

System Identification and Robust Control

Lecture 4: Parametric Identification

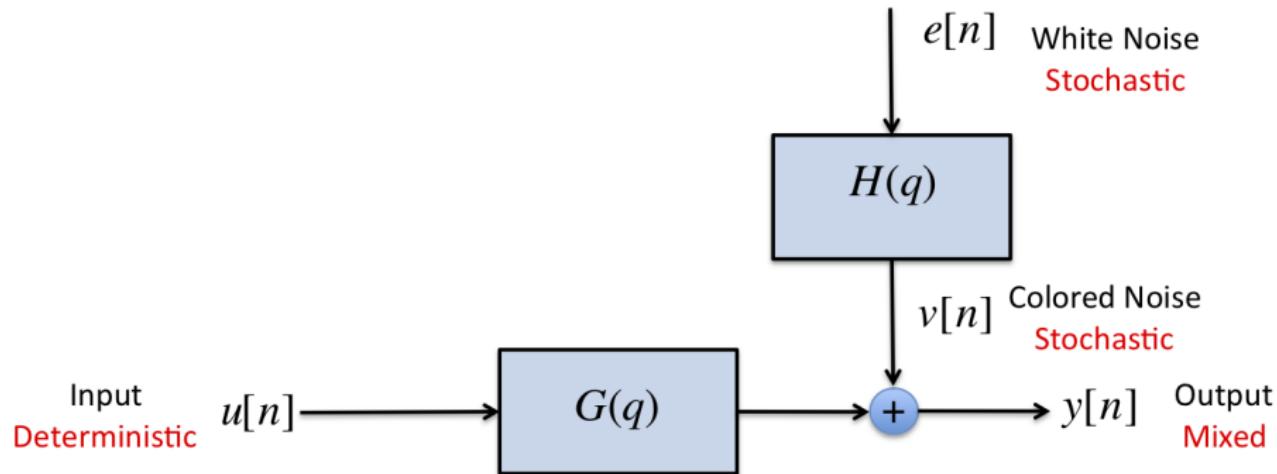
Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics
Lehigh University

Discrete-time LTI Systems

A liner time-invariant model is specified by

- Impulse response $\{g[k]\}_1^\infty$
- Spectrum $\Phi_{vv} = \lambda|H(e^{i\omega})|^2$ of the additive noise
- Probability density function (PDF) of the noise $e[n]$



Discrete-time LTI Systems

- A complete model is thus given by

$$\begin{aligned} y[n] &= G(q)u[n] + H(q)e[n] \\ f_e(\cdot) &\quad \text{the PDF of } e \end{aligned} \tag{1}$$

where

$$G(q) = \sum_{k=1}^{\infty} g[k]q^{-k}, \tag{2}$$

and

$$H(q) = \sum_{k=0}^{\infty} h[k]q^{-k} = 1 + \sum_{k=1}^{\infty} h[k]q^{-k}. \tag{3}$$

Discrete-time LTI Systems

- In practice, we work with structures that permit the specification of G and H in terms of a finite number of numerical coefficients.
- Quite often it is not possible to determine these coefficients *a priori* just from knowledge of the plant.
- Instead, the determination is left to estimation procedures. Therefore, these coefficients enter the model as to-be-identified parameters.
- In practice, the PDF of the noise is not specified as a function but described in terms of a few numerical characteristics. Typically, the first moment (mean) and second moment (variance).
- It is also common to assume that $e[n]$ is Gaussian, in which case the PDF is entirely specified by these two moments of the distribution.

Discrete-time LTI Systems

- We denote the parameter vector as θ .
- This vector ranges over a subset of R^d , where d is the dimension of θ :

$$\theta \in D_M \subset R^d.$$

- The model is then described as

$$\begin{aligned} y[n] &= G(q, \theta)u[n] + H(q, \theta)e[n] \\ f_e(x, \theta) &\quad \text{the PDF of } e[n] \text{ (white noise)} \end{aligned} \tag{4}$$

One-step Linear Predictor

- Given the system

$$y[n] = G(q)u[n] + H(q)e[n], \quad (5)$$

where $e[n]$ is white with zero mean and variance $E\{e^T e\} = \lambda^2 I$, we are interested in defining an estimator $\hat{y}[n, \theta]$ that minimizes

$$E\{(y - \hat{y})^T (y - \hat{y})\}$$

- We propose

$$\hat{y}[n, \theta] = L_y(q, \theta)y[n] + L_u(q, \theta)u[n]. \quad (6)$$

- We first note that

$$\begin{aligned} y[n] &= G(q)u[n] + H(q)e[n], \\ \iff H^{-1}(q)y[n] &= H^{-1}(q)G(q)u[n] + e[n] \\ \iff y[n] &= [I - H^{-1}(q)]y[n] + H^{-1}(q)G(q)u[n] + e[n] \end{aligned}$$

One-step Linear Predictor

- And now we write

$$\begin{aligned} y[n] - \hat{y}[n, \theta] &= [I - H^{-1}(q)]y[n] + H^{-1}(q)G(q)u[n] + e[n] \\ &\quad - \{L_y(q, \theta)y[n] + L_u(q, \theta)u[n]\} \\ y[n] - \hat{y}[n, \theta] &= [I - H^{-1}(q) - L_y(q, \theta)]y[n] \\ &\quad + [H^{-1}(q)G(q) - L_u(q, \theta)]u[n] + e[n] \\ y[n] - \hat{y}[n, \theta] &= z[n] + e[n] \end{aligned}$$

- Then,

$$E\{(y - \hat{y})^T(y - \hat{y})\} = E\{z^T z\} + E\{e^T e\} \geq \lambda^2 I \quad (7)$$

- The lower bound is achieved when $z = 0$, i.e.,

$$L_y(q, \theta) = I - H^{-1}(q), \quad L_u(q, \theta) = H^{-1}(q)G(q). \quad (8)$$

One-step Linear Predictor

- We therefore define the predictor as

$$\hat{y}[n, \theta] = [I - H^{-1}(q, \theta)]y[n] + H^{-1}(q, \theta)G(q, \theta)u[n], \quad (9)$$

and the prediction error as

$$\varepsilon[n, \theta] = y[n] - \hat{y}[n, \theta] = H^{-1}(q, \theta)\{y[n] - G(q, \theta)u[n]\}. \quad (10)$$

- Note that both $I - H^{-1}(q, \theta)$ and $H^{-1}(q, \theta)G(q, \theta)$ have at least a one-step delay. Past inputs and outputs are used to provide a new predicted output.
- Note that if $G(q, \theta) = G(q)$ and $H(q, \theta) = H(q)$ then

$$\varepsilon[n, \theta] = e[n]$$

Family of Transfer-Function Models

ARX - Autoregressive with exogenous input:

$$\begin{aligned} y[n] + a_1 y[n-1] + a_2 y[n-2] + \cdots + a_{n_a} y[n-n_a] \\ = b_1 u[n-1] + b_2 u[n-2] + \cdots + b_{n_b} u[n-n_b] + e[n] \end{aligned} \quad (11)$$

- Since the white-noise term $e[n]$ enter as direct error in the difference equation, this model is often called equation error model.
- The to-be-identified parameter θ is define in this case as

$$\theta = [\begin{array}{ccccccc} a_1 & a_2 & \cdots & a_{n_a} & b_1 & b_2 & \cdots & b_{n_b} \end{array}]^T \quad (12)$$

- If we introduce

$$A(q, \theta) = 1 + a_1 q^{-1} + a_2 q^{-2} + \cdots + a_{n_a} q^{-n_a} \quad (13)$$

$$B(q, \theta) = b_1 q^{-1} + b_2 q^{-2} + \cdots + b_{n_b} q^{-n_b} \quad (14)$$

Family of Transfer-Function Models

- By comparing (11) with (4), we conclude that

$$G(q, \theta) = \frac{B(q, \theta)}{A(q, \theta)}, \quad H(q, \theta) = \frac{1}{A(q, \theta)} \quad (15)$$

- Using (9) we write the one-step predictor for this family of models as

$$\hat{y}[n, \theta] = [I - A(q, \theta)]y[n] + B(q, \theta)u[n]. \quad (16)$$

- Defining

$$\phi[n] = [-y[n-1] \quad \cdots \quad -y[n-n_a] \quad u[n-1] \quad \cdots \quad u[n-n_b]]^T$$

we can write

$$\hat{y}[n, \theta] = \theta^T \phi[n] = \phi[n]^T \theta, \quad \varepsilon[n, \theta] = y[n] - \phi[n]^T \theta \quad (17)$$

- **Remark:** This defines a *linear regression* model where $\phi[n]$ is known as the *regression vector*. This is very important because powerful and simple estimation methods can be applied for the determination of θ .

