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Introduction to Multivariable Control

General control problem formulation [3.8]
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Figure 1: General control configuration for the case with no model uncertainty

The overall control objective is to minimize some norm of the transfer
function from w to z, for example, the H∞ norm. The controller design
problem is then:

− Find a controller K which based on the information in v, generates a control
signal u which counteracts the influence of w on z, thereby minimizing the
closed-loop norm from w to z.
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Introduction to Multivariable Control

Obtaining the generalized plant P [3.8.1]

Almost any linear control problem can be formulated using the block diagram
in Fig. 1

The routines in MATLAB for synthesizing H∞ optimal controllers assume
that the problem is in the general form of Figure 1.

Example: One degree-of-freedom feedback control configuration.
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Figure 2: One degree-of-freedom control configuration
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Introduction to Multivariable Control

Equivalent representation of Figure 2 where the error signal to be minimized is
z = y − r and the input to the controller is v = r − ym.
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Figure 3: General control configuration equivalent to Figure 2

To construct P one should note that it is an open-loop system and remember to
break all “loops” entering and exiting the controller K .
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Introduction to Multivariable Control

w =

 w1

w2

w3

 =

 d
r
n

; z = e = y − r; v = r − ym = r − y − n (1)

z = y − r = Gu+ d− r = Iw1 − Iw2 + 0w3 +Gu

v = r − ym = r −Gu− d− n =

= −Iw1 + Iw2 − Iw3 −Gu

P which represents the transfer function from
[
w u

]T
to
[
z v

]T
is

P =

[
I −I 0 G
−I I −I −G

]
(2)

Note 1: P does not contain the controller!
Note 2: Alternatively, P can be obtained by inspection from Figure 3.
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Introduction to Multivariable Control

Remark. In MATLAB we may obtain P via simulink, or we may use the sysic

program in the µ-toolbox. The code in Table 1 generates the generalized plant P in (2)
for Figure 2.

Table 1: MATLAB program to generate P

% Uses the Mu-toolbox

systemnames = ’G’; % G is the SISO plant.

inputvar = ’[d(1);r(1);n(1);u(1)]’; % Consists of vectors w and u.

input to G = ’[u]’;

outputvar = ’[G+d-r; r-G-d-n]’; % Consists of vectors z and v.

sysoutname = ’P’;

sysic;
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Introduction to Multivariable Control

Including weights in P [3.8.2]

To get a meaningful controller synthesis problem, for example, in terms of the
H∞ norm, we generally have to include weights Wz and Ww in the generalized
plant P , see Figure 4.

- - --

�

-

K

P̃
w̃w

Ww Wz
z̃ z

P

Figure 4: General control configuration for the case with no model uncertainty

That is, we consider the weighted or normalized exogenous inputs w, and the
weighted or normalized controlled outputs z = Wz z̃. The weighting matrices are
usually frequency dependent and typically selected such that weighted signals w
and z are of magnitude 1, that is, the norm from w to z should be less than 1.
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Introduction to Multivariable Control

Example: Stacked S/T/KS problem.
Consider an H∞ problem where we want to bound σ̄(S) (for performance), σ̄(T ) (for
robustness and to avoid sensitivity to noise) and σ̄(KS) (to penalize large inputs).
These requirements may be combined into a stacked H∞ problem

min
K
‖N(K)‖∞, N =

 WuKS
WTT
WPS

 (3)

where K is a stabilizing controller. In other words, we have z = Nw and the objective is
to minimize the H∞ norm from w to z.
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Introduction to Multivariable Control
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Figure 5: Block diagram corresponding to generalized plant in (3)
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Introduction to Multivariable Control

z1 = Wuu

z2 = WTGu

z3 = WPw +WPGu

v = −w −Gu

The generalized plant P from
[
w u

]T
to
[
z v

]T
is

P =


0 WuI
0 WTG

WP I WPG
−I −G

 (4)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 10 / 68



Introduction to Multivariable Control

Partitioning the generalized plant P [3.8.3]

