
Solutions to combinatorics (math 446) homework 1, fall 2004, Lehigh University

1. Note - there are at least two ways to take care of the ‘at most one of the systems has a solution’
part of the statements. While it is a bit redundant we will show both ways below. First we show it
directly and we also show it by the equivalent systems. If the ‘at most one system holds’ is shown
first then only the ⇐’s are needed for the equivalent systems.

First we note that for each it is easy to show that at most one of the systems holds.

If both IA and IIA hold then

0 = 00 ≤ (yA)x = y(Ax) ≤ yb < 0

a contradiction. We have used y ≥ 0 in the second ≤.

If both IB and IIB hold then

0 = 00 ≤ (yA)x = y(Ax) = yb < 0

a contradiction.

So for the remainder we will seek to show at least one of the following holds.

(A ⇒ B): Note the following equivalences.

(IB)
Ax = b
x ≥ 0

⇔
Ax ≤ b

−Ax ≤ −b
x ≥ 0

⇔
[

A
−A

]
x ≤

[
b

−b

]

x ≥ 0
(IB’)

and

(IIB)
yA ≥ 0
yb < 0

⇔
(u− v)A ≥ 0
(u− v)b < 0

u,v ≥ 0
⇔

[
u v

] [
A

−A

]
≥ 0

[
u v

] [
b

−b

]
< 0

[
u v

]
≥ 0

(IIB’) .

In the second line, given y one can easily pick non-negative u,v such that y = u − v so the first
⇔ in the second line does hold.

Applying A, we get that exactly one of (IB’) and (IIB’) has a solution. The equivalences then show
that exactly one of (IB) and (IIB) has a solution.

(B ⇒ A): Note following equivalences.

(IA)
Ax ≤ b
x ≥ 0

⇔ Ax + Is = b
x, s ≥ 0

⇔

[
A I

] [
x
s

]
= b

[
x
s

]
≥ 0

(IA’)



and

(IIA)
yA ≥ 0
y ≥ 0
yb < 0

⇔
yA ≥ 0
yI ≥ 0
yb < 0

⇔ y
[

A I
]
≥ 0

yb < 0
(IIA’) .

Applying B, we get that exactly one of (IA’) and (IIA’) has a solution. The equivalences then show
that exactly one of (IA) and (IIA) has a solution.

2. (i) We start with
n∑

j=1

aijxj ≤ bi for i = 1, 2 . . . , m. (1)

Let U = {i|ain > 0}, L = {i|ain < 0} and N = {i|ain = 0}. Then

1

arn


br −

n−1∑

j=1

arjxj


 ≤ xn for r ∈ L

xn ≤ 1

asn


bs −

n−1∑

j=1

asjxj


 for s ∈ U

n−1∑

j=1

atjxj ≤ bt for t ∈ N

(2)

is just a rearrangement of (1). Note that the direction of the inequality changes when r ∈ L since
arn < 0 and we multiply by this. We pair each upper bound with each lower bound and carry along
the inequalities not involving xn to get

1

arn


br −

n−1∑

j=1

arjxj


 ≤ 1

asn


bs −

n−1∑

j=1

asjxj


 for r ∈ L, s ∈ U

n−1∑

j=1

atjxj ≤ bt for t ∈ N

(3)

Due to the construction (1) has a solution if and only if (3) does. (This will also follow from parts
(iv) and (v) below.)

(ii) With one variable we have three types of inequalities as above using n = 1 for L,U,N : as1x1 ≤ bs