Family of Transfer-Function Models

ARMAX - Autoregressive moving average with exogenous input:

$$\begin{aligned} y[n] + a_1 y[n-1] + a_2 y[n-2] + \cdots + a_{n_a} y[n-n_a] \\ = b_1 u[n-1] + b_2 u[n-2] + \cdots + b_{n_b} u[n-n_b] \\ + e[n] + c_1 e[n-1] + \cdots + c_{n_c} e[n-n_c] \end{aligned} \quad (18)$$

- We add flexibility by describing the equation error as a moving average of white noise $e[n]$. The to-be-identified parameter θ is defined in this case as

$$\theta = [\begin{array}{cccccccccc} a_1 & a_2 & \cdots & a_{n_a} & b_1 & b_2 & \cdots & b_{n_b} & c_1 & c_2 & \cdots & c_{n_c} \end{array}]^T \quad (19)$$

- If we introduce

$$A(q, \theta) = 1 + a_1 q^{-1} + a_2 q^{-2} + \cdots + a_{n_a} q^{-n_a} \quad (20)$$

$$B(q, \theta) = b_1 q^{-1} + b_2 q^{-2} + \cdots + b_{n_b} q^{-n_b} \quad (21)$$

$$C(q, \theta) = 1 + c_1 q^{-1} + c_2 q^{-2} + \cdots + c_{n_c} q^{-n_c} \quad (22)$$

- By comparing (18) with (4), we conclude that

$$G(q, \theta) = \frac{B(q, \theta)}{A(q, \theta)}, \quad H(q, \theta) = \frac{C(q, \theta)}{A(q, \theta)} \quad (23)$$

Family of Transfer-Function Models

- Using (9) we write the one-step predictor for this family of models as

$$\begin{aligned}\hat{y}[n, \theta] &= [I - \frac{A(q, \theta)}{C(q, \theta)}]y[n] + \frac{B(q, \theta)}{C(q, \theta)}u[n] \\ C(q, \theta)\hat{y}[n, \theta] &= [C(q, \theta) - A(q, \theta)]y[n] + B(q, \theta)u[n] \\ \hat{y}[n, \theta] &= [1 - A(q, \theta)]y[n] + B(q, \theta)u[n] \\ &\quad + [C(q, \theta) - 1][y[n] - \hat{y}[n, \theta]]\end{aligned}\tag{24}$$

- Defining

$$\begin{aligned}\phi[n, \theta] &= [-y[n-1] \cdots -y[n-n_a] \ u[n-1] \cdots u[n-n_b] \\ &\quad + \varepsilon[n-1, \theta] \cdots \varepsilon[n-n_c, \theta]]^T\end{aligned}$$

we can write

$$\hat{y}[n, \theta] = \theta^T \phi[n, \theta] = \phi[n, \theta]^T \theta, \quad \varepsilon[n, \theta] = y[n] - \phi[n, \theta]^T \theta \tag{25}$$

- Remark:** This defines a *pseudo-linear regression* model where $\phi[n, \theta]$ is known as the *regression vector*. Note that this is indeed a nonlinear regression because of the dependence of ϕ on θ .

Family of Transfer-Function Models

OE - Output error:

$$\begin{aligned} w[n] + f_1 w[n-1] + f_2 w[n-2] + \cdots + f_{n_f} w[n-n_f] \\ = b_1 u[n-1] + b_2 u[n-2] + \cdots + b_{n_b} u[n-n_b] \\ y[n] = w[n] + e[n] \end{aligned} \quad (26)$$

- Input and noise transfer functions are parametrized independently. The to-be-identified parameter θ is defined in this case as

$$\theta = [b_1 \ b_2 \ \cdots \ b_{n_b} \ f_1 \ f_2 \ \cdots \ f_{n_f}]^T \quad (27)$$

- If we introduce

$$B(q, \theta) = b_1 q^{-1} + b_2 q^{-2} + \cdots + b_{n_b} q^{-n_b} \quad (28)$$

$$F(q, \theta) = 1 + f_1 q^{-1} + f_2 q^{-2} + \cdots + f_{n_f} q^{-n_f} \quad (29)$$

- By comparing (26) with (4), we conclude that

$$G(q, \theta) = \frac{B(q, \theta)}{F(q, \theta)}, \quad H(q, \theta) = 1 \quad (30)$$

Family of Transfer-Function Models

- Using (9) we write the one-step predictor for this family of models as

$$\hat{y}[n, \theta] = \frac{B(q, \theta)}{F(q, \theta)} u[n] = w[n, \theta]$$

- Defining

$$\phi[n, \theta] = [u[n-1] \ \cdots \ u[n-n_b] \ -w[n-1, \theta] \ \cdots \ -w[n-n_f, \theta]]^T$$

we can write

$$\hat{y}[n, \theta] = \theta^T \phi[n, \theta] = \phi[n, \theta]^T \theta, \quad \varepsilon[n, \theta] = y[n] - \phi[n, \theta]^T \theta \quad (31)$$

- Remark:** This also defines a *pseudo-linear regression* model where $\phi[n, \theta]$ is known as the *regression vector*. Note that ϕ depends on θ once again.

Family of Transfer-Function Models

BJ - Box-Jenkins:

$$\begin{aligned} w[n] + f_1 w[n-1] + f_2 w[n-2] + \cdots + f_{n_f} w[n-n_f] \\ = b_1 u[n-1] + b_2 u[n-2] + \cdots + b_{n_b} u[n-n_b] \\ v[n] + d_1 v[n-1] + d_2 v[n-2] + \cdots + d_{n_d} v[n-n_d] \\ = e[n] + c_1 c[n-1] + c_2 e[n-2] + \cdots + c_{n_c} e[n-n_c] \\ y[n] = w[n] + v[n] \end{aligned} \tag{32}$$

- Input and noise transfer functions are parametrized independently.
- If we introduce

$$F(q, \theta) = 1 + f_1 q^{-1} + f_2 q^{-2} + \cdots + f_{n_f} q^{-n_f} \tag{33}$$

$$B(q, \theta) = b_1 q^{-1} + b_2 q^{-2} + \cdots + b_{n_b} q^{-n_b} \tag{34}$$

$$C(q, \theta) = 1 + c_1 q^{-1} + c_2 q^{-2} + \cdots + c_{n_c} q^{-n_c} \tag{35}$$

$$D(q, \theta) = 1 + d_1 q^{-1} + d_2 q^{-2} + \cdots + d_{n_d} q^{-n_d} \tag{36}$$

Family of Transfer-Function Models

- By comparing (32) with (4), we conclude that

$$G(q, \theta) = \frac{B(q, \theta)}{F(q, \theta)}, \quad H(q, \theta) = \frac{C(q, \theta)}{D(q, \theta)} \quad (37)$$

- Using (9) we write the one-step predictor for this family of models as

$$\hat{y}[n, \theta] = [I - \frac{D(q, \theta)}{C(q, \theta)}]y[n] + \frac{B(q, \theta)}{F(q, \theta)} \frac{D(q, \theta)}{C(q, \theta)} u[n] \quad (38)$$

- **Remark:** This model can also be written as a pseudo-linear regression.

Family of Transfer-Function Models

$$A(q, \theta)y[n] = \frac{B(q, \theta)}{F(q, \theta)}u[n] + \frac{C(q, \theta)}{D(q, \theta)}e[n] \quad (39)$$

Polynomials Used	Name of Model Structure
B	FIR
AB	ARX
ABC	ARMAX
AC	ARMA
ABD	ARARX
$ABCD$	ARARMAX
BF	OE
$BFCD$	BJ

- **Note:** See derivation of pseudo-linear regression form of (39) in the book.

Family of Transfer-Function Models

State-Space:

$$\begin{aligned} x[n+1] &= A(\theta)x[n] + B(\theta)u[n] + w[n] \\ y[n] &= C(\theta)x[n] + v[n] \end{aligned} \quad (40)$$

- The transfer function of system (40) is given by

$$G(z, \theta) = C(\theta)(zI - A(\theta))^{-1}B(\theta) + D(\theta) \quad (41)$$

- The one-step predictor is given by the Kalman Predictor

$$\hat{x}[n+1, \theta] = (A(\theta) - M[n, \theta]C(\theta))\hat{x}[n, \theta] + B(\theta)u[n] + M[n, \theta]y[n]$$

$$M[n, \theta] = A(\theta)\Sigma[n, \theta]C(\theta) \left(C(\theta)\Sigma[n, \theta]C(\theta)^T + R \right)^{-1}$$

$$\Sigma[n+1, \theta] = Q + A(\theta)\Sigma[n, \theta]A(\theta)^T$$

$$-A(\theta)\Sigma[n, \theta]C(\theta)^T \left(C(\theta)\Sigma[n, \theta]C(\theta)^T + R \right)^{-1} C(\theta)\Sigma[n, \theta]A(\theta)^T$$

Family of Transfer-Function Models

- Assumptions:

- $x[0]$ is Gaussian with mean \bar{x}_0 and covariance P_0 .
- $w[n]$ is Gaussian, zero-mean, white stochastic process, i.e., $E\{w[n]w^T[m]\} = Q\delta[n - m]$, independent of x_0 and $v[n]$.
- $v[n]$ is Gaussian, zero-mean, white stochastic process, i.e., $E\{v[n]v^T[m]\} = R\delta[n - m]$, independent of x_0 and $w[n]$.

- The covariance

$$\Sigma[n, \theta] = E\{(x[n] - \hat{x}[n, \theta])(x[n] - \hat{x}[n, \theta])^T\}$$

satisfies a Riccati Difference Equation (RDE).

