 + r +

∑t
i=1(|Ui| − 1)/2 +

∑s
j=1(Wj| − 1)/2.

Let U ′ =
⋃t

i=1 Ui. Let V ′ = {v1, v2, . . . , vr} ∪ {u} where u is some vertex of U ′ (if
U ′ is empty then do not include u). Let W ′ = {Wj||Wj| ≥ 3} ∪ (U ′ − u) (if U ′ − u
has size 1 do not include it). Then the vertices V ′ along with the odd sets W ′ form a
minimum odd set cover of G. All edges among the Ui are covered by u and U ′−u. All
edges adjacent to a vi are covered by that vertex. There are no edges between any Wj

and another Wj′ or a Ui as otherwise the corresponding edge in the shrunken graph
would have caused a shrinking or a growing of the final alternating forest. All edges
between vertices in the same Wj are covered by the odd set. Thus this is a cover. Since
(|Wj|−1)/2 = 0 for the sets Wj of size 1 not included in the cover it is straightforward
to check that this cover has size t/2 + r +

∑t
i=1(|Ui| − 1)/2 +

∑s
j=1(Wj| − 1)/2 as

needed.

26. In the matching duality formula α′(G) = β∗(G) it is easy to see that α′(G) ≤
β∗(G) from weak duality. So it remains to show α′(G) ≥ β∗(G). Let S ⊆ V be such
that α′(G) = (|V |−(t−|S|))/2 where t = odd(G−S). Such a set exists by the Tutte-
Berge formula. Let W1,W2, . . .Wt be the odd components of G−S and U the vertices



in even components. LetW be the odd set cover consisting of vertices S and some ver-
tex u ∈ U (if U is non-empty) and odd sets those sets among W1,W2, . . . , Wt and U−u
that have size at least 3. (Note if S is maximal with equality then U will be empty.
This can be shown in a manner similar to that in one of the proofs of Tutte’s theorem
in class.) This is indeed a cover as there are no edges between any Wj and another Wj′

or any vertex of U . Noting that (|Wj|−1)/2 = 0 for the sets Wj of size 1 not included
in the cover and that |V | = |S|+|U |+∑t

j=1 |Wj| we get the capacity of the cover to be

|S|+ |U |/2 +
t∑

j=1

(|Wj| − 1)/2 = |S|/2 + (|S|+ |U |+
t∑

j=1

|Wj|)/2− t/2 = (|S|+ |V | − t)/2 = α′(G).

Thus β∗(G) ≤ α′(G) as needed.

27. For α′(G) ≤ (minS⊆V |V | − (odd(G − S) − |S|})/2 note that every matching
matches at most |S| edges into odd components of G − S so at least odd(GS) − |S|
have an unsaturated vertex. Let d = maxS⊆V {odd(G − S) − |S|}. We have d ≥ 0
from S = ∅. Let G′ be the graph obtained from G by adding a complete graph
Kd on a set U of d new vertices and making each new vertex adjacent to all of V .
Since d has the same parity as |V | the number of vertices in G′ is even and as G′ is
connected and G′ satisfies Tutte’s condition for S = ∅. For S ′ non-empty and U 6⊆ S ′

there is only one component in G′ − S ′ (as vertices of U are adjacent to all vertices
in G′) and odd(G′ − S ′) ≤ 1 ≤ |S ′|. If U ⊆ S ′ let S = S ′ − U . Then note that
odd(G′ − S ′) = odd(G − S) as the remaining graph is the same in each case. Then
odd(G′ − S ′) = odd(G− S) ≤ d + |S| = |S ′|. So Tutte’s condition holds in G′ and G′

has a perfect matching. Restricting this to G yields a matching in G with at most d
unsaturated vertices. Hence α′(G) ≥ (minS⊆V |V | − (odd(G − S) − |S|})/2 and the
result follows.


