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Discrete-time LTI Systems

A liner time-invariant model is specified by

Impulse response {g[k]}∞1
Spectrum Φvv = λ|H(eiω)|2 of the additive noise

Probability density function (PDF) of the noise e[n]
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Discrete-time LTI Systems

A complete model is thus given by

y[n] = G(q)u[n] +H(q)e[n] (1)

fe(·) the PDF of e

where

G(q) =

∞∑
k=1

g[k]q−k, (2)

and

H(q) =

∞∑
k=0

h[k]q−k = 1 +

∞∑
k=1

h[k]q−k. (3)
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Discrete-time LTI Systems

In practice, we work with structures that permit the specification of G and H
in terms of a finite number of numerical coefficients.

Quite often it is not possible to determine these coefficients a priori just from
knowledge of the plant.

Instead, the determination is left to estimation procedures. Therefore, these
coefficients enter the model as to-be-identified parameters.

In practice, the PDF of the noise is not specified as a function but described
in terms of a few numerical characteristics. Typically, the first moment
(mean) and second moment (variance).

It is also common to assume that e[n] is Gaussian, in which case the PDF is
entirely specified by these two moments of the distribution.
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Discrete-time LTI Systems

We denote the parameter vector as θ.

This vector ranges over a subset of Rd, where d is the dimension of θ:

θ ∈ DM ⊂ Rd.

The model is then described as

y[n] = G(q, θ)u[n] +H(q, θ)e[n] (4)

fe(x, θ) the PDF of e[n] (white noise)
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One-step Linear Predictor

Given the system
y[n] = G(q)u[n] +H(q)e[n], (5)

where e[n] is white with zero mean and variance E{eT e} = λ2I, we are
interested in defining an estimator ŷ[n, θ] that minimizes

E{(y − ŷ)T (y − ŷ)}

.

We propose
ŷ[n, θ] = Ly(q, θ)y[n] + Lu(q, θ)u[n]. (6)

We first note that

y[n] = G(q)u[n] +H(q)e[n],

⇐⇒ H−1(q)y[n] = H−1(q)G(q)u[n] + e[n]

⇐⇒ y[n] = [I −H−1(q)]y[n] +H−1(q)G(q)u[n] + e[n]
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One-step Linear Predictor

And now we write

y[n]− ŷ[n, θ] = [I −H−1(q)]y[n] +H−1(q)G(q)u[n] + e[n]

−{Ly(q, θ)y[n] + Lu(q, θ)u[n]}
y[n]− ŷ[n, θ] = [I −H−1(q)− Ly(q, θ)]y[n]

+[H−1(q)G(q)− Lu(q, θ)]u[n] + e[n]

y[n]− ŷ[n, θ] = z[n] + e[n]

Then,
E{(y − ŷ)T (y − ŷ)} = E{zT z}+ E{eT e} ≥ λ2I (7)

The lower bound is achieved when z = 0, i.e.,

Ly(q, θ) = I −H−1(q), Lu(q, θ) = H−1(q)G(q). (8)
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One-step Linear Predictor

We therefore define the predictor as

ŷ[n, θ] = [I −H−1(q, θ)]y[n] +H−1(q, θ)G(q, θ)u[n], (9)

and the prediction error as

ε[n, θ] = y[n]− ŷ[n, θ] = H−1(q, θ){y[n]−G(q, θ)u[n]}. (10)

Note that both I −H−1(q, θ) and H−1(q, θ)G(q, θ) have at least a one-step
delay. Past inputs and outputs are used to provide a new predicted output.

Note that if G(q, θ) = G(q) and H(q, θ) = H(q) then

ε[n, θ] = e[n]
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Family of Transfer-Function Models

ARX - Autoregressive with exogeneous input:

y[n] + a1y[n− 1] + a2y[n− 2] + · · ·+ anay[n− na]

= b1u[n− 1] + b2u[n− 2] + · · ·+ bnbu[n− nb] + e[n] (11)

Since the white-noise term e[n] enter as direct error in the difference
equation, this model is often called equation error model.

The to-be-identified parameter θ is define in this case as

θ = [ a1 a2 · · · ana b1 b2 · · · bnb ]T (12)

If we introduce

A(q, θ) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na (13)

B(q, θ) = b1q
−1 + b2q

−2 + · · ·+ anbq
−nb (14)
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Family of Transfer-Function Models

By comparing (11) with (4), we conclude that

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) =

1

A(q, θ)
(15)

Using (9) we write the one-step predictor for this family of models as

ŷ[n, θ] = [I −A(q, θ)]y[n] +B(q, θ)u[n]. (16)

Defining

φ[n] = [ −y[n− 1] · · · −y[n− na] u[n− 1] · · · u[n− nb] ]T

we can write

ŷ[n, θ] = θTφ[n] = φ[n]T θ, ε[n, θ] = y[n]− φ[n]T θ (17)

Remark: This defines a linear regression model where φ[n] is known as the
regression vector. This is very important because powerful and simple
estimation methods can be applied for the determination of θ.
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Family of Transfer-Function Models

ARMAX - Autoregressive moving average with exogeneous input:

y[n] + a1y[n− 1] + a2y[n− 2] + · · ·+ anay[n− na]

= b1u[n− 1] + b2u[n− 2] + · · ·+ bnbu[n− nb]
+e[n] + c1e[n− 1] + · · ·+ cnce[n− nc] (18)

We add flexibility by describing the equation error as a moving average of
white noise e[n]. The to-be-identified parameter θ is define in this case as

θ = [ a1 a2 · · · ana b1 b2 · · · bnb c1 c2 · · · cnc ]T (19)

If we introduce

A(q, θ) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na (20)

