
Solutions to combinatorics (math 446) homework 3, fall 2004, Lehigh University

13. Given G construct a network D with

V (D) = {v−, v+|v ∈ V (G)} and A(D) = {v+w−|vw ∈ A(G)} ∪ {v−v+|v ∈ V (G)}

For capacities, all arcs in D have lower bound 0. Arcs of the form v+w− have infinite upper
bound and arcs of the form v−v+ have upper bound 1 except for the arcs x−x+ and y−y+

which have infinite upper bound. Let x− be the source in D and y+ be the sink. Since the
only arc leaving a vertex v− in D is of the form v−v+ there is a one to one correspondence
between x − y paths in G and x− − y+ paths in D. the upper bound of 1 on arcs v−v+

ensures that each vertex pair other than x−, x+ and y−y+ is used at most once in a maximum
flow in D. Then, since flows decompose into paths, a maximum flow in D corresponds to
internally disjoint paths in G. Let [S, T ] be cut with finite capacity m in D. It contains
m arcs v−v+ for v ∈ V (G) − {x, y} as all other arcs have infinite capacity. Let R be the
set of vertices v in V (G) with v− ∈ S and v+ ∈ T . By the path correspondence, every
x − y path in G must go through a vertex of R. Thus R is a separating set of G. Then
|R| = m = max flow = max number of internally disjoint x− y paths .

14. This can be done with just about any of the network methods we have used. We will use
max-flow min-cut here. Construct a network D with V (D) = {s, t}∪X ∪Y A(D) = {sxi|xi ∈
X} ∪ {yjt|yj ∈ Y } ∪ {xiyj|xy ∈ E(G)}. All lower bounds are 0. The upper bounds are given
by u(sxi) = σ(i), u(yjt) = δ(j), and u(xiyj) = ∞. Given a flow in D let zij be the flow on
the arc xiyj. The upper bound σ(i) on the only arc entering xi ensures that

∑

j∈N(i)

zij ≤ σ(i)

(as the term on the left is the sum of the flows on the arcs leaving xi) for all i ∈ X. Similarly,∑

i∈N(j)

zij ≤ δ(j) for all j ∈ Y . A flow of value
∑

yj∈Y δ(j) will force
∑

i∈N(j)

zij = δ(j). Thus we

need to show that there is a flow of this value if and only if the given condition holds.

Consider a minimum cut [S, T ]. Let U = T ∩ Y . Since the cut is finite, there are no
arcs xiyj with xi ∈ S and yj ∈ T . Thus, in G there are no corresponding edges xy and
N(U) ⊆ T ∩ X. If xi ∈ T ∩ X is not in N(U) then moving xi to S would would not add
any infinite upper bound arcs to the cut and would decrease the capacity by σ(i). Thus, for
a minimum cut with U = T ∩ Y we have N(U) = T ∩X. The capacity of such a minimum
cut is

∑
xi∈T∩X σ(i) +

∑
yj∈S∩Y δ(j) and

∑

xi∈T∩X

σ(i) +
∑

yj∈S∩Y

δ(j) ≥ ∑

yj∈Y

δ(j) ⇔ ∑

xi∈T∩X

σ(i) ≥ ∑

yj∈Y ∩T

δ(j)

With U = T ∩ Y and N(U) = T ∩X this is exactly the condition.



15. Let F be an intersecting family. Consider variables xσ for each k permutation with
xσ = 1 if σ is in F and xσ = 0 otherwise. Call two k permutations < σ(1)σ(2) · · · σ(k) >
and < γ(1)γ(2) · · · γ(k) > equivalent if there is some constant c such that σ(i) − γ(i) = c
for i = 1, 2, . . . , k where addition is modulo n (and we write n for 0). This is clearly
an equivalence relation. The equivalence class containing a given σ is the set of all per-
mutations equivalent to σ. (For example, with n = 7 and k = 4 one equivalence class is
{1537, 2641, 3752, 4163, 5274, 6315, 7426}.) The set C of equivalence classes partitions the set
of permutations. Note that no two permutations in an equivalence class intersect. Thus∑

σ∈C xσ ≤ 1 for each equivalence class. Then

∑

σ∈F
xσ =

∑

C∈C

∑

σ∈C

xσ ≤
∑

C∈C
1 =

(n− 1)!