We often partition P as

P =

[
P11 P12

P21 P22

]
(5)

so that

z = P11w + P12u (6)

v = P21w + P22u (7)
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Introduction to Multivariable Control

In Example “Stacked S/T/KS problem” we get from (4)

P11 =

 0
0

WP I

, P12 =

 WuI
WTG
WPG

 (8)

P21 = −I, P22 = −G (9)

Note that P22 has dimensions compatible with the controller K in Figure 4.
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Introduction to Multivariable Control

Analysis: Closing the loop to get N [3.8.4]

-- z
N

w

Figure 6: General block diagram for analysis with no uncertainty

For analysis of closed-loop performance we may absorb K into the interconnection
structure and obtain the system N as shown in Figure 6 where

z = Nw (10)

To find N , which is a function of K, we first partition the generalized plant P as
given in (5)-(7), combine this with the controller equation

u = Kv, (11)

and eliminate u and v from equations (6), (7) and (11) to yield z = Nw where

N = P11 + P12K(I − P22K)−1P21
∆
= Fl(P,K) (12)

Here Fl(P,K) denotes a lower linear fractional transformation (LFT) of P with K
as the parameter. In words, N is obtained from Figure 1 by using K to close a
lower feedback loop around P . Since positive feedback is used in the general
configuration in Figure 1 the term (I − P22K)−1 has a negative sign.

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 13 / 68



Introduction to Multivariable Control

Example: We want to derive N for the partitioned P in (8) and (9) using the
LFT-formula in (12). We get

N =

 0
0

WP I

 +

 WuI
WTG
WPG

K(I +GK)−1(−I) =

 −WuKS
−WTT
WPS


where we have made use of the identities S = (I +GK)−1, T = GKS and I − T = S.

In the MATLAB µ-Toolbox we can evaluate N = Fl(P,K) using the command
N=starp(P,K). Here starp denotes the matrix star product which generalizes the use of
LFTs.
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Introduction to Multivariable Control

Further examples [3.8.5]

Example: Consider the control system in Figure 7, where y1 is the output we want to
control, y2 is a secondary output (extra measurement), and we also measure the
disturbance d. The control configuration includes a two degrees-of-freedom controller, a
feedforward controller and a local feedback controller based on the extra measurement
y2.
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Introduction to Multivariable Control
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Figure 7: System with feedforward, local feedback and two degrees-of-freedom control
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Introduction to Multivariable Control

To recast this into our standard configuration of Figure 1 we define

w =

[
d
r

]
; z = y1 − r; v =


r
y1

y2

d

 (13)

K =
[
K1Kr −K1 −K2 Kd

]
(14)

We get

P =


G1 −I G1G2

0 I 0
G1 0 G1G2

0 0 G2

I 0 0

 (15)

Then partitioning P as in (6) and (7) yields:

P22 =
[

0T (G1G2)T GT2 0T
]T

.
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Introduction to Multivariable Control

Deriving P from N [3.8.6]

For cases where N is given and we wish to find a P such that

N = Fl(P,K) = P11 + P12K(I − P22K)−1P21

it is usually best to work from a block diagram representation. This was illustrated
above for the stacked N in (3). Alternatively, the following procedure may be
useful:

1 Set K = 0 in N to obtain P11.

2 Define Q = N − P11 and rewrite Q such that each term has a common
factor R = K(I − P22K)−1 (this gives P22).

3 Since Q = P12RP21, we can now usually obtain P12 and P21 by inspection.
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Introduction to Multivariable Control

Example: Weighted sensitivity. We will use the above procedure to derive P
when

N = wPS = wP (I +GK)−1

, where wP is a scalar weight.