B(q, θ) = b1q
−1 + b2q

−2 + · · ·+ anbq
−nb (21)

C(q, θ) = 1 + c1q
−1 + c2q

−2 + · · ·+ cncq
−nc (22)

By comparing (18) with (4), we conclude that

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) =

C(q, θ)

A(q, θ)
(23)
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Family of Transfer-Function Models

Using (9) we write the one-step predictor for this family of models as

ŷ[n, θ] = [I − A(q, θ)

C(q, θ)
]y[n] +

B(q, θ)

C(q, θ)
u[n]

C(q, θ)ŷ[n, θ] = [C(q, θ)−A(q, θ)]y[n] +B(q, θ)u[n]

ŷ[n, θ] = [1−A(q, θ)]y[n] +B(q, θ)u[n]

+[C(q, θ)− 1][y[n]− ŷ[n, θ]] (24)

Defining

φ[n, θ] = [−y[n− 1] · · · − y[n− na] u[n− 1] · · · u[n− nb]
+ε[n− 1, θ] · · · ε[n− nc, θ]]T

we can write

ŷ[n, θ] = θTφ[n, θ] = φ[n, θ]T θ, ε[n, θ] = y[n]− φ[n, θ]T θ (25)

Remark: This defines a pseudo-linear regression model where φ[n, θ] is
known as the regression vector. Note that this is indeed a nonlinear
regression because of the dependence of φ on θ.
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Family of Transfer-Function Models

OE - Output error:

w[n] + f1w[n− 1] + f2w[n− 2] + · · ·+ fnfw[n− nf ]

= b1u[n− 1] + b2u[n− 2] + · · ·+ bnbu[n− nb]
y[n] = w[n] + e[n] (26)

Input and noise transfer functions are parametrized independently. The
to-be-identified parameter θ is define in this case as

θ = [ b1 b2 · · · bnb f1 f2 · · · fnf ]T (27)

If we introduce

B(q, θ) = b1q
−1 + b2q

−2 + · · ·+ anbq
−nb (28)

F (q, θ) = 1 + f1q
−1 + f2q

−2 + · · ·+ fnf q
−nf (29)

By comparing (26) with (4), we conclude that

G(q, θ) =
B(q, θ)

F (q, θ)
, H(q, θ) = 1 (30)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 13 / 78



Family of Transfer-Function Models

Using (9) we write the one-step predictor for this family of models as

ŷ[n, θ] =
B(q, θ)

F (q, θ)
u[n] = w[n, θ]

Defining

φ[n, θ] = [u[n− 1] · · · u[n− nb] − w[n− 1, θ] · · · − w[n− nf , θ]]T

we can write

ŷ[n, θ] = θTφ[n, θ] = φ[n, θ]T θ, ε[n, θ] = y[n]− φ[n, θ]T θ (31)

Remark: This also defines a pseudo-linear regression model where φ[n, θ] is
known as the regression vector. Note that φ depends on θ once again.
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Family of Transfer-Function Models

BJ - Box-Jenkins:

w[n] + f1w[n− 1] + f2w[n− 2] + · · ·+ fnfw[n− nf ]

= b1u[n− 1] + b2u[n− 2] + · · ·+ bnbu[n− nb]
v[n] + d1v[n− 1] + d2v[n− 2] + · · ·+ dndv[n− nd]

= e[n] + c1c[n− 1] + c2e[n− 2] + · · ·+ cnce[n− nc]
y[n] = w[n] + v[n] (32)

Input and noise transfer functions are parametrized independently.

If we introduce

F (q, θ) = 1 + f1q
−1 + f2q

−2 + · · ·+ fnf q
−nf (33)

B(q, θ) = b1q
−1 + b2q

−2 + · · ·+ bnbq
−nb (34)

C(q, θ) = 1 + c1q
−1 + c2q

−2 + · · ·+ cncq
−nc (35)

D(q, θ) = 1 + d1q
−1 + d2q

−2 + · · ·+ dndq
−nd (36)
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Family of Transfer-Function Models

By comparing (32) with (4), we conclude that

G(q, θ) =
B(q, θ)

F (q, θ)
, H(q, θ) =

C(q, θ)

D(q, θ)
(37)

Using (9) we write the one-step predictor for this family of models as

ŷ[n, θ] = [I − D(q, θ)

C(q, θ)
]y[n] +

B(q, θ)

F (q, θ)

D(q, θ)

C(q, θ)
u[n] (38)

Remark: This model can also be written as a pseudo-linear regression.
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Family of Transfer-Function Models

A(q, θ)y[n] =
B(q, θ)

F (q, θ)
u[n] +

C(q, θ)

D(q, θ)
e[n] (39)

Polynomials Used Name of Model Structure

B FIR
AB ARX
ABC ARMAX
AC ARMA
ABD ARARX
ABCD ARARMAX
BF OE
BFCD BJ

Note: See derivation of pseudo-linear regression form of (39) in the book.
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Family of Transfer-Function Models

State-Space:

x[n+ 1] = A(θ)x[n] +B(θ)u[n] + w[n]
y[n] = C(θ)x[n] + v[n]

(40)

The transfer function of system (40) is given by

G(z, θ) = C(θ)(zI −A(θ))−1B(θ) +D(θ) (41)

The one-step predictor is given by the Kalman Predictor

x̂[n+ 1, θ] = (A(θ)−M [n, θ]C(θ)) x̂[n, θ] +B(θ)u[n] +M [n, θ]y[n]

M [n, θ] = A(θ)Σ[n, θ]C(θ)
(
C(θ)Σ[n, θ]C(θ)T +R

)−1

Σ[n+ 1, θ] = Q+A(θ)Σ[n, θ]A(θ)T

−A(θ)Σ[n, θ]C(θ)T
(
C(θ)Σ[n, θ]C(θ)T +R

)−1
C(θ)Σ[n, θ]A(θ)T
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Family of Transfer-Function Models

Assumptions:
− x[0] is Gaussian with mean x̄0 and covariance P0.
− w[n] is Gaussian, zero-mean, white stochastic process, i.e.,

E{w[n]wT [m]} = Qδ[n−m], independent of x0 and v[n].
− v[n] is Gaussian, zero-mean, white stochastic process, i.e.,

E{v[n]vT [m]} = Rδ[n−m], independent of x0 and w[n].