- The Kalman Predictor is an observer!!!

$$\hat{x}[n + 1, \theta] = A(\theta)\hat{x}[n, \theta] + B(\theta)u[n] + M[n, \theta]e[n, \theta]$$

$$e[n, \theta] = y[n] - C(\theta)\hat{x}[n, \theta]$$

$$E\{e[n, \theta]e[n, \theta]^T\} = C(\theta)\Sigma[n, \theta]C^T(\theta) + R$$

- We can predict the output as

$$\hat{y}[n, \theta] = C(\theta)\hat{x}[n, \theta]$$

Prediction Error Method

- The estimation of θ based on N measurements of both input $u[n]$ and output $y[n]$ is computed as

$$\hat{\theta}_N = \arg \min V_N(\theta) \quad (42)$$

where

$$V_N(\theta) = \frac{1}{N} \sum_{n=1}^N \|\varepsilon[n, \theta]\|_2^2 \quad (43)$$

- In the case of a linear regression model

$$\hat{y}[n, \theta] = \theta^T \phi[n] = \phi[n]^T \theta, \quad \varepsilon[n, \theta] = y[n] - \phi[n]^T \theta. \quad (44)$$

- When we consider a SISO system ($\phi : d \times 1$ and $\theta : d \times 1$), we can write

$$V_N(\theta) = \frac{1}{N} \sum_{n=1}^N [y[n] - \phi[n]^T \theta]^2 \quad (45)$$

Least Square Estimate

- This quadratic function can be minimized analytically.
- We find that

$$\left[\frac{1}{N} \sum_{n=1}^N \phi[n] \phi^T[n] \right] \hat{\theta}_N = \frac{1}{N} \sum_{n=1}^N \phi[n] y[n] \quad (46)$$

- This set of linear equations is known as the *normal equations*.
- If the matrix of the left is invertible, we have the Least Square Estimate (LSE)

$$\hat{\theta}_N = \left[\frac{1}{N} \sum_{n=1}^N \phi[n] \phi^T[n] \right]^{-1} \frac{1}{N} \sum_{n=1}^N \phi[n] y[n] \quad (47)$$

Least Square Estimate

- Sometimes the estimate (47) can be written more conveniently in matrix form.
- We define the $N \times 1$ vector and $N \times d$ matrix

$$Y_N = \begin{bmatrix} y[1] \\ \vdots \\ y[N] \end{bmatrix}, \quad \Phi_N = \begin{bmatrix} \phi^T[1] \\ \vdots \\ \phi^T[N] \end{bmatrix} \quad (48)$$

respectively.

- We can write

$$V_N(\theta) = \frac{1}{N} |Y_N - \Phi_N \theta|^2 = \frac{1}{N} (Y_N - \Phi_N \theta)^T (Y_N - \Phi_N \theta) \quad (49)$$

- The normal equations take the form

$$[\Phi_N^T \Phi_N] \hat{\theta}_N = \Phi_N^T Y_N \quad (50)$$

Least Square Estimate

- And the estimate can be written as

$$\hat{\theta}_N = [\Phi_N^T \Phi_N]^{-1} \Phi_N^T Y_N \quad (51)$$

where $[\Phi_N^T \Phi_N]^{-1} \Phi_N^T$ is the Moore-Penrose pseudoinverse of Φ_N .

- Therefore, the estimate (51) is the solution to the overdetermined ($N > d$) system of linear equations

$$Y_N = \Phi_N \theta \quad (52)$$

- Let us write

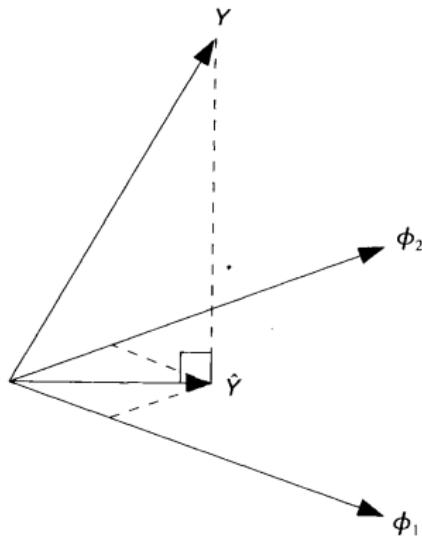
$$\Phi_N = [\bar{\phi}_1 \dots \bar{\phi}_d] \quad (53)$$

where $\bar{\phi}_i : N \times 1$ for $i = 1, \dots, d$.

- The problem in (52) is to find a linear combination of the vectors $\bar{\phi}_i : N \times 1$ for $i = 1, \dots, d$ that approximates Y_N as well as possible.

Least Square Estimate

- If Y_N belongs to the subspace generated by the columns of Φ_N , we can describe it as a unique linear combination of $\bar{\phi}_i : N \times 1$ for $i = 1, \dots, d$.
- Otherwise, the best approximation is the vector in the subspace generated by the columns of Φ_N that has the smallest distance to Y_N , which is well known to be the orthogonal projection of Y_N on this subspace.



Least Square Estimate

- Let the projection be denoted as \widehat{Y}_N . Since it is the orthogonal projection, we have

$$(Y_N - \widehat{Y}_N) \perp \bar{\phi}_i \quad (54)$$

- That is,

$$(Y_N - \widehat{Y}_N)^T \bar{\phi}_i = 0, \quad i = 1, \dots, n \quad (55)$$

- We can write

$$\widehat{Y}_N = \sum_{j=1}^d \widehat{\theta}_j \bar{\phi}_j \quad (56)$$

- This gives

$$Y_N^T \bar{\phi}_i = \sum_{j=1}^d \widehat{\theta}_j \bar{\phi}_j^T \bar{\phi}_i, \quad i = 1, \dots, n \quad (57)$$

which are the normal equations (50).

Realization Algorithm

- Let us assume that we have identified the impulse response coefficients using a nonparametric method:

$$g[k] \quad k = 0, \dots, 2N \quad (58)$$

How can we use this data to obtain a parametric state-space realization?

$$\begin{aligned} x[k+1] &= Ax[k] + Bu[k] \\ y[k] &= Cx[k] + Du[k] \end{aligned} \quad (59)$$

- The transfer function of system (59) is given by

$$G(z) = C(zI - A)^{-1}B + D \quad (60)$$

- We recall that

$$G(z) = \sum_{k=0}^{\infty} g[k]z^{-k} \quad (61)$$

Realization Algorithm

- Using the formal geometric series expansion we can write

$$(zI - A)^{-1} = \frac{1}{z} \left(I - \frac{A}{z} \right)^{-1} = \frac{1}{z} \left[I + \frac{A}{z} + \frac{A^2}{z^2} + \dots \right] \quad (62)$$

- Therefore

$$G(z) = C(zI - A)^{-1}B + D = C \frac{1}{z} \left[I + \frac{A}{z} + \frac{A^2}{z^2} + \dots \right] B + D \quad (63)$$

- Comparing (61) and (63) we can conclude that the impulse response coefficients $g[k]$ are given by the *Markov parameters*

$$g[k] = \begin{cases} D & k = 0 \\ CA^{k-1}B & k \geq 1 \end{cases} \quad (64)$$

Realization Algorithm

- We define the *Hankel* matrix as

$$M[i, j] = \begin{bmatrix} g[i] & g[i+1] & \cdots & g[i+j] \\ g[i+1] & g[i+2] & \cdots & g[i+j+1] \\ \vdots & \vdots & & \vdots \\ g[i+j] & g[i+j+1] & \cdots & g[i+2j] \end{bmatrix} \quad (65)$$

- We define

$$H = M[1, N-1] \quad \bar{H} = M[2, N-1] \quad (66)$$

and taking into account (64) we note that

$$H = H_1 H_2 \quad \bar{H} = H_1 A \bar{H}_2 \quad (67)$$

where

$$H_1 = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{N-1} \end{bmatrix} = \bar{O}, \quad H_2 = [B \ AB \ \cdots \ A^{N-1}B] = \bar{C} \quad (68)$$

Realization Algorithm

- We then can note that

$$D = g[0], C = H_1(1,:), B = H_2(:, 1), A = H_1^+ \bar{H} H_2^+ \quad (69)$$

where

$$H_1^+ = (H_1^T H_1)^{-1} H_1^T \Rightarrow H_1^+ H_1 = I \quad (70)$$

$$H_2^+ = H_2^T (H_2 H_2^T)^{-1} \Rightarrow H_2 H_2^+ = I \quad (71)$$

Realization Algorithm

- How do we compute H_1 and H_2 ?
- We compute the Singular Value Decomposition (SVD) of H , i.e.,

$$H = H_1 H_2 = U \Sigma V^* = U \Sigma^{1/2} \Sigma^{1/2} V^* \quad (72)$$

where U and V are unitary matrices.

- We compute

$$H_1 = U \Sigma^{1/2} \Rightarrow H_1^* H_1 = \Sigma^{1/2} U^* U \Sigma^{1/2} = \Sigma \quad (73)$$

$$H_2 = \Sigma^{1/2} V^* \Rightarrow H_2 H_2^* = \Sigma^{1/2} V^* V \Sigma^{1/2} = \Sigma \quad (74)$$

and also note that

$$H_1 = \bar{O} \Rightarrow H_1^* H_1 = \sum_{k=0}^{N-1} (A^T)^k C^T C A^k \quad (75)$$

$$H_2 = \bar{C} \Rightarrow H_2 H_2^* = \sum_{k=0}^{N-1} (A)^k B B^T (A^T)^k \quad (76)$$

Realization Algorithm

- If A is stable,

$$H_1^* H_1 \rightarrow Q \quad H_2 H_2^* \rightarrow P \quad (77)$$

when $N \rightarrow \infty$, where P and Q denote the observability and controllability gramians that satisfy

$$A^T Q A + C^T C = Q \quad (78)$$

$$A P A^T + B B^T = P \quad (79)$$

- We can finally note that

$$P = Q = \Sigma \Rightarrow \text{BALANCED REALIZATION} \quad (80)$$

Can we obtain a BALANCED TRUNCATION?