1 P11 = N(K = 0) = wP I.

2 Q = N −wP I = wP (S − I) = −wPT = −wPGK(I +GK)−1, and we have
R = K(I +GK)−1 so P22 = −G.

3 Q = −wPGR so we have P12 = −wPG and P21 = I, and we get

P =
[

wP I −wPG
I −G

]
(16)
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Introduction to Multivariable Control

General control configuration with model uncertainty [3.8.8]

The general control configuration in Figure 1 may be extended to include model
uncertainty. Here the matrix ∆ is a block-diagonal matrix that includes all
possible perturbations (representing uncertainty) to the system. It is normalized
such that ‖∆‖∞ ≤ 1.
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Figure 8: General control configuration for the case with model uncertainty
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Introduction to Multivariable Control
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Figure 9: General block diagram for analysis with uncertainty included
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Introduction to Multivariable Control

Figure 10: Rearranging a system with multiple perturbations into the N∆-structure
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Introduction to Multivariable Control

The block diagram in Figure 8 in terms of P (for synthesis) may be transformed
into the block diagram in Figure 9 in terms of N (for analysis) by using K to
close a lower loop around P . The same lower LFT as found in (12) applies, and

N = Fl(P,K) = P11 + P12K(I − P22K)−1P21 (17)

To evaluate the perturbed (uncertain) transfer function from external inputs w to
external outputs z, we use ∆ to close the upper loop around N (see Figure 9),
resulting in an upper LFT:

z = Fu(N,∆)w; Fu(N,∆)
∆
= N22 +N21∆(I −N11∆)−1N12 (18)

Remark 1 Almost any control problem with uncertainty can be represented by Figure 8.
First represent each source of uncertainty by a perturbation block, ∆i, which is
normalized such that ‖∆i‖ ≤ 1. Then “pull out” each of these blocks from the system
so that an input and an output can be associated with each ∆i as shown in
Figure 10(a). Finally, collect these perturbation blocks into a large block-diagonal matrix
having perturbation inputs and outputs as shown in Figure 10(b).
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Uncertainty in MIMO Systems

General configuration with uncertainty [8.1]

For our robustness analysis we use a system representation in which the uncertain
perturbations are “pulled out” into a block-diagonal matrix,

∆ = diag{∆i} =


∆1

. . .

∆i

. . .

 (19)

where each ∆i represents a specific source of uncertainty.
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Uncertainty in MIMO Systems
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(a) Original system with multiple perturbations
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Uncertainty in MIMO Systems
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(b) Pulling out the perturbations

Figure 11: Rearranging an uncertain system into the N∆-structure
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Uncertainty in MIMO Systems
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Figure 12: N∆-structure for robust performance analysis

If we also pull out the controller K, we get the generalized plant P , as shown in
Figure 13. For analysis of the uncertain system, we use the N∆-structure in
Figure 12.
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Figure 13: General control configuration (for controller synthesis)
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Uncertainty in MIMO Systems

Consider Figure 11 where it is shown how to pull out the perturbation blocks to
form ∆ and the nominal system N . N is related to P and K by a lower LFT

N = Fl(P,K)
∆
= P11 + P12K(I − P22K)−1P21 (20)

Similarly, the uncertain closed-loop transfer function from w to z, z = Fw, is
related to N and ∆ by an upper LFT,

F = Fu(N,∆)
∆
= N22 +N21∆(I −N11∆)−1N12 (21)

To analyze robust stability of F , we can then rearrange the system into the
M∆-structure of Figure 14 where M = N11 is the transfer function from the
output to the input of the perturbations.
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Uncertainty in MIMO Systems

To analyze robust stability of F , we can then arrange the system into the
M∆-structure of Figure 14, where M = N11 is the transfer function from the
output to the input of the perturbations.