The covariance

Σ[n, θ] = E{(x[n]− x̂[n, θ])(x[n]− x̂[n, θ])T }

satisfies a Riccati Difference Equation (RDE).

The Kalman Predictor is an observer!!!

x̂[n+ 1, θ] = A(θ)x̂[n, θ] +B(θ)u[n] +M [n, θ]e[n, θ]

e[n, θ] = y[n]− C(θ)x̂[n, θ]

E{e[n, θ]e[n, θ]T } = C(θ)Σ[n, θ]CT (θ) +R

We can predict the output as

ŷ[n, θ] = C(θ)x̂[n, θ]
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Prediction Error Method

The estimation of θ based on N measurements of both input u[n] and output
y[n] is computed as

θ̂N = arg minVN (θ) (42)

where

VN (θ) =
1

N

N∑
n=1

‖ε[n, θ]‖22 (43)

In the case of a linear regression model

ŷ[n, θ] = θTφ[n] = φ[n]T θ, ε[n, θ] = y[n]− φ[n]T θ. (44)

When we consider a SISO system (φ : d× 1 and θ : d× 1), we can write

VN (θ) =
1

N

N∑
n=1

[y[n]− φ[n]T θ]2 (45)
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Least Square Estimate

This quadratic function can be minimized analytically.

We find that [
1

N

N∑
n=1

φ[n]φT [n]

]
θ̂N =

1

N

N∑
n=1

φ[n]y[n] (46)

This set of linear equations is known as the normal equations.

If the matrix of the left is invertible, we have the Least Square Estimate (LSE)

θ̂N =

[
1

N

N∑
n=1

φ[n]φT [n]

]−1

1

N

N∑
n=1

φ[n]y[n] (47)
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Least Square Estimate

Sometimes the estimate (47) can be written more conveniently in matrix
form.

We define the N × 1 vector and N × d matrix

YN =

 y[1]
...

y[N ]

 , ΦN =

 φT [1]
...

φT [N ]

 (48)

respectively.

We can write

VN (θ) =
1

N
|YN − ΦNθ|2 =

1

N
(YN − ΦNθ)

T (YN − ΦNθ) (49)

The normal equations take the form

[ΦTNΦN ]θ̂N = ΦTNYN (50)
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Least Square Estimate

And the estimate can be written as

θ̂N = [ΦTNΦN ]−1ΦTNYN (51)

where [ΦTNΦN ]−1ΦTN is the Moore-Penrose pseudoinverse of ΦN .

Therefore, the estimate (51) is the solution to the overdetermined (N > d
system of linear equations

YN = ΦNθ (52)

Let us write
ΦN = [φ̄1 . . . φ̄d] (53)

where φ̄i : N × 1 for i = 1, . . . , d.

The problem in (52) is to find a linear combination of the vectors φ̄i : N × 1
for i = 1, . . . , d that approximates YN as well as possible.
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Least Square Estimate

If YN belongs to the subspace generated by the columns of ΦN , we can
describe it as a unique linear combination of φ̄i : N × 1 for i = 1, . . . , d.

Otherwise, the best approximation is the vector in the subspace generated by
the columns of ΦN that has the smallest distance to YN , which is well know
to be the orthogonal projection of YN on this subspace.
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Least Square Estimate

Let the projection be denoted as ŶN . Since it is the orthogonal projection, we
have

(YN − ŶN ) ⊥ φ̄i (54)

That is,
(YN − ŶN )T φ̄i = 0, i = 1, . . . , n (55)

We can write

ŶN =

d∑
j=1

θ̂j φ̄j (56)

This gives

Y TN φ̄i =

d∑
j=1

θ̂j φ̄
T
j φ̄i, i = 1, . . . , n (57)

which are the normal equations (50).
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Realization Algorithm

Let us assume that we have identified the impulse response coefficients using
a nonparametric method:

g[k] k = 0, . . . , 2N (58)

How can we use this data to obtain a parametric state-space realization?

x[k + 1] = Ax[k] +Bu[k]
y[k] = Cx[k] +Du[k]

(59)

The transfer function of system (59) is given by

G(z) = C(zI −A)−1B +D (60)

We recall that

G(z) =

∞∑
k=0

g[k]z−k (61)
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Realization Algorithm

Using the formal geometric series expansion we can write

(zI −A)−1 =
1

z

(
I − A

z

)−1

=
1

z

[
I +

A

z
+
A2

z2
+ · · ·

]
(62)

Therefore

G(z) = C(zI −A)−1B +D = C
1

z

[
I +

A

z
+
A2

z2
+ · · ·

]
B +D (63)

Comparing (61) and (63) we can conclude that the impulse response
coefficients g[k] are given by the Markov parameters

g[k] =

{
D k = 0

CAk−1B k ≥ 1
(64)
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Realization Algorithm

We define the Hankel matrix as

M [i, j] =


g[i] g[i+ 1] · · · g[i+ j]

g[i+ 1] g[i+ 2] · · · g[i+ j + 1]
...

