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Uncertainty in SISO Systems

Introduction [7.1]
A control system is robust if it is insensitive to differences between the actual
system and the system model used to design the controller. These differences are
referred to as model/plant mismatch or simply model uncertainty.

Our approach is:

1 Determine the uncertainty set: find a mathematical representation of the
model uncertainty (“clarify what we know about what we don’t know”).

2 Check Robust stability (RS): determine whether the system remains stable for
all plants in the uncertainty set.

3 Check Robust performance (RP): if RS is satisfied, determine whether the
performance specifications are met for all plants in the uncertainty set.

Notation:

Π – a set of possible perturbed plant models (“uncertainty set”).

G(s) ∈ Π – nominal plant model (with no uncertainty).

Gp(s) ∈ Π and G′(s) ∈ Π – particular perturbed plant models.
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Uncertainty in SISO Systems

Classes of uncertainty [7.2]

1 Parametric uncertainty. Here the structure of the model (including the
order) is known, but some of the parameters are uncertain. For instance,
αp ∈ [αmin, αmax]. That is, we have parameter sets of the form

αp = ᾱ(1 + rα∆)

where ᾱ = (αmax + αmin)/2, rα = (αmax − αmin)/(αmax + αmin) and ∆ is
any real scalar satisfying |∆| ≤ 1.

2 Neglected and unmodelled dynamics uncertainty. Here the model is in
error because of missing dynamics, usually at high frequencies, either through
deliberate neglect or because of a lack of understanding of the physical
process. Any model of a real system will contain this source of uncertainty.

3 Lumped uncertainty. Here the uncertainty description represents one or
several sources of parametric and/or unmodelled dynamics uncertainty
combined into a single lumped perturbation of a chosen structure.
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Uncertainty in SISO Systems

Parametric uncertainty is sometimes called structured uncertainty as it
models the uncertainty in a structured manner.

Analogously, lumped dynamics uncertainty is sometimes called unstructured
uncertainty.

The frequency domain is well suited for describing both
neglected/unmodelled dynamics and lumped uncertainties.
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Figure 1: Plant with multiplicative uncertainty
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Uncertainty in SISO Systems

Multiplicative uncertainty:

ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s));

where
|∆I(jω)| ≤ 1 ∀ω︸ ︷︷ ︸

‖∆I‖∞≤1

(1)

Here ∆I(s) is any stable transfer function which at each frequency is less than or
equal to one in magnitude. Some allowable ∆I(s)’s
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Inverse multiplicative uncertainty

ΠiI : Gp(s) = G(s)(1 + wiI(s)∆iI(s))
−1; |∆iI(jω)| ≤ 1 ∀ω
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Uncertainty in SISO Systems

Representing uncertainty in the frequency domain [7.4]
Uncertainty regions [7.4.1]

Gp(s) =
k

τs+ 1
e−θs, 2 ≤ k, θ, τ ≤ 3 (2)
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Figure 2: Uncertainty regions of the Nyquist plot at given frequencies. Data from (2)
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Figure 3: Disc approximation (solid line) of the original uncertainty region (dashed line).
Plot corresponds to ω = 0.2 in Figure 2
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Uncertainty in SISO Systems

Approximation by complex perturbations [7.4.2]

Uncertainty in SISO Systems
6.3.2 Approximation by complex perturbations [7.4.2]

+

+

+

  

Im

Re

|wA(jω)| G(jω)✢

Figure 4: Disc-shaped uncertainty regions gener-
ated by complex additive uncertainty, Gp = G+wA∆
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Figure 4: Disc-shaped uncertainty regions generated by complex additive uncertainty,
Gp = G+ wA∆
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Uncertainty in SISO Systems

We use disc-shaped regions to represent uncertainty regions (Figures 3 and 4)
generated by

ΠA : Gp(s) = G(s) + wA(s)∆A(s); |∆A(jω)| ≤ 1 ∀ω (3)

where ∆A(s) is any stable transfer function which at each frequency is no larger
than one in magnitude.