�

-

∆

M

y∆u∆

Figure 14: M∆-structure for robust stability analysis
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Uncertainty in MIMO Systems

Representing uncertainty [8.2]
As usual, each individual perturbation is assumed to be stable and is normalized,

σ̄(∆i(jω)) ≤ 1 ∀ω (22)

For a complex scalar perturbation we have |δi(jω)| ≤ 1, ∀ω, and for a real scalar
perturbation −1 ≤ δi ≤ 1. Since the maximum singular value of a block diagonal
matrix is equal to the largest of the maximum singular values of the individual
blocks, it then follows for ∆ = diag{∆i} that

σ̄(∆i(jω)) ≤ 1 ∀ω, ∀i ⇔ ‖∆‖∞ ≤ 1 (23)

Note that ∆ has structure, and therefore in the robustness analysis we do not
want to allow all ∆ s.t. (23) is satisfied. Only the subset which has the block-
diagonal structure in (19) should be considered. In some cases the blocks in ∆
may be repeated or may be real, that is, we have additional structure. For
example, repetition is often needed to handle parametric uncertainty (see Section
7.7.3 in the book).
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Uncertainty in MIMO Systems

Parametric uncertainty [8.2.2]

The representation of parametric uncertainty discussed for SISO systems carries
straightforward over to MIMO systems.

Unstructured uncertainty [8.2.3]

We define unstructured uncertainty as the use of a “full” complex perturbation
matrix ∆, usually with dimensions compatible with those of the plant, where at
each frequency any ∆(jω) satisfying σ̄(∆(jω)) ≤ 1 is allowed.

Six common forms of unstructured uncertainty are shown in Figure 15. In
Figure 15(a), (b) and (c) are shown three feedforward forms; additive uncertainty,
multiplicative input uncertainty and multiplicative output uncertainty:

ΠA : Gp = G+ EA; Ea = wA∆a (24)

ΠI : Gp = G(I + EI); EI = wI∆I (25)

ΠO : Gp = (I + EO)G; EO = wO∆O (26)
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Uncertainty in MIMO Systems

In Figure 15(d), (e) and (f) are shown three feedback or inverse forms; inverse
additive uncertainty, inverse multiplicative input uncertainty and inverse
multiplicative output uncertainty:

ΠiA : Gp = G(I − EiAG)−1; EiA = wiA∆iA (27)

ΠiI : Gp = G(I − EiI)−1; EiI = wiI∆iI (28)

ΠiO : Gp = (I − EiO)−1G; EiO = wiO∆iO (29)

The negative sign in front of the E’s does not really matter here since we assume
that ∆ can have any sign. ∆ denotes the normalized perturbation and E the
“actual” perturbation. We have here used scalar weights w, so E = w∆ = ∆w,
but sometimes one may want to use matrix weights, E = W2∆W1 where W1 and
W2 are given transfer function matrices.
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Figure 15: Six common uncertainty descriptions involving single perturbations; (a)
Additive uncertainty, (b) Multiplicative input uncertainty, (c) Multiplicative output
uncertainty, (d) Inverse additive uncertainty, (e) Inverse multiplicative input uncertainty,
(f) Inverse multiplicative output uncertainty
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Uncertainty in MIMO Systems

Obtaining P , N and M [8.3]
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Figure 16: System with multiplicative input uncertainty and performance measured at
the output
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Uncertainty in MIMO Systems

Example 1: System with input uncertainty (Figure 16). We want to derive

the generalized plant P in Figure 13 which has inputs
[
u∆ w u

]T
and

outputs
[
y∆ z v

]T
. By writing down the equations or simply by inspecting

Figure 16 (remember to remove K and ∆I) we get

P =

 0 0 WI

WPG WP WPG
−G −I −G

 (30)

Next, we want to derive the matrix N corresponding to Figure 12. First, partition
P to be compatible with K, i.e.

P11 =
[

0 0
WPG WP

]
, P12 =

[
WI

WPG

]
(31)

P21 =
[

−G −I
]
, P22 = −G (32)

and then find N = Fl(P,K) using (20).
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Uncertainty in MIMO Systems

We get

N =

[
−WIKG(I +KG)−1 −WIK(I +GK)−1

WPG(I +KG)−1 WP (I +GK)−1

]
(33)

Alternatively, we can derive N directly from Figure 16 by evaluating the

closed-loop transfer function from inputs
[

u∆

w

]
to outputs

[
y∆

z

]
(without

breaking the loop before and after K).