...
...

g[i+ j] g[i+ j + 1] · · · g[i+ 2j]

 (65)

We define
H = M [1, N − 1] H̄ = M [2, N − 1] (66)

and taking into account (64) we note that

H = H1H2 H̄ = H1AH2 (67)

where

H1 =


C
CA

...
CAN−1

 = Ō, H2 = [B AB · · · AN−1B] = C̄ (68)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 28 / 78



Realization Algorithm

We then can note that

D = g[0], C = H1(1, :), B = H2(:, 1), A = H+
1 H̄H

+
2 (69)

where

H+
1 = (HT

1 H1)−1HT
1 ⇒ H+

1 H1 = I (70)

H+
2 = HT

2 (H2H
T
2 )−1 ⇒ H2H

+
2 = I (71)
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Realization Algorithm

How do we compute H1 and H2?

We compute the Singular Value Decomposition (SVD) of H, i.e.,

H = H1H2 = UΣV ∗ = UΣ1/2Σ1/2V ∗ (72)

where U and V are unitary matrices.

We compute

H1 = UΣ1/2 ⇒ H∗1H1 = Σ1/2U∗UΣ1/2 = Σ (73)

H2 = Σ1/2V ∗ ⇒ H2H
∗
2 = Σ1/2V ∗V Σ1/2 = Σ (74)

and also note that

H1 = Ō ⇒ H∗1H1 =

N−1∑
k=0

(AT )kCTCAk (75)

H2 = C̄ ⇒ H2H
∗
2 =

N−1∑
k=0

(A)kBBT (AT )k (76)
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Realization Algorithm

If A is stable,
H∗1H1 → Q H2H

∗
2 → P (77)

when N →∞, where P and Q denote the observability and controllability
gramians that satisfy

ATQA+ CTC = Q (78)

APAT +BBT = P (79)

We can finally note that

P = Q = Σ⇒ BALANCED REALIZATION (80)

Can we obtain a BALANCED TRUNCATION?
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Realization Algorithm

Note that

Σ =


σ1

σ2

. . .

σN

 (81)

where σi, for i = 1, . . . , N , are called Hankel singular values and where

H = UΣV ∗ = [Un Us]

[
Σn 0
0 Σs

] [
V ∗n
V ∗s

]
(82)

It is usually the case that

σ1 > σ2 > · · · > σn >> σn+1 > · · ·σN
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Realization Algorithm

In this case we can adopt n as the order of the system and approximate[
Σn 0
0 Σs

]
≈
[

Σn 0
0 0

]
(83)

and we can write
H ≈ Hn = UnΣnV

∗
n (84)

and
H̃1 = UnΣ1/2

n , H̃2 = Σ1/2
n V ∗n (85)

to finally conclude that

D = g[0], C = H̃1(1, :), B = H̃2(:, 1), A = H̃+
1 H̄H̃

+
2 (86)
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Curve Fitting

Let us assume that we have identified the frequency response of a system
using a nonparametric method:

G(ejωk) ωk =
2πk

N
, k = 0, . . . , N − 1 (87)

How can we use this data to obtain a parametric transfer function?

Ĝ(q, θ) =
B(q, θ)

A(q, θ)
(88)

where

A(q, θ) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na (89)

B(q, θ) = b0 + b1q
−1 + b2q

−2 + · · ·+ anbq
−nb (90)
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Curve Fitting

We define
EN (ωk, θ) =

[
G(ejωk)− Ĝ(ejωk , θ)

]
W (ejωk) (91)

where W (ejωk) is a frequency weighting function.

We also define the cost function

J(θ) =

N−1∑
k=0

EN (ωk, θ)E
∗
N (ωk, θ) =

∥∥ĒN (ω, θ)
∥∥2

2
(92)

with ĒN (ω, θ) = [EN (ω0, θ)EN (ω1, θ) . . . EN (ωN−1, θ)].

We seek
θ = arg min

θ∈R
J(θ) (93)
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Curve Fitting

Output Error:

E(ωk, θ) = G(ejωk)− B(ejωk , θ)

A(ejωk , θ)
(94)

This defines a nonlinear problem.

Equation Error:

Ẽ(ωk, θ) = E(ωk, θ)A(ejωk , θ)

= G(ejωk)A(ejωk , θ)−B(ejωk , θ) (95)

This defines a linear problem.

Note that Ẽ(ωk, θ) is a weighted function of E(ωk, θ).
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Curve Fitting

We can write

Ẽ(ωk, θ) = E(ωk, θ)W (ejωk) = EN (ωk, θ) (96)

with
W (ejωk) = A(ejωk , θ). (97)

Recalling

A(ejωk , θ) = 1 + a1

(
ejωk

)−1
+ a2

(
ejωk

)−2
+ · · ·+ ana

(
ejωk

)−na
B(ejωk , θ) = b0 + b1

(
ejωk

)−1
+ b2

(
ejωk

)−2
+ · · ·+ anb

(
ejωk

)−nb
we can write

Ẽ(ωk, θ) = G(ejωk)− θφ(ejωk) (98)

where
θ = [ a1 a2 · · · ana b0 b1 b2 · · · bnb ] (99)

and

φ(ejωk) =
[
−G(ejωk)

(
ejωk

)−1 −G(ejωk)
(
ejωk

)−2 · · · −G(ejωk)
(
ejωk

)−na
1
(
ejωk

)−1 (
ejωk

)−2 · · ·
(
ejωk

)−nb]T
(100)
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Curve Fitting

We can write the to-be-minimized error as

Ē(ω, θ) = Ḡ(ω)− θφ̄(ω) (101)

where

Ē(ω, θ) = [Ẽ(ω0, θ) Ẽ(ω1, θ) . . . Ẽ(ωN−1, θ)] (102)