Realization Algorithm

- Note that

$$\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_N \end{bmatrix} \quad (81)$$

where σ_i , for $i = 1, \dots, N$, are called Hankel singular values and where

$$H = U\Sigma V^* = [U_n \ U_s] \begin{bmatrix} \Sigma_n & 0 \\ 0 & \Sigma_s \end{bmatrix} \begin{bmatrix} V_n^* \\ V_s^* \end{bmatrix} \quad (82)$$

- It is usually the case that

$$\sigma_1 > \sigma_2 > \dots > \sigma_n >> \sigma_{n+1} > \dots > \sigma_N$$

Realization Algorithm

- In this case we can adopt n as the order of the system and approximate

$$\begin{bmatrix} \Sigma_n & 0 \\ 0 & \Sigma_s \end{bmatrix} \approx \begin{bmatrix} \Sigma_n & 0 \\ 0 & 0 \end{bmatrix} \quad (83)$$

and we can write

$$H \approx H_n = U_n \Sigma_n V_n^* \quad (84)$$

and

$$\tilde{H}_1 = U_n \Sigma_n^{1/2}, \quad \tilde{H}_2 = \Sigma_n^{1/2} V_n^* \quad (85)$$

to finally conclude that

$$D = g[0], \quad C = \tilde{H}_1(1,:), \quad B = \tilde{H}_2(:, 1), \quad A = \tilde{H}_1^+ \bar{H} \tilde{H}_2^+ \quad (86)$$

Curve Fitting

- Let us assume that we have identified the frequency response of a system using a nonparametric method:

$$G(e^{j\omega_k}) \quad \omega_k = \frac{2\pi k}{N}, \quad k = 0, \dots, N-1 \quad (87)$$

How can we use this data to obtain a parametric transfer function?

$$\hat{G}(q, \theta) = \frac{B(q, \theta)}{A(q, \theta)} \quad (88)$$

where

$$A(q, \theta) = 1 + a_1 q^{-1} + a_2 q^{-2} + \dots + a_{n_a} q^{-n_a} \quad (89)$$

$$B(q, \theta) = b_0 + b_1 q^{-1} + b_2 q^{-2} + \dots + a_{n_b} q^{-n_b} \quad (90)$$

Curve Fitting

- We define

$$E_N(\omega_k, \theta) = \left[G(e^{j\omega_k}) - \hat{G}(e^{j\omega_k}, \theta) \right] W(e^{j\omega_k}) \quad (91)$$

where $W(e^{j\omega_k})$ is a frequency weighting function.

- We also define the cost function

$$J(\theta) = \sum_{k=0}^{N-1} E_N(\omega_k, \theta) E_N^*(\omega_k, \theta) = \left\| \bar{E}_N(\omega, \theta) \right\|_2^2 \quad (92)$$

with $\bar{E}_N(\omega, \theta) = [E_N(\omega_0, \theta) \ E_N(\omega_1, \theta) \ \dots \ E_N(\omega_{N-1}, \theta)]$.

- We seek

$$\theta = \arg \min_{\theta \in R} J(\theta) \quad (93)$$

Curve Fitting

- **Output Error:**

$$E(\omega_k, \theta) = G(e^{j\omega_k}) - \frac{B(e^{j\omega_k}, \theta)}{A(e^{j\omega_k}, \theta)} \quad (94)$$

This defines a **nonlinear** problem.

- **Equation Error:**

$$\begin{aligned}\tilde{E}(\omega_k, \theta) &= E(\omega_k, \theta) A(e^{j\omega_k}, \theta) \\ &= G(e^{j\omega_k}) A(e^{j\omega_k}, \theta) - B(e^{j\omega_k}, \theta)\end{aligned} \quad (95)$$

This defines a **linear** problem.

- Note that $\tilde{E}(\omega_k, \theta)$ is a weighted function of $E(\omega_k, \theta)$.

Curve Fitting

- We can write

$$\tilde{E}(\omega_k, \theta) = E(\omega_k, \theta)W(e^{j\omega_k}) = E_N(\omega_k, \theta) \quad (96)$$

with

$$W(e^{j\omega_k}) = A(e^{j\omega_k}, \theta). \quad (97)$$

- Recalling

$$A(e^{j\omega_k}, \theta) = 1 + a_1 (e^{j\omega_k})^{-1} + a_2 (e^{j\omega_k})^{-2} + \cdots + a_{n_a} (e^{j\omega_k})^{-n_a}$$

$$B(e^{j\omega_k}, \theta) = b_0 + b_1 (e^{j\omega_k})^{-1} + b_2 (e^{j\omega_k})^{-2} + \cdots + b_{n_b} (e^{j\omega_k})^{-n_b}$$

we can write

$$\tilde{E}(\omega_k, \theta) = G(e^{j\omega_k}) - \theta \phi(e^{j\omega_k}) \quad (98)$$

where

$$\theta = [\ a_1 \ a_2 \ \cdots \ a_{n_a} \ b_0 \ b_1 \ b_2 \ \cdots \ b_{n_b} \] \quad (99)$$

and

$$\phi(e^{j\omega_k}) = \left[-G(e^{j\omega_k}) (e^{j\omega_k})^{-1} \ -G(e^{j\omega_k}) (e^{j\omega_k})^{-2} \ \cdots \ -G(e^{j\omega_k}) (e^{j\omega_k})^{-n_a} \right. \\ \left. 1 \ (e^{j\omega_k})^{-1} \ (e^{j\omega_k})^{-2} \ \cdots \ (e^{j\omega_k})^{-n_b} \right]^T \quad (100)$$

Curve Fitting

- We can write the to-be-minimized error as

$$\bar{E}(\omega, \theta) = \bar{G}(\omega) - \theta \bar{\phi}(\omega) \quad (101)$$

where

$$\bar{E}(\omega, \theta) = [\tilde{E}(\omega_0, \theta) \ \tilde{E}(\omega_1, \theta) \ \dots \ \tilde{E}(\omega_{N-1}, \theta)] \quad (102)$$

$$\bar{G}(\omega) = [G(\omega_0) \ G(\omega_1) \ \dots \ G(\omega_{N-1})] \quad (103)$$

$$\bar{\phi}(\omega) = [\phi(\omega_0) \ \phi(\omega_1) \ \dots \ \phi(\omega_{N-1})] \quad (104)$$

- And the cost function as

$$\tilde{J}(\theta) = \sum_{k=0}^{N-1} \tilde{E}(\omega_k, \theta) \tilde{E}^*(\omega_k, \theta) = \|\bar{E}(\omega, \theta)\|_2^2 \quad (105)$$

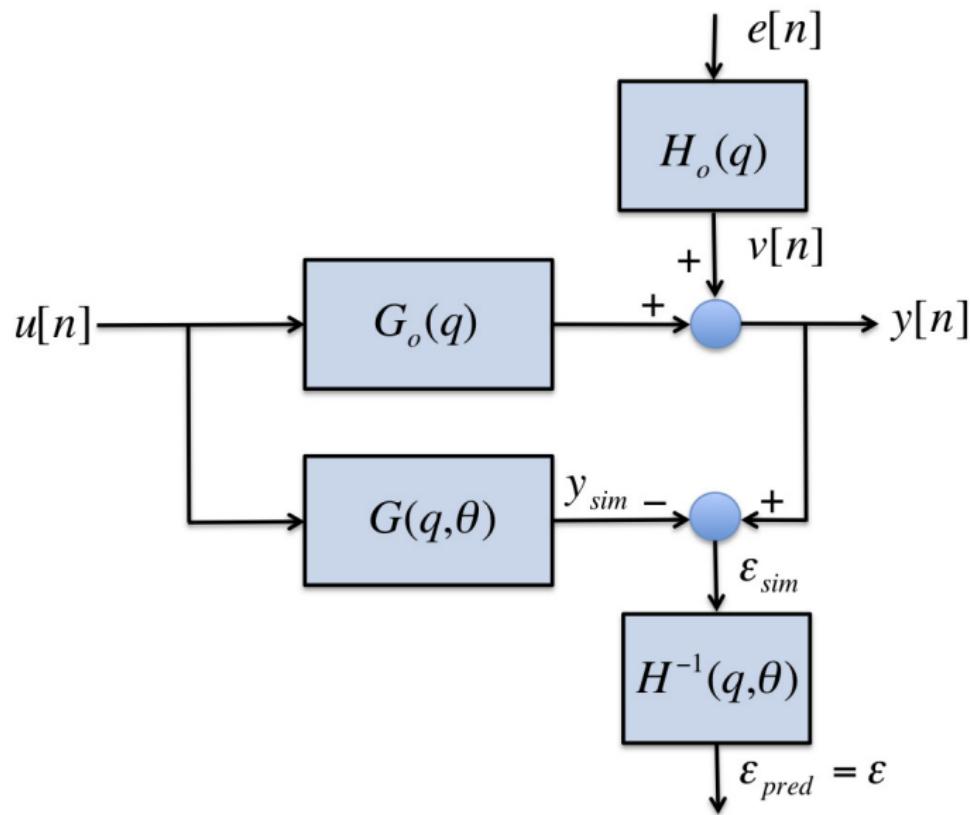
- The minimizing solution is obtained as

$$\left. \begin{array}{l} \min_{\theta} \bar{E}(\omega, \theta) \bar{E}(\omega, \theta)^* \\ \bar{E}(\omega, \theta) = \bar{G}(\omega) - \theta \bar{\phi}(\omega) \end{array} \right\} \Rightarrow \bar{E} \bar{\phi}^* = \bar{G} \bar{\phi}^* - \theta \bar{\phi} \bar{\phi}^* \quad (106)$$

which results in

$$\theta = \bar{G} \bar{\phi}^* [\bar{\phi} \bar{\phi}^*]^{-1} \quad (107)$$

Prediction vs Simulation



Prediction vs Simulation

- The simulated output is computed as

$$y_{sim}[n, \theta] = G(q, \theta)u[n], \quad (108)$$

and the simulation error as

$$\varepsilon_{sim}[n, \theta] = y[n] - y_{sim}[n, \theta] = y[n] - G(q, \theta)u[n]. \quad (109)$$

- The predicted output is computed as

$$\hat{y}[n, \theta] = [I - H^{-1}(q, \theta)]y[n] + H^{-1}(q, \theta)G(q, \theta)u[n], \quad (110)$$

and the prediction error as

$$\varepsilon[n, \theta] = y[n] - \hat{y}[n, \theta] = H^{-1}(q, \theta)\{y[n] - G(q, \theta)u[n]\}. \quad (111)$$

- Note that $\varepsilon[n, \theta] = H^{-1}(q, \theta)\varepsilon_{sim}[n, \theta]$.