For example, to derive N12, which is the transfer function from w to y∆, we start
at the output (y∆) and move backwards to the input (w) using the MIMO Rule
(we first meet WI , then −K and we then exit the feedback loop and get the term
(I +GK)−1).

The upper left block, N11, in (33) is the transfer function from u∆ to y∆. This is
the transfer function M needed in Figure 14 for evaluating robust stability. Thus,
we have M = −WIKG(I +KG)−1 = −WITI .
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Uncertainty in MIMO Systems

Robust stability & performance [8.4]
1 Robust stability (RS) analysis: with a given controller K we determine

whether the system remains stable for all plants in the uncertainty set.

2 Robust performance (RP) analysis: if RS is satisfied, we determine how
“large” the transfer function from exogenous inputs w to outputs z may be
for all plants in the uncertainty set.

In Figure 12, w represents the exogenous inputs (normalized disturbances and
references), and z the exogenous outputs (normalized errors). We have
z = F (∆)w, where from (21)

F = Fu(N,∆)
∆
= N22 +N21∆(I −N11∆)−1N12 (34)
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We here use the H∞ norm to define performance and require for RP that
‖F (∆)‖∞ ≤ 1 for all allowed ∆’s. A typical choice is F = wPSp (the weighted
sensitivity function), where wP is the performance weight (capital P for
performance) and Sp represents the set of perturbed sensitivity functions
(lower-case p for perturbed).
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Uncertainty in MIMO Systems

In terms of the N∆-structure in Figure 12 our requirements for stability and
performance are

NS
def⇔ N is internally stable (35)

NP
def⇔ ‖N22‖∞ < 1; and NS (36)

RS
def⇔ F = Fu(N,∆) is stable ∀∆, ‖∆‖∞ ≤ 1; (37)

and NS

RP
def⇔ ‖F‖∞ < 1, ∀∆, ‖∆‖∞ ≤ 1; (38)

and NS
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Robust stability of the M∆-structure [8.5]

Consider the uncertain N∆-system in Figure 12 for which the transfer function
from w to z is, as in (34), given by

Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12 (39)

Suppose that the system is nominally stable (with ∆ = 0), that is, N is stable.
We also assume that ∆ is stable. Thus, when we have nominal stability (NS), the
stability of the system in Figure 12 is equivalent to the stability of the
M∆-structure in Figure 14 where M = N11.
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Theorem

Determinant stability condition (Real or complex perturbations). Assume
that the nominal system M(s) and the perturbations ∆(s) are stable. Consider
the convex set of perturbations ∆, such that if ∆′ is an allowed perturbation then
so is c∆′ where c is any real scalar such that |c| ≤ 1. Then the M∆-system in
Figure 14 is stable for all allowed perturbations (we have RS) if and only if

Nyquist plot of det (I −M(s)∆(s)) does not

encircle the origin, ∀∆ (40)

⇔ det (I −M(jω)∆(jω)) 6= 0, ∀ω,∀∆ (41)

⇔ λi(M∆) 6= 1, ∀i,∀ω,∀∆ (42)
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Theorem

Generalized (MIMO) Nyquist theorem. Let Pol denote the number of
open-loop unstable poles in L(s). The closed-loop system with loop transfer
function L(s) and negative feedback is stable if and only if the Nyquist plot of
det(I + L(s))
i) makes Pol anti-clockwise encirclements of the origin, and
ii) does not pass through the origin.