Ḡ(ω) = [G(ω0) G(ω1) . . . G(ωN−1)] (103)

φ̄(ω) = [φ(ω0) φ(ω1) . . . φ(ωN−1)] (104)

And the cost function as

J̃(θ) =

N−1∑
k=0

Ẽ(ωk, θ)Ẽ
∗(ωk, θ) =

∥∥Ē(ω, θ)
∥∥2

2
(105)

The minimizing solution is obtained as

minθ Ē(ω, θ)Ē(ω, θ)∗

Ē(ω, θ) = Ḡ(ω)− θφ̄(ω)

}
⇒ Ēφ̄∗ = Ḡφ̄∗ − θφ̄φ̄∗ (106)

which results in
θ = Ḡφ̄∗

[
φ̄φ̄∗

]−1
(107)
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Prediction vs Simulation
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Prediction vs Simulation

The simulated output is computed as

ysim[n, θ] = G(q, θ)u[n], (108)

and the simulation error as

εsim[n, θ] = y[n]− ysim[n, θ] = y[n]−G(q, θ)u[n]. (109)

The predicted output is computed as

ŷ[n, θ] = [I −H−1(q, θ)]y[n] +H−1(q, θ)G(q, θ)u[n], (110)

and the prediction error as

ε[n, θ] = y[n]− ŷ[n, θ] = H−1(q, θ){y[n]−G(q, θ)u[n]}. (111)

Note that ε[n, θ] = H−1(q, θ)εsim[n, θ].
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Prediction vs Simulation

Note that if G(q, θ) = G(q), then

εsim[n, θ] = v[n]⇒ Ruεsim [τ ] = 0

since u[n] and v[n] are uncorrelated by assumption (not true for feedback
systems).

Note that if G(q, θ) = G(q) and H(q, θ) = H(q) then

ε[n, θ]=H−1(q, θ)εsim[n, θ]=H−1(q, θ)v[n]=e[n]⇒ Rεε[τ ]=δ[τ ]

since e[n] is white noise by assumption.
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Consistency and Convergence

The estimation of θ based on N measurements of both input u[n] and output
y[n] is computed as

θ̂N = arg minVN (θ) (112)

where

VN (θ) =
1

N

N∑
n=1

‖ε[n, θ]‖22 =
1

N

N∑
n=1

ε[n, θ]εT [n, θ] (113)

and

ε[n, θ] = y[n]− ŷ[n, θ] = H−1(q, θ){y[n]−G(q, θ)u[n]}
= H−1(q, θ)εsim[n, θ]. (114)

Consistency of Estimate: Is θ̂N → θo when N →∞?
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Consistency and Convergence

System - S:

y[n] = G(q, θo)u[n] +H(q, θo)e[n]

=
B(q, θo)

A(q, θo)
u[n] +

1

A(q, θo)
e[n] (115)

Model - M

y[n] = G(q, θ)u[n] +H(q, θ)e[n]

=
B(q, θ)

A(q, θ)
u[n] +

1

A(q, θ)
e[n] (116)

We assume that S ∈ M. The model M has an ARX structure.
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Consistency and Convergence

We write the system S in linear regression form

y[n] = φT [n]θo + e[n] (117)

where

φ[n] = [ −y[n− 1] · · · −y[n− na] u[n] · · · u[n− nb] ]T

and
θo = [ a1 a2 · · · ana b0 b1 · · · bnb ]T

The prediction error can be written as

ε[n, θ] = y[n]− φT [n]θ = H−1(q, θ){y[n]−G(q, θ)u[n]} (118)

= A(q, θ)y[n]−B(q, θ)u[n].
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Consistency and Convergence

Where we have written

ŷ[n, θ] = [I −H−1(q, θ)]y[n] +H−1(q, θ)G(q, θ)u[n] (119)

= [I −A(q, θ)]y[n] +B(q, θ)u[n]

= φT [n]θ

By defining

YN =

 y[1]
...

y[N ]

 , ΦN =

 φT [1]
...

φT [N ]

 , εN =

 ε[1]
...

ε[N ]

 (120)

we can write
εN = YN − ΦNθ (121)
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Consistency and Convergence

The to-be-minimized cost function can be written as

VN (θ) =
1

N

N∑
n=1

ε[n, θ]εT [n, θ] =
1

N
εNε

T
N (122)

εN is minimized when εN ⊥ ŶN = ΦNθ.
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Consistency and Convergence

Then,
0 = ΦTNεN = ΦTNYN − ΦTNΦNθ (123)

and the estimate can be written as

θ̂N = [ΦTNΦN ]−1ΦTNYN = R(N)−1f(N) (124)

where

R(N) =
1

N

N∑
n=1

φ[n]φT [n] f(N) =
1

N

N∑
n=1

φ[n]y[n] (125)
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Consistency and Convergence

Since
y[n] = φT [n]θo + e[n] (126)

we can write

θ̂N = R(N)−1

[
1

N

N∑
n=1

φ[n]
(
φT [n]θo + e[n]

)]
(127)

= R(N)−1

[
1

N

N∑
n=1

φ[n]φT [n]θo +
1

N

N∑
n=1

φ[n]e[n]

]

= θo +R(N)−1 1

N

N∑
n=1

φ[n]e[n]

Then,

θ̂N → θo ⇐⇒ R(N)−1 1

N

N∑
n=1

φ[n]e[n] = 0 (128)
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Consistency and Convergence

We can conclude that

1

N

N∑
n=1

φ[n]e[n] =



−R̂Nye[−1]

−R̂Nye[−2]
...

−R̂Nye[−na]

R̂Nue[0]

R̂Nue[1]
...