Prediction vs Simulation

- Note that if $G(q, \theta) = G(q)$, then

$$\varepsilon_{sim}[n, \theta] = v[n] \Rightarrow R_{u\varepsilon_{sim}}[\tau] = 0$$

since $u[n]$ and $v[n]$ are uncorrelated by assumption (not true for feedback systems).

- Note that if $G(q, \theta) = G(q)$ and $H(q, \theta) = H(q)$ then

$$\varepsilon[n, \theta] = H^{-1}(q, \theta) \varepsilon_{sim}[n, \theta] = H^{-1}(q, \theta) v[n] = e[n] \Rightarrow R_{\varepsilon\varepsilon}[\tau] = \delta[\tau]$$

since $e[n]$ is white noise by assumption.

Consistency and Convergence

- The estimation of θ based on N measurements of both input $u[n]$ and output $y[n]$ is computed as

$$\hat{\theta}_N = \arg \min V_N(\theta) \quad (112)$$

where

$$V_N(\theta) = \frac{1}{N} \sum_{n=1}^N \|\varepsilon[n, \theta]\|_2^2 = \frac{1}{N} \sum_{n=1}^N \varepsilon[n, \theta] \varepsilon^T[n, \theta] \quad (113)$$

and

$$\begin{aligned} \varepsilon[n, \theta] &= y[n] - \hat{y}[n, \theta] = H^{-1}(q, \theta) \{y[n] - G(q, \theta)u[n]\} \\ &= H^{-1}(q, \theta) \varepsilon_{sim}[n, \theta]. \end{aligned} \quad (114)$$

- **Consistency of Estimate:** Is $\hat{\theta}_N \rightarrow \theta_o$ when $N \rightarrow \infty$?

Consistency and Convergence

- **System - \mathcal{S} :**

$$\begin{aligned} y[n] &= G(q, \theta_o)u[n] + H(q, \theta_o)e[n] \\ &= \frac{B(q, \theta_o)}{A(q, \theta_o)}u[n] + \frac{1}{A(q, \theta_o)}e[n] \end{aligned} \tag{115}$$

- **Model - \mathcal{M}**

$$\begin{aligned} y[n] &= G(q, \theta)u[n] + H(q, \theta)e[n] \\ &= \frac{B(q, \theta)}{A(q, \theta)}u[n] + \frac{1}{A(q, \theta)}e[n] \end{aligned} \tag{116}$$

- We assume that $\mathcal{S} \in \mathcal{M}$. The model \mathcal{M} has an ARX structure.

Consistency and Convergence

- We write the system \mathcal{S} in linear regression form

$$y[n] = \phi^T[n]\theta_o + e[n] \quad (117)$$

where

$$\phi[n] = [-y[n-1] \quad \cdots \quad -y[n-n_a] \quad u[n] \quad \cdots \quad u[n-n_b]]^T$$

and

$$\theta_o = [a_1 \quad a_2 \quad \cdots \quad a_{n_a} \quad b_0 \quad b_1 \quad \cdots \quad b_{n_b}]^T$$

- The prediction error can be written as

$$\begin{aligned} \varepsilon[n, \theta] &= y[n] - \phi^T[n]\theta = H^{-1}(q, \theta)\{y[n] - G(q, \theta)u[n]\} \quad (118) \\ &= A(q, \theta)y[n] - B(q, \theta)u[n]. \end{aligned}$$

Consistency and Convergence

- Where we have written

$$\begin{aligned}\hat{y}[n, \theta] &= [I - H^{-1}(q, \theta)]y[n] + H^{-1}(q, \theta)G(q, \theta)u[n] \quad (119) \\ &= [I - A(q, \theta)]y[n] + B(q, \theta)u[n] \\ &= \phi^T[n]\theta\end{aligned}$$

- By defining

$$Y_N = \begin{bmatrix} y[1] \\ \vdots \\ y[N] \end{bmatrix}, \Phi_N = \begin{bmatrix} \phi^T[1] \\ \vdots \\ \phi^T[N] \end{bmatrix}, \varepsilon_N = \begin{bmatrix} \varepsilon[1] \\ \vdots \\ \varepsilon[N] \end{bmatrix} \quad (120)$$

we can write

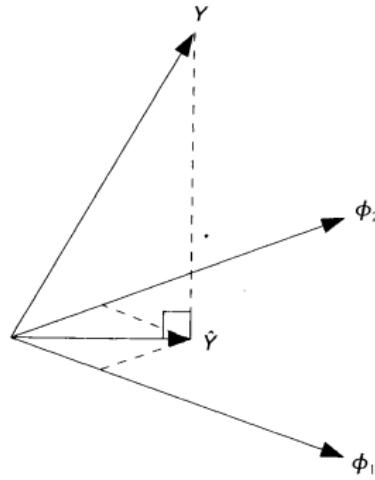
$$\varepsilon_N = Y_N - \Phi_N\theta \quad (121)$$

Consistency and Convergence

- The to-be-minimized cost function can be written as

$$V_N(\theta) = \frac{1}{N} \sum_{n=1}^N \varepsilon[n, \theta] \varepsilon^T[n, \theta] = \frac{1}{N} \varepsilon_N \varepsilon_N^T \quad (122)$$

- ε_N is minimized when $\varepsilon_N \perp \hat{Y}_N = \Phi_N \theta$.



Consistency and Convergence

- Then,

$$0 = \Phi_N^T \varepsilon_N = \Phi_N^T Y_N - \Phi_N^T \Phi_N \theta \quad (123)$$

and the estimate can be written as

$$\hat{\theta}_N = [\Phi_N^T \Phi_N]^{-1} \Phi_N^T Y_N = R(N)^{-1} f(N) \quad (124)$$

where

$$R(N) = \frac{1}{N} \sum_{n=1}^N \phi[n] \phi^T[n] \quad f(N) = \frac{1}{N} \sum_{n=1}^N \phi[n] y[n] \quad (125)$$

Consistency and Convergence

- Since

$$y[n] = \phi^T[n]\theta_o + e[n] \quad (126)$$

we can write

$$\begin{aligned}\hat{\theta}_N &= R(N)^{-1} \left[\frac{1}{N} \sum_{n=1}^N \phi[n] (\phi^T[n]\theta_o + e[n]) \right] \quad (127) \\ &= R(N)^{-1} \left[\frac{1}{N} \sum_{n=1}^N \phi[n] \phi^T[n] \theta_o + \frac{1}{N} \sum_{n=1}^N \phi[n] e[n] \right] \\ &= \theta_o + R(N)^{-1} \frac{1}{N} \sum_{n=1}^N \phi[n] e[n]\end{aligned}$$

Then,

$$\hat{\theta}_N \rightarrow \theta_o \iff R(N)^{-1} \frac{1}{N} \sum_{n=1}^N \phi[n] e[n] = 0 \quad (128)$$

Consistency and Convergence

- We can conclude that

$$\frac{1}{N} \sum_{n=1}^N \phi[n] e[n] = \begin{bmatrix} -\hat{R}_{ye}^N[-1] \\ -\hat{R}_{ye}^N[-2] \\ \vdots \\ -\hat{R}_{ye}^N[-n_a] \\ \hat{R}_{ue}^N[0] \\ \hat{R}_{ue}^N[1] \\ \vdots \\ \hat{R}_{ue}^N[n_b] \end{bmatrix} \quad (129)$$

is zero if $e[n]$ and $u[n]$ are uncorrelated.

- We can note that

$$R(N) = \frac{1}{N} \sum_{n=1}^N \phi[n] \phi^T[n] = \begin{bmatrix} R_{yy} & R_{yu} \\ R_{uy} & R_{uu} \end{bmatrix} \quad (130)$$

is non-singular if persistent excitation for $u[n]$ is guaranteed. R_{yy} is always non-singular due to $e[n]$. We need $u[n]$ sufficiently exciting for R_{uu} to be non-singular.

