
Solutions to Homework 4
Combinatorics (Math 446) Fall 2004 Lehigh University

19. Let A be the arc set and V the node set of the digraph. In matrix notation,
given vectors c, l,u ∈ R|A| and M the node-arc incidence matrix of the digraph,
find f ∈ R|A| satisfying min{cf |Mf = 0, l ≤ f ≤ u}. Rewriting this in typical

primal format we have max
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f(vw) = 0 for all v ∈ V and

l(uv) ≤ f(uv) ≤ u(uv) for all uv ∈ A.

The dual (taken from the ‘standard form’) is
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max {bl− au|b− a− πM = c,a ≥ 0, b ≥ 0}. In Σ notation we have

max
∑
uv∈A

(l(uv)b(uv)− u(uv)a(uv))

s.t. b(uv)− a(uv) + π(v)− π(u) = c(uv) for all uv ∈ A, a(uv), b(uv) ≥ 0 for all uv ∈ A.

20. The directed Chinese Postman problem is solved by solving the min cost circu-
lation problem on the given digraph where the costs on the arcs are the arc lengths,
the lower bounds are all 1 and the upper bounds are infinite. (Note that we could use
this model to solve the more general problem where only some of the arcs need to be
traversed by putting a lower bound of 0 on the other arcs.) We use integrality from
total unimodularity of the constraint matrix to ensure that our solution corresponds
to a walk, the value of the flow variable giving the number of times an arc is traversed.

For the unweighted version we also have all of the costs equal to 1. Observe that in
the dual with with infinite upper bounds the variables a(uv) will all be 0 in a finite
optimal solution. Thus the dual in this case becomes

max
∑
uv∈A

b(uv) s.t. b(uv) + π(v)− π(u) = 1 for all uv ∈ A. Take an integral optimal

dual solution b∗,π∗. The existence of an integral optimal solution follows from total
unimodularity of the constraint matrix. The dual has a finite optimum because the
primal does (this existence was shown in a previous homework). That the primal has
a finite optimum follows from the assumption that the digraph is strongly connected.

Since the π∗(v) are free variables, do not appear in the objective function and in each
equation they occur in pairs, one positive and one negative, we can add a constant
to all of them and obtain another feasible optimal solution. Thus we may assume



that the smallest π∗(v) is 1. From b∗(uv) + π∗(v) − π∗(u) = 1 and b∗(uv) ≥ 0
we get π∗(v) ≤ π∗(u) ≤ 1. Let Ri = {v ∈ V |π∗(v) ≤ i} and consider the cuts
[Ri, Ri] and [Ri, Ri]. From π∗(v) ≤ π∗(u) ≤ 1, we have that [Ri, Ri] contains only
arcs uv with π∗(u) = i and π∗(v) = i + 1. So the cuts [Ri, Ri] are disjoint. If
π∗(v) = π∗(u) + 1 then uv is only in the cut [Ri, Ri] (among those listed above).
If π∗(v) = r ≤ s = π∗(u) then b∗(uv) = 1 − r + s and uv is in the s − r cuts
[Rr, Rr], . . . , [Rs−1, Rs−1] (there are none if r = s). The objective value is as fol-
lows. The sums are assume to be over arcs uv plus any other noted conditions:∑

b∗(uv) =
∑

(1− π∗(v) + π∗(u)) =
∑

1 +
∑

π∗(v)−π∗(u)=1

(−1) +
∑

π∗(v)≤π∗(u)

(π∗(u)− π∗(v)).

The first term is just |A|. By the discussion above, the second term is the −1 times
the sum of the [Ri, Ri] and the third term is the sum of the [Ri, Ri]. Thus we get that

the objective value is |A|+
∑
R∈R

(|[R, R]| − |[R, R]|). This shows geq in the max-min

formula. As noted in class ≤ is straightforward to check.

21. A family attaining the bound is the
(
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)
size k subsets of [n] = {1, 2, . . . , n}

containing 1. Let
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denote the collection of all size k subsets of {1, 2, . . . , n}

and let Π′
n denote the set of all (n − 1)! cyclic permutations of [n]. For a given

intersecting family F we can consider variables xA where A ranges over
(
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with

xA = 1 if A ∈ F and 0 otherwise. The comments on cyclic permutations imply that∑

A∈Q(σ)

xA ≤ k for any cyclic permutation σ. Thus the integer linear programming
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Provides an upper bound on the maximum size of an intersecting family. Relaxing the
constraint XA ∈ {0, 1} to xA ≥ also gives a bound (as the max in the relaxed problem
is at least as large as the integer program). Each set A in is Q(σ) for k!(n−k)! different
σ (place any permutation of the set in one part of the circle in k! ways and any permu-
tation of its complement in the rest in (n−k)! ways). Thus, each variable xA appears in
exactly k!(n−k)! of the inequalities, each time with coefficient 1. Let the (n−1)! dual
variables be yσ. Then, since the right side of the dual is 1, setting all dual variables to
y∗sigma = 1/(k!(n−k)!) is dual feasible (as each inequality in dual then becomes 1 ≥ 1).

The value of this is
∑
σ∈Πn
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∑
σ∈Πn

k

k!(n− k)!
= (n− 1)!

k

k!(n− k)!
=
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)
. This

is an upper bound on the dual optimal which by weak duality is an upper bound on
the primal optimal which by the comments above is an upper bound on the size of
an intersecting family.