R̂Nue[nb]


(129)

is zero if e[n] and u[n] are uncorrelated.
We can note that

R(N) =
1

N

N∑
n=1

φ[n]φT [n] =

[
Ryy Ryu
Ruy Ruu

]
(130)

is non-singular if persistent excitation for u[n] is guaranteed. Ryy is always
non-singular due to e[n]. We need u[n] sufficiently exciting for Ruu to be
non-singular.
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Consistency and Convergence

This result can be generalized to any kind of model structure

θ̂N → θo ⇐⇒

 1) S ∈ M
2) input uncorrelated with noise
3) persistent excitation of the input

(131)

When the parameters of G(q, θ) and H(q, θ) are independent (FIR, OE, BJ)
we can replace

1) G ∈ M

In closed-loop systems (u[n] becomes correlated with e[n]), we can replace

2) reference uncorrelated with noise→ IV Method
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Consistency and Convergence

We can also conclude that

(θ̂N − θo) ∼ N (0, λ) (132)

with

λ = cov(θ̂N ) =
σ2
e

N
R(N)−1 (133)

Provided 1), 2) and 3) hold:

− θ̂N is an unbiased estimate
− cov(θ̂N )→ 0 when N →∞
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Instrumental Variables

There is no assumption about the structure of the model.

y[n] = G(q, θ)u[n] +H(q, θ)e[n]

=
B(q, θ)

A(q, θ)
u[n] +

C(q, θ)

D(q, θ)
e[n] (134)

By multiplying both sides of the equation by A(q, θ) we write

A(q, θ)y[n] = B(q, θ)u[n] +
A(q, θ)C(q, θ)

D(q, θ)
e[n]

A(q, θ)y[n] = B(q, θ)u[n] + v[n]

and finally
y[n] = φT [n]θ + v[n] (135)

where

φ[n] = [ −y[n− 1] · · · −y[n− na] u[n] · · · u[n− nb] ]T

and
θ = [ a1 a2 · · · ana b0 b1 · · · bnb ]T
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Instrumental Variables

The Instrumental Variable method connects parametric and correlation
methods.

We correlate y[n] = φT [n]θ + v[n] with an instrumental variable ξ[n] of
dimension na + nb + 1 that is uncorrelated from the noise v[n], i.e.,

1

N

N∑
n=1

ξ[n]y[n] =
1

N

N∑
n=1

ξ[n]φT [n]θ +
1

N

N∑
n=1

ξ[n]v[n] (136)

=
1

N

N∑
n=1

ξ[n]φT [n]θ

The estimate can be written as

θ̂IVN = R(N)−1f(N) (137)

where

R(N) =
1

N

N∑
n=1

ξ[n]φT [n] f(N) =
1

N

N∑
n=1

ξ[n]y[n] (138)
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Instrumental Variables

Since
y[n] = φT [n]θo + v[n] (139)

we can write

θ̂IVN = R(N)−1

[
1

N

N∑
n=1

ξ[n]
(
φT [n]θo + v[n]

)]
(140)

= R(N)−1

[
1

N

N∑
n=1

ξ[n]φT [n]θo +
1

N

N∑
n=1

ξ[n]v[n]

]

= θo +R(N)−1 1

N

N∑
n=1

ξ[n]v[n]

Then,

θ̂IVN → θo ⇐⇒ R(N)−1 1

N

N∑
n=1

ξ[n]v[n] = 0 (141)
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Instrumental Variables

We need

− R̂ξv[τ ] = 0 ⇒ ξ[n], v[n] uncorrelated
− R(N) no singular ⇒ ξ[n], φ[n] correlated enough

In summary,

θ̂IVN → θo ⇐⇒

 1) G ∈ M
2) ξ[n] uncorrelated with noise v[n]
3) ξ[n] correlated enough with φ[n]

(142)

In open loop, the i.v. is constructed from input u[n]

ξ[n] = [ u[n− nb − 1] · · · u[n− nb − na] u[n] · · · u[n− nb] ]T

In closed loop, the i.v. is constructed from reference r[n]

ξ[n] = [ r[n] r[n− 1] · · · r[n− na − nb − 1] ]T
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Instrumental Variables

Alternatively,

− Estimate U
R

= 1
1+GoK

= S(θ). Note that we can also estimate
Y
R

= 1
1+GoK

= T (θ). Knowing K(q) we can obtain an estimate for Go(q)
either from S(θ) or T (θ).

− Filter the noise by computing û[n] = S(q, θ) ∗ r[n]. Therefore, û[n] is
uncorrelated with v[n] ⇒ ξ[n] = û[n].
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Approximate Identification

Let us assume now the case where S /∈M:

− G ∈M, H /∈M: Still consistent estimation of Go

+ IV Method

+ LS Method for FIR, OE, BJ
(G and H independently parameterized)

− G /∈M, H ∈M: What can we expect?

− G /∈M, H /∈M: What can we expect?

System - S:

y[n] = G(q, θo)u[n] +H(q, θo)e[n] , Go(q)u[n] +Ho(q)e[n] (143)

Model - M

y[n] = G(q, θ)u[n] +H(q, θ)e[n] , Gθ(q)u[n] +Hθ(q)e[n] (144)
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Approximate Identification

The prediction error is given by

ε[n, θ] = H−1
θ (q){y[n]−Gθ(q)u[n]}

= H−1
θ (q){Go(q)u[n] +Ho(q)e[n]−Gθ(q)u[n]}

= H−1
θ (q){(Go(q)−Gθ(q))u[n] + (Ho(q)−Hθ(q))e[n]}+ e[n]

which can be written as

εθ[n] = H−1
θ (q)

[
(Go(q)−Gθ(q)) (Ho(q)−Hθ(q))

] [ u[n]
e[n]

]
+ e[n]

where we have defined ε[n, θ] , εθ[n].