Alternative: multiplicative uncertainty description as in (1),

ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s)); |∆I(jω)| ≤ 1,∀ω (4)

(3) and (4) are equivalent if at each frequency

|wI(jω)| = |wA(jω)|/|G(jω)| (5)
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Figure 5: The set of possible plants includes the
origin at frequencies where |wA(jω)| ≥ |G(jω)|, or
equivalently |wI(jω)| ≥ 1
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Figure 5: The set of possible plants includes the origin at frequencies where
|wA(jω)| ≥ |G(jω)|, or equivalently |wI(jω)| ≥ 1

At these frequencies we do not know the phase of the plant, and we allow for
zeros crossing from the left to the right-half plane.
To see this, consider a frequency where |wI(jωo)| ≥ 1. Then there exists a
|∆I | ≤ 1 such that Gp(jωo) = 0 in (4), that is, there exists a possible plant
with zeros at s = ±jωo. For this plant at frequency ωo the input has no
effect on the output, so control has no effect (tight control is not possible).
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Uncertainty in SISO Systems

Obtaining the weight for complex uncertainty [7.4.3]

1 Select a nominal model G(s).

2 Additive uncertainty. At each frequency find the smallest radius lA(ω) which
includes all the possible plants Π:

|wA(jw)| ≥ lA(ω) = max
GP∈Π

|Gp(jω)−G(jω)| (6)

3 Multiplicative (relative) uncertainty (preferred uncertainty form).

|wI(jw)| ≥ lI(ω) = max
Gp∈Π

∣∣∣∣Gp(jω)−G(jω)

G(jω)

∣∣∣∣ (7)
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Uncertainty in SISO Systems

Example

Multiplicative weight for parametric uncertainty (Example 7.3) (lecture06a.m)
Consider again the set of plants with parametric uncertainty given in (2)

Π : Gp(s) =
k

τs+ 1
e−θs, 2 ≤ k, θ, τ ≤ 3 (8)

We want to represent this set using multiplicative uncertainty with a rational weight
wI(s). We select a delay-free nominal model

G(s) =
k̄

τ̄ s+ 1
=

2.5

2.5s+ 1
(9)

We plot |(Gp −G)/G| as function of the frequency.
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Figure 6: Relative errors for 27 combinations of k, τ and θ with delay-free nominal plant
(dotted lines). Solid line: First-order weight |wI1| in (10). Dashed line: Third-order
weight |wI | in (11)

.
wI1(s) =

Ts+ 0.2

(T/2.5)s+ 1
, T = 4 (10)

wI(s) = ωI1(s)
s2 + 1.6s+ 1

s2 + 1.4s+ 1
(11)
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Uncertainty in SISO Systems

SISO Robust stability [7.5]
We have so far discussed how to represent the uncertainty mathematically.

We derive now conditions that will ensure that the system remains stable and
satisfies performance requirements for all perturbations in the uncertainty set.

RS with multiplicative uncertainty

c cp p- -

- -

?- -
6-

K

wI ∆I

G

Gp

+
+

Figure 7: Feedback system with multiplicative uncertainty
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Uncertainty in SISO Systems

Graphical derivation of RS-condition.
In Figure 8 | − 1− L| = |1 + L| is the distance from the point −1 to the centre of
the disc representing Lp, |wIL| is the radius of the disc. Encirclements are
avoided if none of the discs cover −1, and we get from Figure 8

RS = |wIL| < |1 + L|, ∀ω (12)

=

∣∣∣∣ wIL1 + L

∣∣∣∣ < 1,∀ω ⇔ |wIT | < 1,∀ω (13)

def⇔ ‖wIT‖∞ < 1 (14)

RS : |T | < 1/|wI |, ∀ω ⇐⇒ ‖wIT‖∞ < 1 (15)
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Uncertainty in SISO Systems
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Figure 8: Nyquist plot of Lp for robust stability
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Figure 8: Nyquist plot of Lp for robust stability
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Uncertainty in SISO Systems

Example

Robust stability (Example 7.6) (lecture06b.m)
Consider the following nominal plant and PI-controller

G(s) =
3(−2s+ 1)

(5s+ 1)(10s+ 1)
K(s) = Kc

12.7s+ 1

12.7s

Kc = Kc1 = 1.13 (Ziegler-Nichols: See Lecture 5!). One “extreme” uncertain plant is
G′(s) = 4(−3s+ 1)/(4s+ 1)2. For this plant the relative error |(G′ −G)/G| is 0.33 at
low frequencies; it is 1 at about 0.1 rad/s, and it is 5.25 at high frequencies ⇒
uncertainty weight

wI(s) =
10s+ 0.33

(10/5.25)s+ 1

which closely matches this relative error. We now want to evaluate whether the system
remains stable for all possible plants. This is not the case as seen from Figure 9 where
we see that the magnitude of the nominal complementary sensitivity function exceeds the
bound, so (15) is not satisfied. To achieve robust stability we need to reduce the
controller gain.
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Figure 7.12: Checking robust stability with multiplicative uncertainty

Remark. For the “extreme” plant we find as expected that the closed-loop system is
unstable with . However, with the system is stable with reasonable
margins (and not at the limit of instability as one might have expected); we can increase the
gain by almost a factor of two to before we get instability. This illustrates that
condition (7.34) is only a sufficient condition for stability, and a violation of this bound does
not imply instability for a specific plant . However, with there exists an allowed
complex and a corresponding that yields on the
limit of instability.