Consistency and Convergence

- This result can be generalized to any kind of model structure

$$\widehat{\theta}_N \rightarrow \theta_o \iff \begin{cases} 1) & \mathcal{S} \in \mathcal{M} \\ 2) & \text{input uncorrelated with noise} \\ 3) & \text{persistent excitation of the input} \end{cases} \quad (131)$$

- When the parameters of $G(q, \theta)$ and $H(q, \theta)$ are independent (FIR, OE, BJ) we can replace

1) $\mathcal{G} \in \mathcal{M}$

- In closed-loop systems ($u[n]$ becomes correlated with $e[n]$), we can replace

2) reference uncorrelated with noise \rightarrow IV Method

Consistency and Convergence

- We can also conclude that

$$(\hat{\theta}_N - \theta_o) \sim \mathcal{N}(0, \lambda) \quad (132)$$

with

$$\lambda = cov(\hat{\theta}_N) = \frac{\sigma_e^2}{N} R(N)^{-1} \quad (133)$$

- Provided 1), 2) and 3) hold:
 - $\hat{\theta}_N$ is an unbiased estimate
 - $cov(\hat{\theta}_N) \rightarrow 0$ when $N \rightarrow \infty$

Instrumental Variables

- There is no assumption about the structure of the model.

$$\begin{aligned} y[n] &= G(q, \theta)u[n] + H(q, \theta)e[n] \\ &= \frac{B(q, \theta)}{A(q, \theta)}u[n] + \frac{C(q, \theta)}{D(q, \theta)}e[n] \end{aligned} \quad (134)$$

- By multiplying both sides of the equation by $A(q, \theta)$ we write

$$\begin{aligned} A(q, \theta)y[n] &= B(q, \theta)u[n] + \frac{A(q, \theta)C(q, \theta)}{D(q, \theta)}e[n] \\ A(q, \theta)y[n] &= B(q, \theta)u[n] + v[n] \end{aligned}$$

and finally

$$y[n] = \phi^T[n]\theta + v[n] \quad (135)$$

where

$$\phi[n] = [-y[n-1] \quad \cdots \quad -y[n-n_a] \quad u[n] \quad \cdots \quad u[n-n_b]]^T$$

and

$$\theta = [a_1 \quad a_2 \quad \cdots \quad a_{n_a} \quad b_0 \quad b_1 \quad \cdots \quad b_{n_b}]^T$$

Instrumental Variables

- The Instrumental Variable method connects parametric and correlation methods.
- We correlate $y[n] = \phi^T[n]\theta + v[n]$ with an instrumental variable $\xi[n]$ of dimension $n_a + n_b + 1$ that is uncorrelated from the noise $v[n]$, i.e.,

$$\begin{aligned}\frac{1}{N} \sum_{n=1}^N \xi[n]y[n] &= \frac{1}{N} \sum_{n=1}^N \xi[n]\phi^T[n]\theta + \frac{1}{N} \sum_{n=1}^N \xi[n]v[n] \quad (136) \\ &= \frac{1}{N} \sum_{n=1}^N \xi[n]\phi^T[n]\theta\end{aligned}$$

- The estimate can be written as

$$\hat{\theta}_N^{IV} = R(N)^{-1}f(N) \quad (137)$$

where

$$R(N) = \frac{1}{N} \sum_{n=1}^N \xi[n]\phi^T[n] \quad f(N) = \frac{1}{N} \sum_{n=1}^N \xi[n]y[n] \quad (138)$$

Instrumental Variables

- Since

$$y[n] = \phi^T[n]\theta_o + v[n] \quad (139)$$

we can write

$$\begin{aligned}\hat{\theta}_N^{IV} &= R(N)^{-1} \left[\frac{1}{N} \sum_{n=1}^N \xi[n] (\phi^T[n]\theta_o + v[n]) \right] \\ &= R(N)^{-1} \left[\frac{1}{N} \sum_{n=1}^N \xi[n]\phi^T[n]\theta_o + \frac{1}{N} \sum_{n=1}^N \xi[n]v[n] \right] \\ &= \theta_o + R(N)^{-1} \frac{1}{N} \sum_{n=1}^N \xi[n]v[n]\end{aligned} \quad (140)$$

- Then,

$$\hat{\theta}_N^{IV} \rightarrow \theta_o \iff R(N)^{-1} \frac{1}{N} \sum_{n=1}^N \xi[n]v[n] = 0 \quad (141)$$

Instrumental Variables

- We need
 - $\widehat{R}_{\xi v}[\tau] = 0 \Rightarrow \xi[n], v[n]$ uncorrelated
 - $R(N)$ no singular $\Rightarrow \xi[n], \phi[n]$ correlated enough
- In summary,

$$\widehat{\theta}_N^{IV} \rightarrow \theta_o \iff \begin{cases} 1) & \mathcal{G} \in \mathcal{M} \\ 2) & \xi[n] \text{ uncorrelated with noise } v[n] \\ 3) & \xi[n] \text{ correlated enough with } \phi[n] \end{cases} \quad (142)$$

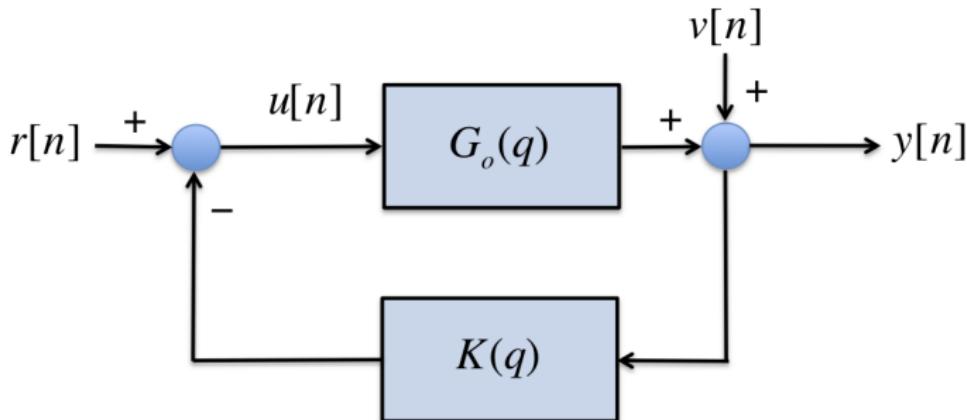
- In open loop, the i.v. is constructed from input $u[n]$

$$\xi[n] = [\ u[n - n_b - 1] \quad \cdots \quad u[n - n_b - n_a] \quad u[n] \quad \cdots \quad u[n - n_b] \]^T$$

- In closed loop, the i.v. is constructed from reference $r[n]$

$$\xi[n] = [\ r[n] \quad r[n - 1] \quad \cdots \quad r[n - n_a - n_b - 1] \]^T$$

Instrumental Variables



- Alternatively,

- Estimate $\frac{U}{R} = \frac{1}{1+G_o K} = S(\theta)$. Note that we can also estimate $\frac{Y}{R} = \frac{1}{1+G_o K} = T(\theta)$. Knowing $K(q)$ we can obtain an estimate for $G_o(q)$ either from $S(\theta)$ or $T(\theta)$.
- Filter the noise by computing $\hat{u}[n] = S(q, \theta) * r[n]$. Therefore, $\hat{u}[n]$ is uncorrelated with $v[n] \Rightarrow \xi[n] = \hat{u}[n]$.

Approximate Identification

- Let us assume now the case where $\mathcal{S} \notin \mathcal{M}$:
 - $\mathcal{G} \in \mathcal{M}, \mathcal{H} \notin \mathcal{M}$: Still consistent estimation of G_o
 - IV Method
 - LS Method for FIR, OE, BJ
(G and H independently parameterized)
 - $\mathcal{G} \notin \mathcal{M}, \mathcal{H} \in \mathcal{M}$: What can we expect?
 - $\mathcal{G} \notin \mathcal{M}, \mathcal{H} \notin \mathcal{M}$: What can we expect?

- System - \mathcal{S} :**

$$y[n] = G(q, \theta_o)u[n] + H(q, \theta_o)e[n] \triangleq G_o(q)u[n] + H_o(q)e[n] \quad (143)$$

- Model - \mathcal{M}**

$$y[n] = G(q, \theta)u[n] + H(q, \theta)e[n] \triangleq G_\theta(q)u[n] + H_\theta(q)e[n] \quad (144)$$

Approximate Identification

- The prediction error is given by

$$\begin{aligned}\varepsilon[n, \theta] &= H_\theta^{-1}(q)\{y[n] - G_\theta(q)u[n]\} \\ &= H_\theta^{-1}(q)\{G_o(q)u[n] + H_o(q)e[n] - G_\theta(q)u[n]\} \\ &= H_\theta^{-1}(q)\{(G_o(q) - G_\theta(q))u[n] + (H_o(q) - H_\theta(q))e[n]\} + e[n]\end{aligned}$$

which can be written as

$$\varepsilon_\theta[n] = H_\theta^{-1}(q) \begin{bmatrix} (G_o(q) - G_\theta(q)) & (H_o(q) - H_\theta(q)) \end{bmatrix} \begin{bmatrix} u[n] \\ e[n] \end{bmatrix} + e[n]$$

where we have defined $\varepsilon[n, \theta] \triangleq \varepsilon_\theta[n]$.

- Assumptions:

- There is a delay both in the system and in the model (G_o and G_θ both contain a delay) or in the controller. That is, $u[n]$ depends only on $y[n-1]$ and earlier values in the case of feedback control.
- H_o and H_θ are monic. That is, $(H_o - H_\theta)e[n]$ is independent of $e[n]$.