Assumptions:

− There is a delay both in the system and in the model (Go and Gθ both
contain a delay) or in the controller. That is, u[n] depends only on y[n− 1]
and earlier values in the case of feedback control.

− Ho and Hθ are monic. That is, (Ho −Hθ)e[n] is independent of e[n].
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Approximate Identification

Therefore, e[n] will be uncorrelated with the first term of εθ[n]!

Φεε(ω, θ) =
1

|Hθ|2
[(Go −Gθ) (Ho −Hθ)]

[
Φuu Φue
Φeu λ

][
Ḡo − Ḡθ
H̄o − H̄θ

]
+ λ

where[
Φuu Φue
Φeu λ

]
=

[
I 0
Φeu
Φuu

I

][
Φuu 0

0 λ− |Φeu|
2

Φuu

] [
I Φeu

Φuu
0 I

]
Let us introduce

Bθ(e
jω) =

Ho(e
jω)−Hθ(e

jω)

Φuu(ω)
Φue(ω)

Then, we can write

Φεε(ω, θ)=
|Go −Gθ +Bθ|2

|Hθ|2
Φuu +

|Ho −Hθ|2
(
λ− |Φeu|

2

Φuu

)
|Hθ|2

+ λ
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Approximate Identification

The estimation of θ based on N measurements of both input u[n] and output
y[n] is computed as

θ̂N = arg min
θ
VN (θ) (145)

where

VN (θ) =
1

N

N∑
n=1

ε2[n, θ] = σ̂ε(θ) (146)

By Parseval’s theorem

σε =
1

2π

∫ π

−π
Φεε(ω)dω (147)

Then,

θ̂N = arg min
θ

∫ π

−π
Φεε(ω, θ)dω (148)
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Approximate Identification

Open-loop case: u[n] ⊥ e[n]⇒ Bθ(e
jω) ≡ 0.

Φεε(ω, θ) =
|Go −Gθ|2

|Hθ|2
Φuu +

|Ho −Hθ|2

|Hθ|2
λ+ λ

=
|Go −Gθ|2

|Hθ|2
Φuu +

(∣∣∣∣Ho

Hθ
− 1

∣∣∣∣2 + 1

)
λ

But as min
∫ π
−π |R|

2dω = min
∫ π
−π(|R− 1|2 + 1)dω, we can write the

expression to minimize as

Φmεε(ω, θ) = |Go −Gθ|2
Φuu
|Hθ|2

+
|Ho|2λ
|Hθ|2

= |Go −Gθ|2
Φuu
|Hθ|2

+
Φvv
|Hθ|2
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Approximate Identification

ARX Model - M

y[n] = Gθ(q)u[n] +Hθ(q)e[n] =
Bθ(q)

Aθ(q)
u[n] +

1

Aθ(q)
e[n] (149)

The to-be-minimized expression is given by

Φmεε(ω, θ) = |Go −Gθ|2Φuu|Aθ|2 +
Φvv∣∣∣ 1
Aθ

∣∣∣2
If Φuu ≡ 1, the limit model is a compromise between fitting 1/|Aθ|2 to the
noise spectrum and minimizing∫ π

−π
|Go −Gθ|2|Aθ|2dω

Note that this problem is a (linear) curve fitting problem, where we minimize
the equation error

Ẽ(ω, θ) = E(ω, θ)A(ω, θ) =
(
Go(e

jω)−Gθ(ejω)
)
Aθ(e

jω)
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Approximate Identification

OE Model - M

y[n] = Gθ(q)u[n] +Hθ(q)e[n] =
Bθ(q)

Aθ(q)
u[n] + e[n] (150)

The to-be-minimized expression is given by

Φmεε(ω, θ) = |Go −Gθ|2Φuu + Φvv

If Φuu ≡ 1, the goal is the minimization of∫ π

−π
|Go −Gθ|2dω

Note that this problem is a (nonlinear) curve fitting problem, where we
minimize the output error

E(ω, θ) = Go(e
jω)−Gθ(ejω)
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Practical Identification

Given
ZN = {y[n], u[n];n ≤ N}

We want:

− A model for the plant

− A model for the noise

− An estimate of the accuracy

We know how to identify a “model” inside an a-priori given “model structure”

− We need to choose a model structure

− Input design

− Pre-treatment of data

− Model set selection

− Model validation
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Input Design

The input must be sufficiently exciting

White Noise: It is persistently exciting of order ∞. Advantage: It excites all
the frequencies. Drawback: It is hard to generate in practice because it has
infinity energy. Solution: Filtered white noise

uf [n] = L(q)u[n]⇒ Φufuf = |L(ejω)|2

The white noise u[n] is generated in the computer. The filter L(q) can be a
low/band/high-pass filter.

Pseudo-random Binary Signal (PRBS):

x[n] = 1, x[n+ 1] =

{
x[n] with probability p
−x[n] with probability 1− p

Sum of Sinusoids: It excites specific frequencies.
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Input Design

We must remember that

θ̂N = arg min
θ

∫ π

−π
Φεε(ω, θ)dω (151)

Φεε(ω, θ)=
|Go −Gθ +Bθ|2

|Hθ|2
Φuu +

|Ho −Hθ|2
(
λ− |Φeu|

2

Φuu

)
|Hθ|2

+ λ

where

Bθ(e
jω) =

Ho(e
jω)−Hθ(e

jω)

Φuu(ω)
Φue(ω)

Open-loop case: u[n] ⊥ e[n]⇒ Bθ(e
jω) ≡ 0.