Note: By “Nyquist plot of det(I + L(s))” we mean “the image of det(I + L(s))
as s goes clockwise around the Nyquist D-contour”.
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Uncertainty in MIMO Systems

RS for unstructured uncertainty [8.6]

Theorem

RS for unstructured (“full”) perturbations. Assume that the nominal system
M(s) is stable (NS) and that the perturbations ∆(s) are stable. Then the
M∆-system in Figure 14 is stable for all perturbations ∆ satisfying ‖∆‖∞ ≤ 1
(i.e. we have RS) if and only if

σ̄(M(jω)) < 1 ∀w ⇔ ‖M‖∞ < 1 (43)
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Theorem
Small Gain Theorem. Consider a system with a stable loop transfer function
L(s). Then the closed-loop system is stable if

‖L(jω)‖ < 1 ∀ω (44)

where ‖L‖ denotes any matrix norm satisfying ‖AB‖ ≤ ‖A‖ · ‖B‖, for example
the singular value σ̄(L).
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RS with structured uncertainty [8.7]
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Figure 17: Use of block-diagonal scalings, ∆D = D∆
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Consider now the presence of structured uncertainty, where ∆ = diag{∆i} is
block-diagonal. To test for robust stability we rearrange the system into the
M∆-structure and we have from (43)

RS if σ̄(M(jω)) < 1,∀ω (45)

We have here written “if” rather than “if and only if” since this condition is only
necessary for RS when ∆ has “no structure” (full-block uncertainty). To reduce
conservativism introduce the block-diagonal scaling matrix

D = diag{diIi} (46)

where di is a scalar and Ii is an identity matrix of the same dimension as the i’th
perturbation block, ∆i (Figure 17). This clearly has no effect on stability.
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RS if σ̄(DMD−1) < 1,∀ω (47)

This applies for any D in (46), and therefore the “most improved” (least
conservative) RS-condition is obtained by minimizing at each frequency the scaled
singular value, and we have

RS if minD(ω)∈D σ̄(D(ω)M(jω)D(ω)−1) < 1,∀ω (48)

where D is the set of block-diagonal matrices whose structure is compatible to
that of ∆, i.e, ∆D = D∆.
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The structured singular value [8.8]

The structured singular value (denoted Mu, mu, SSV or µ) is a function which
provides a generalization of the singular value, σ̄, and the spectral radius, ρ. We
will use µ to get necessary and sufficient conditions for robust stability and also
for robust performance. The name “structured singular value” is used because µ
generalizes the singular value RS-condition, σ̄(M) ≤ 1,∀ω in (43), to the case
when ∆ has structure (and also to cases where parts of ∆ are real). How is µ
defined? A simple statement is:

Find the smallest structured ∆ (measured in terms of σ̄(∆)) which
makes det(I −M∆) = 0; then µ(M) = 1/σ̄(∆).
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Mathematically,

µ(M)−1 ∆
= min

∆
{σ̄(∆)|det(I −M∆) = 0 for structured ∆} (49)

Clearly, µ(M) depends not only on M but also on the allowed structure for ∆.
This is sometimes shown explicitly by using the notation µ∆(M).

Remark. For the case where ∆ is “unstructured” (a full matrix), the smallest ∆ which
yields singularity has σ̄(∆) = 1/σ̄(M), and we have µ(M) = σ̄(M).
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Definition

Structured Singular Value. Let M be a given complex matrix and let
∆ = diag{∆i} denote a set of complex matrices with σ̄(∆) ≤ 1 and with a given
block-diagonal structure (in which some of the blocks may be repeated and some
may be restricted to be real). The real non-negative function µ(M), called the
structured singular value, is defined by

µ(M)
∆
=

1

min{km|det(I − kmM∆) = 0, σ̄(∆) ≤ 1}
(50)

If no such structured ∆ exists then µ(M) = 0.

A value of µ = 1 means that there exists a perturbation with σ̄(∆) = 1 which is
just large enough to make I −M∆ singular. A larger value of µ is “bad” as it
means that a smaller perturbation makes I −M∆ singular, whereas a smaller
value of µ is “good”.
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RS - Structured uncertainty [8.9]
Consider stability of the M∆-structure in Figure 14 for the case where ∆ is a set
of norm-bounded block-diagonal perturbations. From the determinant stability
condition:

det (I −M(jω)∆(jω)) 6= 0, ∀ω,∀∆, σ̄(∆(jω)) ≤ 1 ∀ω (51)