2. Algebraic derivation of RS-condition. Since is assumed stable, and the
nominal closed-loop is stable, the nominal loop transfer function does not
encircle . Therefore, since the set of plants is norm-bounded, it then follows that
if some in the uncertainty set encircles , then there must be another in
the uncertainty set which goes exactly through at some frequency. Thus,

(7.35)
(7.36)
(7.37)

At each frequency the last condition is most easily violated (the worst case) when the
complex number is selected with and with phase such that
the terms and have opposite signs (point in the opposite direction).
Thus

(7.38)

and we have rederived (7.33).

Remark. Unstable plants. The stability condition (7.33) also applies to the case when and
are unstable as long as the number of RHP-poles remains the same for each plant in the

Figure 9: Checking robust stability with multiplicative uncertainty

By trial and error we find that reducing the gain to Kc = Kc2 = 0.31 just
achieves RS as seen from T2 in Fig. 9.

Remark:
The procedure is conservative! For Kc2, system with the “extreme” plant is not at
the limit of instability; we can increase gain to kc2 = 0.58 before we get instability.
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�

-

∆

M

y∆u∆

Figure 10: M∆-structure

M∆-structure derivation of RS-condition. The stability of the system in
Figure 7 is equivalent to stability of the system in Figure 10, where ∆ = ∆I and

M = wIK(1 +GK)−1G = wIT (16)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 19 / 28



Uncertainty in SISO Systems

The Nyquist stability condition then determines RS if and only if the “loop
transfer function” M∆ does not encircle −1 for all ∆. Thus,

RS = |1 +M∆| > 0, ∀ω,∀|∆| ≤ 1 (17)

RS = 1− |M(jω)| > 0, ∀ω (18)

= |M(jω)| < 1, ∀ω (19)
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RS with inverse multiplicative uncertainty [7.5.3]
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Figure 11: Feedback system with inverse multiplicative uncertainty

RS ⇔ |S| < 1/|wiI |, ∀ω (20)
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Uncertainty in SISO Systems

SISO Robust performance [7.6]
Nominal performance in the Nyquist plot

NP = |wPS| < 1 ∀ω = |wP | < |1 + L| ∀ω (21)

See Figure:

Uncertainty in SISO Systems
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Figure 12: Nyquist plot illustration of nominal perfor-
mance condition |wP | < |1 + L|
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Figure 12: Nyquist plot illustration of nominal performance condition |wP | < |1 + L|
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Robust performance [7.6.2]
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Figure 13: Diagram for robust performance with multiplicative uncertainty
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For robust performance we require the performance condition (21) to be satisfied
for all possible plants, that is, including the worst-case uncertainty.

RP
def⇔ |wPSp| < 1 ∀Sp,∀ω (22)

= |wP | < |1 + Lp| ∀Lp,∀ω (23)

This corresponds to requiring |ŷ/d| < 1 ∀∆I in Figure 13, where we consider
multiplicative uncertainty, and the set of possible loop transfer functions is

Lp = GpK = L(1 + wI∆I) = L+ wIL∆I (24)
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Graphical derivation of RP-condition. (Figure 14)

RP = |wP |+ |wIL| < |1 + L|, ∀ω (25)

= |wP (1 + L)−1|+ |wIL(1 + L)−1| < 1,∀ω (26)

RP = maxω (|wPS|+ |wIT |) < 1 (27)
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Figure 14: Nyquist plot illustration of robust perfor-
mance condition |wP | < |1 + Lp|
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Figure 14: Nyquist plot illustration of robust performance condition |wP | < |1 + Lp|
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Uncertainty in SISO Systems

The relationship between NP, RS and RP [7.6.3]

NP = |wPS| < 1,∀ω (28)

RS = |wIT | < 1,∀ω (29)

RP = |wPS|+ |wIT | < 1,∀ω (30)

A prerequisite for RP is that we satisfy NP and RS. This applies in general,
both for SISO and MIMO systems and for any uncertainty.
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For SISO systems, if we satisfy both RS and NP, then we have at each
frequency

|wPS|+ |wIT | ≤ 2 max{|wPS|, |wIT |} < 2 (31)

Therefore, within a factor of at most 2, we will automatically get RP when
NP and RS are satisfied.

Note that
|wPS|+ |wIT | ≥ min{|wP |, |wI |} (32)

We cannot have both |wP | > 1 (i.e. good performance) and |wI | > 1 (i.e.
more than 100% uncertainty) at the same frequency.
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