Approximate Identification

- Therefore, $e[n]$ will be uncorrelated with the first term of $\varepsilon_\theta[n]!$

$$\Phi_{\varepsilon\varepsilon}(\omega, \theta) = \frac{1}{|H_\theta|^2} [(G_o - G_\theta) (H_o - H_\theta)] \begin{bmatrix} \Phi_{uu} & \Phi_{ue} \\ \Phi_{eu} & \lambda \end{bmatrix} \begin{bmatrix} \bar{G}_o - \bar{G}_\theta \\ \bar{H}_o - \bar{H}_\theta \end{bmatrix} + \lambda$$

where

$$\begin{bmatrix} \Phi_{uu} & \Phi_{ue} \\ \Phi_{eu} & \lambda \end{bmatrix} = \begin{bmatrix} I & 0 \\ \frac{\Phi_{eu}}{\Phi_{uu}} & I \end{bmatrix} \begin{bmatrix} \Phi_{uu} & 0 \\ 0 & \lambda - \frac{|\Phi_{eu}|^2}{\Phi_{uu}} \end{bmatrix} \begin{bmatrix} I & \frac{\Phi_{eu}}{\Phi_{uu}} \\ 0 & I \end{bmatrix}$$

- Let us introduce

$$B_\theta(e^{j\omega}) = \frac{H_o(e^{j\omega}) - H_\theta(e^{j\omega})}{\Phi_{uu}(\omega)} \Phi_{ue}(\omega)$$

- Then, we can write

$$\Phi_{\varepsilon\varepsilon}(\omega, \theta) = \frac{|G_o - G_\theta + B_\theta|^2}{|H_\theta|^2} \Phi_{uu} + \frac{|H_o - H_\theta|^2 \left(\lambda - \frac{|\Phi_{eu}|^2}{\Phi_{uu}} \right)}{|H_\theta|^2} + \lambda$$

Approximate Identification

- The estimation of θ based on N measurements of both input $u[n]$ and output $y[n]$ is computed as

$$\hat{\theta}_N = \arg \min_{\theta} V_N(\theta) \quad (145)$$

where

$$V_N(\theta) = \frac{1}{N} \sum_{n=1}^N \varepsilon^2[n, \theta] = \hat{\sigma}_{\varepsilon}(\theta) \quad (146)$$

- By Parseval's theorem

$$\sigma_{\varepsilon} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{\varepsilon\varepsilon}(\omega) d\omega \quad (147)$$

- Then,

$$\hat{\theta}_N = \arg \min_{\theta} \int_{-\pi}^{\pi} \Phi_{\varepsilon\varepsilon}(\omega, \theta) d\omega \quad (148)$$

Approximate Identification

- Open-loop case: $u[n] \perp e[n] \Rightarrow B_\theta(e^{j\omega}) \equiv 0$.

$$\begin{aligned}\Phi_{\varepsilon\varepsilon}(\omega, \theta) &= \frac{|G_o - G_\theta|^2}{|H_\theta|^2} \Phi_{uu} + \frac{|H_o - H_\theta|^2}{|H_\theta|^2} \lambda + \lambda \\ &= \frac{|G_o - G_\theta|^2}{|H_\theta|^2} \Phi_{uu} + \left(\left| \frac{H_o}{H_\theta} - 1 \right|^2 + 1 \right) \lambda\end{aligned}$$

- But as $\min \int_{-\pi}^{\pi} |R|^2 d\omega = \min \int_{-\pi}^{\pi} (|R - 1|^2 + 1) d\omega$, we can write the expression to minimize as

$$\Phi_{\varepsilon\varepsilon}^m(\omega, \theta) = |G_o - G_\theta|^2 \frac{\Phi_{uu}}{|H_\theta|^2} + \frac{|H_o|^2 \lambda}{|H_\theta|^2} = |G_o - G_\theta|^2 \frac{\Phi_{uu}}{|H_\theta|^2} + \frac{\Phi_{vv}}{|H_\theta|^2}$$

Approximate Identification

- **ARX Model - \mathcal{M}**

$$y[n] = G_\theta(q)u[n] + H_\theta(q)e[n] = \frac{B_\theta(q)}{A_\theta(q)}u[n] + \frac{1}{A_\theta(q)}e[n] \quad (149)$$

- The to-be-minimized expression is given by

$$\Phi_{\varepsilon\varepsilon}^m(\omega, \theta) = |G_o - G_\theta|^2 \Phi_{uu} |A_\theta|^2 + \frac{\Phi_{vv}}{\left| \frac{1}{A_\theta} \right|^2}$$

- If $\Phi_{uu} \equiv 1$, the limit model is a compromise between fitting $1/|A_\theta|^2$ to the noise spectrum and minimizing

$$\int_{-\pi}^{\pi} |G_o - G_\theta|^2 |A_\theta|^2 d\omega$$

- Note that this problem is a (linear) curve fitting problem, where we minimize the equation error

$$\tilde{E}(\omega, \theta) = E(\omega, \theta)A(\omega, \theta) = (G_o(e^{j\omega}) - G_\theta(e^{j\omega})) A_\theta(e^{j\omega})$$

Approximate Identification

- **OE Model - \mathcal{M}**

$$y[n] = G_\theta(q)u[n] + H_\theta(q)e[n] = \frac{B_\theta(q)}{A_\theta(q)}u[n] + e[n] \quad (150)$$

- The to-be-minimized expression is given by

$$\Phi_{\varepsilon\varepsilon}^m(\omega, \theta) = |G_o - G_\theta|^2 \Phi_{uu} + \Phi_{vv}$$

- If $\Phi_{uu} \equiv 1$, the goal is the minimization of

$$\int_{-\pi}^{\pi} |G_o - G_\theta|^2 d\omega$$

- Note that this problem is a (nonlinear) curve fitting problem, where we minimize the output error

$$E(\omega, \theta) = G_o(e^{j\omega}) - G_\theta(e^{j\omega})$$

Practical Identification

- Given

$$Z^N = \{y[n], u[n]; n \leq N\}$$

- We want:

- A model for the plant
- A model for the noise
- An estimate of the accuracy

- We know how to identify a “model” inside an a-priori given “model structure”
 - We need to choose a model structure
 - Input design
 - Pre-treatment of data
 - Model set selection
 - Model validation

Input Design

- The input must be **sufficiently exciting**
- White Noise: It is persistently exciting of order ∞ . Advantage: It excites all the frequencies. Drawback: It is hard to generate in practice because it has infinity energy. Solution: Filtered white noise

$$u_f[n] = L(q)u[n] \Rightarrow \Phi_{u_f u_f} = |L(e^{j\omega})|^2$$

The white noise $u[n]$ is generated in the computer. The filter $L(q)$ can be a low/band/high-pass filter.

- Pseudo-random Binary Signal (PRBS):

$$x[n] = 1, \quad x[n+1] = \begin{cases} x[n] & \text{with probability } p \\ -x[n] & \text{with probability } 1-p \end{cases}$$

- Sum of Sinusoids: It excites specific frequencies.

Input Design

- We must remember that

$$\hat{\theta}_N = \arg \min_{\theta} \int_{-\pi}^{\pi} \Phi_{\varepsilon\varepsilon}(\omega, \theta) d\omega \quad (151)$$

$$\Phi_{\varepsilon\varepsilon}(\omega, \theta) = \frac{|G_o - G_\theta + B_\theta|^2}{|H_\theta|^2} \Phi_{uu} + \frac{|H_o - H_\theta|^2 \left(\lambda - \frac{|\Phi_{eu}|^2}{\Phi_{uu}} \right)}{|H_\theta|^2} + \lambda$$

where

$$B_\theta(e^{j\omega}) = \frac{H_o(e^{j\omega}) - H_\theta(e^{j\omega})}{\Phi_{uu}(\omega)} \Phi_{ue}(\omega)$$

- Open-loop case: $u[n] \perp e[n] \Rightarrow B_\theta(e^{j\omega}) \equiv 0$.

$$\Phi_{\varepsilon\varepsilon}(\omega, \theta) = \frac{|G_o - G_\theta|^2}{|H_\theta|^2} \Phi_{uu} + \frac{|H_o - H_\theta|^2}{|H_\theta|^2} \lambda + \lambda$$

Φ_{uu} works as a weight function in the fitting process.

Data Pre-treatment

- **Bias Removal:** Given

$$A(q)y[n] = B(q)u[n] + v[n]$$

- If $E\{v[n]\} = 0$, then the relation between the static input \bar{u} and static output \bar{y} is given by

$$A(1)\bar{y} = B(1)\bar{u}$$

- The static component of $y[n]$, \bar{y} , may not be entirely due to \bar{u} , i.e., the noise might be biased ($E\{v[n]\} \neq 0$).
- Method 1: Subtract the means. Define

$$\bar{y} = \frac{1}{N} \sum_{n=1}^N y^m[n]; \quad \bar{u} = \frac{1}{N} \sum_{n=1}^N u^m[n]$$

where $y^m[n]$ and $u^m[n]$ represent the measured data. Generate new data:

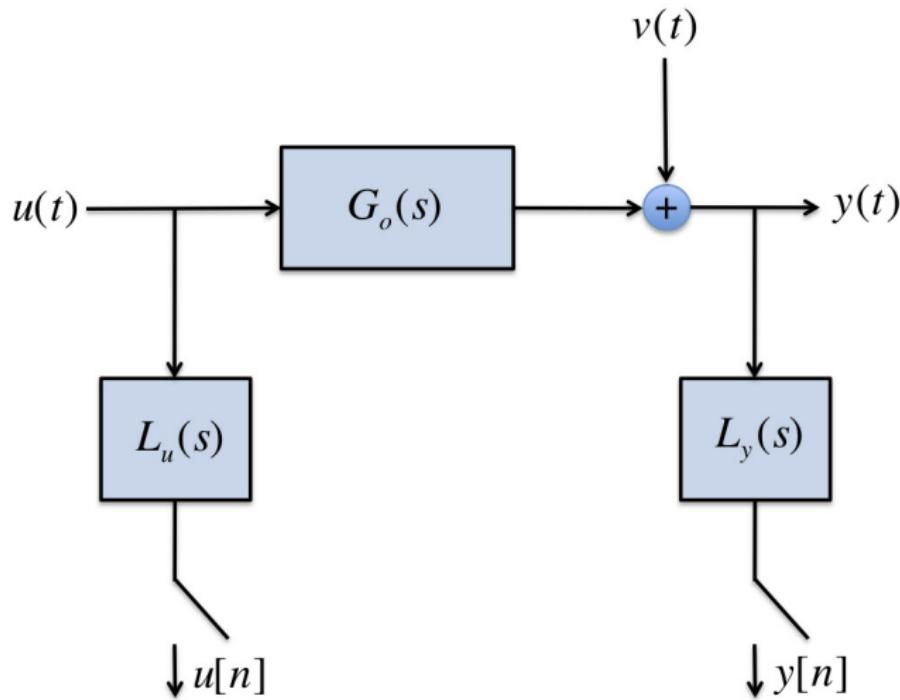
$$y[n] = y^m[n] - \bar{y}; \quad u[n] = u^m[n] - \bar{u}$$