This is just a “yes/no” condition. To find the factor km by which the system is
robustly stable, we scale the uncertainty ∆ by km, and look for the smallest km
that yields “borderline instability,” namely

det (I − kmM(jω)∆(jω)) = 0 (52)

By definition, this value is km = 1/µ(M). We obtain the following necessary and
sufficient condition for stability.
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Theorem

RS for block-diagonal perturbations (real or complex). Assume that the
nominal system M and the perturbations ∆ are stable. Then the M∆-system in
Figure 14 is stable for all allowed perturbations with σ̄(∆) ≤ 1,∀ω, if and only if

µ(M(jω)) < 1, ∀ω (53)

Condition (53) for robust stability may be rewritten as

RS ⇔ µ(M(jω)) σ̄(∆(jω)) < 1, ∀ω (54)

which may be interpreted as a “generalized small gain theorem” that also takes
into account the structure of ∆.
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Example: RS with diagonal input uncertainty
Consider robust stability of the feedback system in Figure 16 for the case when
the multiplicative input uncertainty is diagonal. A nominal 2× 2 plant and the
controller (which represents PI-control of a distillation process using the
DV-configuration) is given by

G(s) = 1
τs+1

[
−87.8 1.4
−108.2 −1.4

]
;

K(s) = 1+τs
s

[
−0.0015 0

0 −0.075

]
(55)

(time in minutes). The controller results in a nominally stable system with
acceptable performance. Assume there is complex multiplicative uncertainty in
each manipulated input of magnitude
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wI(s) =
s+ 0.2

0.5s+ 1
(56)

On rearranging the block diagram to match the M∆-structure in Figure 14 we get
M = wIKG(I +KG)−1 = wITI (recall (33)), and the RS-condition µ(M) < 1
in Theorem 6 yields

RS⇔ µ∆I
(TI) <

1

|wI(jω)|
∀ω, ∆I =

[
δ1

δ2

]
(57)

This condition is shown graphically in Figure 18 so the system is robustly stable.
Also in Figure 18, σ̄(TI) can be seen to be larger than 1/|wI(jω)| over a wide
frequency range. This shows that the system would be unstable for full-block
input uncertainty (∆I full).
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Figure 18: Robust stability for diagonal input uncertainty is guaranteed since
µ∆I (TI) < 1/|wI |, ∀ω. The use of unstructured uncertainty and σ̄(TI) is conservative
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Robust performance [8.10]

With an H∞ performance objective, the RP-condition is identical to a
RS-condition with an additional perturbation block.

In Figure 19 step B is the key step.

∆P (where capital P denotes Performance) is always a full matrix. It is a
fictitious uncertainty block representing the H∞ performance specification.
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Testing RP using µ [8.10.1]

Theorem
Robust performance. Rearrange the uncertain system into the N∆-structure of
Figure 19. Assume nominal stability such that N is (internally) stable. Then

RP
def⇔ ‖F‖∞ = ‖Fu(N,∆)‖∞ < 1, ∀‖∆‖∞ ≤ 1

= µ∆̂(N(jω)) < 1, ∀w (58)

where µ is computed with respect to the structure

∆̂ =

[
∆ 0
0 ∆P

]
(59)

and ∆P is a full complex perturbation with the same dimensions as FT .
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Figure 19: RP as structured RS. F = Fu(N,∆)
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Summary of µ-conditions for NP, RS, RP [8.10.2]

Rearrange the uncertain system into the N∆- structure, where the block-
diagonal perturbations satisfy ‖∆‖∞ ≤ 1.
Introduce

F = Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12

and let the performance requirement (RP) be ‖F‖∞ ≤ 1 for all allowable
perturbations. Then we have:

NS = N (internally) stable (60)

NP = σ̄(N22) = µ∆P
(N22) < 1, ∀ω, and NS (61)

RS = µ∆(N11) < 1, ∀ω, and NS (62)

RP = µ∆̃(N) < 1, ∀ω, ∆̃ =

[
∆ 0
0 ∆P

]
, (63)

and NS
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µ-synthesis and DK-iteration [8.12]