for s ∈ U ; ar1x1 ≤ br for r ∈ L and inequalities with no variable (t ∈ N) of the form 0 ≤ bt. If
we have 0 ≤ bt for some bt < 0 then the system is inconsistent, there is clearly no solution to the
system. Set all multiplies ui1 = 0 except ut1 = 1 to get a certificate of inconsistency. We can
drop inequalities 0 ≤ bt for bt ≥ 0 so we can assume now that all ai1 are nonzero. Rewriting the
system we have x1 ≤ bs/as1 for s ∈ U and br/ar1 ≤ x1 for r ∈ L. There is a solution if and
only if maxr∈L br/ar1 ≤ mins∈U bs/as1. If this holds then any x1 ∈ [maxr∈L br/ar1, mins∈U bs/as1]
satisfies all inequalities. If not then for some r∗, s∗ we have bs∗/as∗1 < br∗/ar∗1. For a certificate of
inconsistency take all ui1 = 0 except ur∗1 = as∗1 > 0 and us∗1 = −ar∗1 > 0. Multiplying we have
as∗1 (ar∗1x1 ≤ br∗) and −ar∗1 (as∗1x1 ≤ bs∗). Combining these we get 0 ≤ (br∗as∗1 − bs∗ar∗1) < 0.
The last < 0 follows from bs∗/as∗1 < br∗/ar∗1 (again noting that the direction of the inequality
changes as ss∗1 < 0).



(iii) If L ∪ N is empty the original system is xn ≤ 1

asn


bs −

n−1∑

j=1

asjxj


 for s ∈ U . For a solution

take x1 = x2 = · · · xn−1 = 0 and xn = mins∈U(bs/asn). It is straightforward to check that this is a
solution.

If U ∪ N is empty the original system is
1

arn


br −

n−1∑

j=1

arjxj


 ≤ xn for r ∈ L. For a solution take

x1 = x2 = · · · xn−1 = 0 and xn = maxr∈L(br/arn). It is straightforward to check that this is a
solution.

(iv) If (3) is inconsistent with multipliers urs for r ∈ L, s ∈ U and ut for t ∈ N construct a certificate

y of inconsistency for (1): For t ∈ N let yt = ut. For r ∈ L let yr = − 1

arn

∑

s∈U

urs and for s ∈ U let

ys =
1

asn

∑

r∈L

urs. Since we started with a certificate for (3) we have that combining the inequalities

urs


 1

arn


br −

n−1∑

j=1

arjxj


 ≤ 1

asn


bs −

n−1∑

j=1

asjxj





 for r ∈ L, s ∈ U

ut




n−1∑

j=1

atjxj ≤ bt


 for t ∈ N

yields 0 < b for some b < 0. For (2) which is a rearrangement of (1), combining

(
− 1

arn

∑

s∈U

urs

) 
 1

arn


br −

n−1∑

j=1

arjxj


 ≤ xn


 for r ∈ L

(
1

asn

∑

r∈L

urs

) 
xn ≤ 1

asn


bs −

n−1∑

j=1

asjxj





 for s ∈ U

(ut)
n−1∑

j=1

atjxj ≤ bt for t ∈ N

(v) Given a solution (x∗1, x
∗
2, . . . , x

∗
n−1) to (3) take x∗n to be any value in the interval


max r ∈ L

1

arn


br −

n−1∑

j=1

arjxj


 , min s ∈ U

1

asn


bs −

n−1∑

j=1

asjxj







3. We will eliminate the variable x1. Rewriting we get the following ‘equivalent’ systems (where
equivalent means either both have solutions or both do not):

For (a)

3x1 + 6x2 ≤ 12
−x1 + x2 ≤ 2
−2x1 − 6x2 ≤ −10

⇔
x1 ≤ 4− 2x2

−2 + x2 ≤ x1

5− 3x2 ≤ x1

⇔ −2 + x2 ≤ 4− 2x2

5− 3x2 ≤ 4− 2x2
⇔ 3x2 ≤ 6

−x2 ≤ −1



The last system is 1 ≤ x2 ≤ 2. We can pick x2 in this interval and use it to get a solution for x1.
Take x2 = 3/2. (The arithmetic for taking x2 = 1 or x2 = 2 is simpler but we happen get only one
possibility for x1 so we take x2 = 3/2 for better illustration.) Putting x2 = 3/2 into the original
system gives x1 ≤ 4− 2(3/2) = 1, −1/2 = −2 + 3/2 ≤ x1, 1/2 = 5− 3(3/2) ≤ x1. So any x1 in the
interval [1/2, 1] along with x2 = 3/2 is a solution. In particular a solution is x1 = 1/2, x2 = 3/2.