- Method 2: Model the offset by an unknown constant β and estimate it

$$A(q)y[n] = B(q)u[n] + \beta + v[n]$$

Data Pre-treatment

- **Sampling:** Without an anti-aliasing filter, high frequency content is folded to low frequency



Data Pre-treatment

- The sampling interval $T_s = \frac{1}{f_s}$
 - 1- Defines the maximum frequency $f_{max} = \frac{1}{2}f_s = \frac{1}{2}\frac{1}{T_s}$ that we will see in the sampled signal. Do not sample too slowly.
 - 2- Determines the observation time assuming the number of samples N fixed, i.e., $T = NT_s$. Do not sample too fast.
 - 3- Defines pole location: $z = e^{sT_s}$, where s denotes the pole in continuous time. If $T_s \sim 0$, all the poles of the sampled system are driven to 1 (bad conditioned system near to instability). Do not sample too fast.

Data Pre-treatment

- **Outliers:** These data points can be either erroneous or highly-disturbed. They can have a very bad effect on the estimate since the PEM will try to fit them. They must be removed.

Data Pre-treatment

- **High-frequency Content Filtering:** “High” means “above the frequency range of interest.” We filter both input and output with a LTI low-pass (LP) filter $L(q)$, i.e.,

$$y_F[n] = L(q)y[n], \quad u_F[n] = L(q)u[n].$$

- The model can now be written as

$$A(q)y_F[n] = B(q)u_F[n] + v[n]$$

with $v[n] = H(q)e[n]$.

- Equivalently,

$$A(q)y[n] = B(q)u[n] + \frac{1}{L(q)}v[n].$$

- Therefore, we multiply the noise by $1/L(q)$ (high-pass filter \rightarrow low-frequency attenuation).

Data Pre-treatment

- We must remember that

$$\hat{\theta}_N = \arg \min_{\theta} \int_{-\pi}^{\pi} \Phi_{\varepsilon\varepsilon}^m(\omega, \theta) d\omega \quad (152)$$

where now

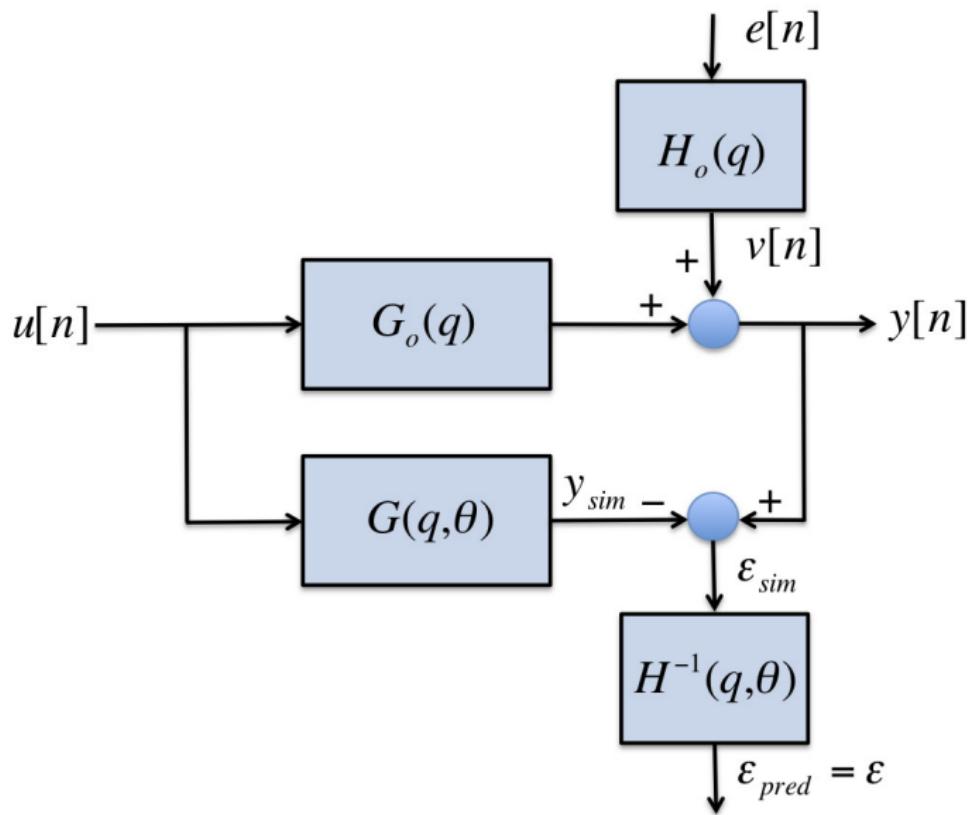
$$\begin{aligned}\Phi_{\varepsilon\varepsilon}^m(\omega, \theta) &= |G_o - G_\theta|^2 \frac{|L|^2 \Phi_{uu}}{|H_\theta|^2} + \frac{|H_o|^2 \lambda}{|H_\theta|^2} \\ &= |G_o - G_\theta|^2 \frac{|L|^2 \Phi_{uu}}{|H_\theta|^2} + \frac{\Phi_{vv}}{|H_\theta|^2}\end{aligned}$$

- Note that if G_θ and H_θ are independently parameterized, the fitting method will use H_θ to fit the noise spectrum Φ_{vv} and G_θ to fit G_o .
- Note that L can be used as a frequency weighting function to emphasize those frequencies where the fitting is more important.

Model Set Selection

- The goal is to fit the data with the least complex model structure and in this way to avoid over-fitting, which amounts to fitting noise.
- **Order Selection:** Use the singular values of the Hankel matrix to determine the order n of the system. Avoid over-fitting the data with n too high.
- **Delay Selection:** Estimate time delay using
 - Correlation Method
 - Parametric Identification using FIR model structure
- **Model Selection:** Lots of trial and error!!!

Model Validation



Model Validation

- The simulated output is computed as

$$y_{sim}[n, \theta] = G(q, \theta)u[n], \quad (153)$$

and the simulation error as

$$\varepsilon_{sim}[n, \theta] = y[n] - y_{sim}[n, \theta] = y[n] - G(q, \theta)u[n]. \quad (154)$$

- The predicted output is computed as

$$\hat{y}[n, \theta] = [I - H^{-1}(q, \theta)]y[n] + H^{-1}(q, \theta)G(q, \theta)u[n], \quad (155)$$

and the prediction error as

$$\varepsilon[n, \theta] = y[n] - \hat{y}[n, \theta] = H^{-1}(q, \theta)\{y[n] - G(q, \theta)u[n]\}. \quad (156)$$

- Note that $\varepsilon[n, \theta] = H^{-1}(q, \theta)\varepsilon_{sim}[n, \theta]$.

Model Validation

- Note that if $G(q, \theta) = G(q)$, then

$$\varepsilon_{sim}[n, \theta] = v[n] \Rightarrow R_{u\varepsilon_{sim}}[\tau] = 0$$

since $u[n]$ and $v[n]$ are uncorrelated by assumption (not true for feedback systems).

- Note that if $G(q, \theta) = G(q)$ and $H(q, \theta) = H(q)$ then

$$\varepsilon[n, \theta] = H^{-1}(q, \theta) \varepsilon_{sim}[n, \theta] = H^{-1}(q, \theta) v[n] = e[n] \Rightarrow R_{\varepsilon\varepsilon}[\tau] = \delta[\tau]$$

since $e[n]$ is white noise by assumption.

- We can always compare the Bode plot of the identified parametric model with the Bode plot obtained using non-parametric methods (ETFE/SPA).

Model Validation

- **Loss Function:** The estimation of θ based on N measurements of both input $u[n]$ and output $y[n]$ is

$$\hat{\theta}_N = \arg \min_{\theta} V_N(\theta) \quad (157)$$

where

$$V_N(\theta) = \frac{1}{N} \sum_{n=1}^N \|\varepsilon[n, \theta]\|_2^2 \quad (158)$$

- Then, for an assumed model structure family we can plot the loss-function

$$V_N(\hat{\theta}) = \frac{1}{N} \sum_{n=1}^N \|\varepsilon[n, \hat{\theta}]\|_2^2 \quad (159)$$

as a function of the number of parameters, i.e., the size of the vector θ .

- Choose the number of parameters that minimize $V_N(\hat{\theta})$.

Model Validation

Akaike's Information Theoretic Criterion (AIC):

$$\log V_N(\theta) + \frac{n}{N} \quad (160)$$

Akaike's Final Prediction Error Criterion (FPE):

$$\frac{1 + n/N}{1 - n/N} V_N(\theta) \quad (161)$$

These criteria penalize the number of parameters n compared with the number of data points N .

NOTE: Use different sets of data for identification and validation.