The structured singular value µ is a very powerful tool for the analysis of robust
performance with a given controller. However, one may also seek to find the
controller that minimizes a given µ-condition: this is the µ-synthesis problem:
minK µ(N)

DK-iteration [8.12.1]

At present there is no direct method to synthesize a µ-optimal controller.
However, for complex perturbations a method known as DK-iteration is available.
It combines H∞-synthesis and µ-analysis, and often yields good results. The
starting point is the upper bound on µ in terms of the scaled singular value

µ(N) ≤ min
D∈D

σ̄(DND−1)
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The idea is to find the controller that minimizes the peak value over frequency of
this upper bound, namely

min
K

(min
D∈D

‖DN(K)D−1‖∞) (64)

by alternating between minimizing ‖DN(K)D−1‖∞ with respect to either K or
D (while holding the other fixed).

1 K-step. Synthesize an H∞ controller for the scaled problem,
minK ‖DN(K)D−1‖∞ with fixed D(s).

2 D-step. Find D(jω) to minimize at each frequency σ̄(DND−1(jω)) with
fixed N .

3 Fit the magnitude of each element of D(jω) to a stable and minimum phase
transfer function D(s) and go to Step 1.
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Controller Design [9]

Trade-offs in MIMO feedback design [9.1]
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Figure 20: One degree-of-freedom feedback

y(s) = T (s)r(s) + S(s)d(s)− T (s)n(s) (65)

u(s) = K(s)S(s) [r(s)− n(s)− d(s)] (66)
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Controller Design

Closed-loop objectives:

1 For disturbance rejection make σ̄(S) small.

2 For noise attenuation make σ̄(T ) small.

3 For reference tracking make σ̄(T ) ≈ σ(T ) ≈ 1.

4 For control energy reduction make σ̄(KS) small.

5 For robust stability in the presence of an additive perturbation make σ̄(KS)
small.

6 For robust stability in the presence of a multiplicative output perturbation
make σ̄(T ) small.

The closed-loop requirements 1 to 6 cannot all be satisfied simultaneously.
Feedback design is therefore a trade-off over frequency of conflicting objectives.
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Controller Design

σ(L)− 1 ≤ 1

σ̄(S)
≤ σ(L) + 1 (67)

At frequencies where σ(L) >> 1, we have σ̄(S) ≈ 1/σ(L)

At frequencies where σ̄(L) << 1, we have σ̄(T ) ≈ σ̄(L)

At the bandwidth frequency (1/σ̄(S(jωB)) =
√

2 = 1/41), we have
0.41 ≤ σ(L(jωB)) ≤ 2.41
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Controller Design

Over specified frequency ranges, we can approximate the closed-loop requirements
by the following open-loop objectives:

1 For disturbance rejection make σ(GK) large; valid for frequencies at which
σ(GK)� 1.

2 For noise attenuation make σ̄(GK) small; valid for frequencies at which
σ̄(GK)� 1.

3 For reference tracking make σ(GK) large; valid for frequencies at which
σ(GK)� 1.

4 For control energy reduction make σ̄(K) small; valid for frequencies at which
σ̄(GK)� 1.

5 For robust stability to an additive perturbation make σ̄(K) small; valid for
frequencies at which σ̄(GK)� 1.

6 For robust stability to a multiplicative output perturbation make σ̄(GK)
small; valid for frequencies at which σ̄(GK)� 1.

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 67 / 68



Controller Design

Requirements 1 and 3 are valid and important at low frequencies,
0 ≤ ω ≤ ωl ≤ ωB . Requirements 2, 4, 5 and 6 are conditions which are valid and
important at high frequencies, ωB ≤ ωh ≤ ω ≤ ∞.

At frequencies where we want high gains (at low frequencies) the “worst-case”
direction is related to σ(L), whereas at frequencies where we want low gains (at
high frequencies) the “worst-case” direction is related to σ̄(L).
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