For (b)

3x1 + 6x2 ≤ 12
−x1 + x2 ≤ 2
−2x1 − 6x2 ≤ −14

⇔
x1 ≤ 4− 2x2

−2 + x2 ≤ x1

7− 3x2 ≤ x1

⇔ −2 + x2 ≤ 4− 2x2

7− 3x2 ≤ 4− 2x2
⇔ 3x2 ≤ 6

−x2 ≤ −3

The last system is inconsistent as seen by the multipliers (1, 3). (Multiply the first inequality by 1
and the second by 3 and combine to get 0 ≤ −3.) This correspond to multipliers (1, 3) in the third
system, multipliers (4, 1, 3) in the second system and (4/3, 1, 3/2) in the original, yielding the same
inconsistency 0 ≤ −3.

4. Use induction on the size of the submatrix. A 1 by 1 submatrix is an entry of A which is in
{0,−1, +1} and the determinant is trivially the same. Given a k by k submatrix B, consider three
cases: (a) Some column has all zeroes; (b) some column has exactly one +1 or exactly one −1; (c)
not (a) or (b).

Then, if:
(a) det(B) = 0 as it has a column of all zeroes.
(b) Say column s has exactly one non-zero and the non-zero is in row r. Then expanding the

determinant we get Det(B) =
k∑

i=1

aijC(ij) = arsC(rs). This follows since ais = 0 except when

i = r. Finally, ars = ±1 and C(rs) is ±1 times a smaller submatrix of A, which by induction
is in {0,−1, +1}. Thus det(B) is a product of three terms all in {0,−1, +1} and hence det(B) ∈
{0,−1, +1}.
(c) In this case all columns of B have exactly one +1 and exactly one −1. Summing all rows gives
a row of all zeroes and hence det(B) = 0.

5. (See also the hand drawn diagrams.) The digraph D′ has the following arcs with weight −ε:
{lvru, lwru, lyru, lwrv, lwrx, lyrx, lwry} and the following two sets each with arc weights 0: {rxlu, rulx, rxlv, rvlx, rylv, rvly}
and {rulu, rvlv, rwlw, rxlx, ryly}. A potential (found by inspection) is p(ru) = p(lu) = p(lx) = −3ε,
p(lv) = p(rx) = −2ε, p(ry) = p(ly) = p(rv) = −ε, p(rw) = p(lw) = 0. After scaling by ε this gives
the interval representation Iu = [−3,−3], Iv = [−2,−1], Iw = [0, 0], Ix = [−3,−2], Iy = [−1,−1].

6. (See also the attached hand drawn diagrams.) We get the a digraph with vertices {0, 1, . . . , 7}
and arcs ij for all 1 ≤ i < j ≤ 7 with lower bound 0 and upper bound 1 and the following arcs and
bounds: 01 with l(01) = u(01) = 6 − 1 + 1 = 6, 02 with l(02) = u(02) = 5 − 2 + 1 = 4, 03 with
l(03) = u(03) = 5 − 3 + 1 = 3, 04 with l(04) = u(04) = 3 − 4 + 1 = 0, 05 with l(05) = u(05) =
1− 5 + 1 = −3, 06 with l(06) = u(06) = 1− 6 + 1 = −4, 07 with l(07) = u(07) = 0− 7 + 1 = −6.
The set {4, 5, 6, 7} has sum of lower bounds on arcs leaving equal to 0 (in fact it has no arcs leaving)
and sum of entering upper bounds equal to 12 + (0 + (−3) + (−4) + (−6)) = −1. (The 12 comes
from upper bounds of 1 on the 12 arcs from {1, 2, 3} to {4, 5, 6, 7} and the remaining terms are
from upper bounds on the arcs 04, 05, 06, 07. Thus at most −1 unit of flow can enter {4, 5, 6, 7} and



at least 0 units leave. This violates the necessary condition for flows. Then, in the score sequence
s4, s5, s6, s7 violate the necessary condition with 5 = 3 + 1 + 1 + 0 = s4 + s5 + s6 + s7 < 6 =

(
4
2

)
.

(Note {5, 6, 7} also violate the flow condition and s5, s6, s7 violate the score condition.)