(n− k)!

The first equality follows since the equivalence classes partition the set of k permutations, the
second was observed above and the last follows as the n!/(n−k)! permutations are partitioned
into equivalence classes of size n so there are (n− 1)!/(n− k)! equivalence classes.

Thus we have the correct upper bound on the size of F . (The underlying idea is weak duality.)
To show that the bound is attained consider the family of all permutations with first entry 1.
These clearly intersect and there are (n− 1)!/(n− k)! of them.

16. For simplicity in notation let ST denote the set of arcs from S to T . Let u(ST ) denote
the sum of the upper bounds on the arcs in ST and similarly for l. Also, let A = S ∩ T ,
B = S ∩ T , C = S ∩ T and D = S ∩ T . Then

cap(S ∪ T, S ∩ T ) = u(AD) + u(BD) + u(CD)− l(DA)− l(DB)− l(DC)
cap(S ∩ T, S ∩ T ) = u(AB) + u(AC) + u(AD)− l(BA)− l(CA)− l(DA)

and

cap(S, S) = u(AC) + u(AD) + u(BC) + u(BD)− l(CA)− l(DA)− l(CB)− l(DB)
cap(T, T ) = u(AB) + u(AD) + u(CB) + u(CD)− l(BA)− l(DA)− l(BC)− l(DC)

It is straightforward to check that the sum of the second two right sides minus the sum of
the first two is u(BC) + u(CB)− l(CB)− l(BC). Since we assume that upper bounds are at
least the lower bounds for each arc we have u(BC)− l(BC) ≥ 0 and u(CB)− l(CB) ≥ 0 and
hence the sum of the second two right sides minus the sum of the first two is at least 0. This
is the inequality to be shown.

17. We may assume that s1 ≤ s2 ≤ · · · ≤ sn. (Note then that since the ri and si are paired
then we cannot assume anything about the ri, however this will not be necessary). By the
Gale-Ryser Theorem there is a bipartite graph with degrees (r1, r2, . . . , rn) and (s1, s2, . . . , sn)
if and only if

∑
i = 1m min{ri, k} ≥ ∑k

j=1 sj for k = 1, 2, . . . n. (Note that the condition Gale-
Ryser does not need monotonicity for the pi.) Finally, observe that there is a bipartite graph
with these degrees if and only if there is a digraph with these as indegrees and outdegrees.
Let the vertex set of the digraph be {v1, v2, . . . , vn} and the parts of the bipartite graph
{x1, x2, . . . , xn} and {y1, y2, . . . , yn}. Put arc vivj in the digraph if and only if xiyj is an edge
of the bipartite graph.



18. Let (I) be the statement max{cx|Ax = b, x ≥ 0} = min{yb|yA ≥ c} (when both are
feasible) and (II) the statement max{cx|Ax ≤ b} = min{yb|yA = c,y ≥ 0} (when both are
feasible).

To show (II) implies (I): Assuming the first and last LPs below are feasible we have

max{cx|Ax = b,x ≥ 0} = max








A
−A
−I


 x ≤




b
−b
0








= min





[
u v w

]



b
−b
0


 |

[
u v w

]



A
−A
−I


 = c,

[
u v w

]
≥ 0





= min {yb|yA = c,y ≥ 0}

The first and third equalities follow from basic manipulations. The second follows from (II).

To show (I) implies (II): Assuming the first and last LPs below are feasible we have

max {cx|Ax ≤ b} = max





[
c −c 0

]



u
−v
w


 |

[
A −A I

]



u
−v
w


 = b,




u
−v
w


 ≥ 0



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= min
{
yb|y

[
A −A I

]
≥

[
c −c 0

]}

= min{yb|yA = c,y ≥ 0}

The first and third equalities follow from basic manipulations. The second follows from (I).