Φεε(ω, θ) =
|Go −Gθ|2

|Hθ|2
Φuu +

|Ho −Hθ|2

|Hθ|2
λ+ λ

Φuu works as a weight function in the fitting process.
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Data Pre-treatment

Bias Removal: Given

A(q)y[n] = B(q)u[n] + v[n]

If E{v[n]} = 0, then the relation between the static input ū and static
output ȳ is given by

A(1)ȳ = B(1)ū

The static component of y[n], ȳ, may not be entirely due to ū, i.e., the noise
might be biased (E{v[n]} 6= 0).

Method 1: Subtract the means. Define

ȳ =
1

N

N∑
n=1

ym[n]; ū =
1

N

N∑
n=1

um[n]

where ym[n] and um[n] represent the measured data. Generate new data:

y[n] = ym[n]− ȳ; u[n] = um[n]− ū

Method 2: Model the offset by an unknown constant β and estimate it

A(q)y[n] = B(q)u[n] + β + v[n]
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Data Pre-treatment

Sampling: Without an anti-aliasing filter, high frequency content is folded to
low frequency
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Data Pre-treatment

The sampling interval Ts = 1
fs

1- Defines the maximum frequency fmax = 1
2
fs = 1

2
1
Ts

that we will see in the
sampled signal. Do not sample too slowly.

2- Determines the observation time assuming the number of samples N fixed,
i.e., T = NTs. Do not sample too fast.

3- Defines pole location: z = esTs , where s denotes the pole in continuous time.
If Ts ∼ 0, all the poles of the sampled system are driven to 1 (bad conditioned
system near to instability). Do not sample too fast.
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Data Pre-treatment

Outliers: These data points can be either erroneous or highly-disturbed.
They can have a very bad effect on the estimate since the PEM will try to fit
them. They must be removed.
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Data Pre-treatment

High-frequency Content Filtering: “High” means “above the frequency
range of interest.” We filter both input and output with a LTI low-pass (LP)
filter L(q), i.e.,

yF [n] = L(q)y[n], uF [n] = L(q)u[n].

The model can now be written as

A(q)yF [n] = B(q)uF [n] + v[n]

with v[n] = H(q)e[n].

Equivalently,

A(q)y[n] = B(q)u[n] +
1

L(q)
v[n].

Therefore, we multiply the noise by 1/L(q) (high-pass filter → low-frequency
attenuation).
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Data Pre-treatment

We must remember that

θ̂N = arg min
θ

∫ π

−π
Φmεε(ω, θ)dω (152)

where now

Φmεε(ω, θ) = |Go −Gθ|2
|L|2Φuu
|Hθ|2

+
|Ho|2λ
|Hθ|2

= |Go −Gθ|2
|L|2Φuu
|Hθ|2

+
Φvv
|Hθ|2

Note that if Gθ and Hθ are independently parameterized, the fitting method
will use Hθ to fit the noise spectrum Φvv and Gθ to fit Go.

Note that L can be used as a frequency weighting function to emphasize
those frequencies where the fitting is more important.

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 72 / 78



Model Set Selection

The goal is to fit the data with the least complex model structure and in this
way to avoid over-fitting, which amounts to fitting noise.

Order Selection: Use the singular values of the Hankel matrix to determine
the order n of the system. Avoid over-fitting the data with n too high.

Delay Selection: Estimate time delay using

− Correlation Method

− Parametric Identification using FIR model structure

Model Selection: Lots of trial and error!!!
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Model Validation
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Model Validation

The simulated output is computed as

ysim[n, θ] = G(q, θ)u[n], (153)

and the simulation error as

εsim[n, θ] = y[n]− ysim[n, θ] = y[n]−G(q, θ)u[n]. (154)

The predicted output is computed as

ŷ[n, θ] = [I −H−1(q, θ)]y[n] +H−1(q, θ)G(q, θ)u[n], (155)

and the prediction error as

ε[n, θ] = y[n]− ŷ[n, θ] = H−1(q, θ){y[n]−G(q, θ)u[n]}. (156)

Note that ε[n, θ] = H−1(q, θ)εsim[n, θ].
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Model Validation

Note that if G(q, θ) = G(q), then

εsim[n, θ] = v[n]⇒ Ruεsim [τ ] = 0

since u[n] and v[n] are uncorrelated by assumption (not true for feedback
systems).

Note that if G(q, θ) = G(q) and H(q, θ) = H(q) then

ε[n, θ]=H−1(q, θ)εsim[n, θ]=H−1(q, θ)v[n]=e[n]⇒ Rεε[τ ]=δ[τ ]

since e[n] is white noise by assumption.

We can always compare the Bode plot of the identified parametric model
with the Bode plot obtained used non-parametric methods (ETFE/SPA).
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Model Validation

Loss Function: The estimation of θ based on N measurements of both
input u[n] and output y[n] is

θ̂N = arg min
θ
VN (θ) (157)

where

VN (θ) =
1

N

N∑
n=1

‖ε[n, θ]‖22 (158)

Then, for an assumed model structure family we can plot the loss-function

VN (θ̂) =
1

N

N∑
n=1

‖ε[n, θ̂]‖22 (159)

as a function of the number of parameters, i.e., the size of the vector θ.

Choose the number of parameters that minimize VN (θ̂).
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Model Validation

Akaike’s Information Theoretic Criterion (AIC):

log VN (θ) +
n

N
(160)

Akaike’s Final Prediction Error Criterion (FPE):

1 + n/N

1− n/N
VN (θ) (161)

These criteria penalize the number of parameters n compared with the number of
data points N .

NOTE: Use different sets of data for identification and validation.
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