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Discrete-time LTI Systems

A liner time-invariant model is specified by
@ Impulse response {g[k]}5°
@ Spectrum @, = \|H (e™)|? of the additive noise
@ Probability density function (PDF) of the noise e[n]

‘[e[”l] White Noise

Stochastic
H(g)
Colored Noise
v[n] Stochastic
Input G >ED > v[n Output
Deterministic u[n] (Q) o y[ ] Mixed

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 2/78



Discrete-time LTI Systems

@ A complete model is thus given by

yln] = G(g)uln] + H(g)e[n] (1)
fe(¥) the PDF of e
where -
G(g)=> glklg™", ()
k=1
and - -
H(q) =Y hlklg™* =1+ hlklg™". (3)
k=0 k=1
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Discrete-time LTI Systems

@ In practice, we work with structures that permit the specification of G and H
in terms of a finite number of numerical coefficients.

@ Quite often it is not possible to determine these coefficients a priori just from
knowledge of the plant.

@ Instead, the determination is left to estimation procedures. Therefore, these
coefficients enter the model as to-be-identified parameters.

@ In practice, the PDF of the noise is not specified as a function but described
in terms of a few numerical characteristics. Typically, the first moment
(mean) and second moment (variance).

@ It is also common to assume that e[n] is Gaussian, in which case the PDF is
entirely specified by these two moments of the distribution.
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Discrete-time LTI Systems

@ We denote the parameter vector as 6.

@ This vector ranges over a subset of R?, where d is the dimension of 8:

0 € Dy C R%.

@ The model is then described as

yln] = Glg,0)uln] + H(q, 0)e[n] (4)
fe(z,0) the PDF of e[n] (white noise)
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One-step Linear Predictor

@ Given the system
ylnl = G(q)uln] + H(q)e[nl, (5)

where e[n] is white with zero mean and variance E{e’e} = \21, we are
interested in defining an estimator y[n, 8] that minimizes

E{ly-9)"(y-7)}

@ We propose
yln, 0] = Ly(q,0)y[n] + Lu(q, O)u[n]. (6)

@ We first note that

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 6/78



One-step Linear Predictor

@ And now we write

yln] —gln, 0] = [I—H Y (@yln] +H (9)G(q)uln] + e[n]
—{Ly(q,0)y[n] + Lu(q,0)u[n]}
yln] —gln.0] = [I-H '(q)~ ( 0)]y[n]
+[H ™ (q)G(q) — Lu(g, )]uln] + e[n]
yln] = yln, 0] = z[n]+eln]
@ Then,
E{ty=0)"(y—9)} = E{z"2} + E{e"e} > NI @)

@ The lower bound is achieved when z =0, i.e.,

Ly(q,0)=1—H "(q), Lu(g.0)=H '(q)G(q). (8)
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One-step Linear Predictor

@ We therefore define the predictor as
gln, 0] = [I — H™(q,0)ly[n] + H™*(q,0)G(g, O)uln], 9)
and the prediction error as

e[n, 0] = yln] = gn, 0] = H'(q,0){y[n] — G(g,0)u[n]}. (10)

@ Note that both I — H~1(q,0) and H~'(q,0)G(q,0) have at least a one-step
delay. Past inputs and outputs are used to provide a new predicted output.

o Note that if G(¢,0) = G(q) and H(q,0) = H(q) then

eln, 0] = eln|
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Family of Transfer-Function Models

ARX - Autoregressive with exogeneous input:

yln] +ary[n = 1] +agyln = 2] + - + an, y[n — na
=biu[n — 1]+ bou[n — 2] + - - + by, u[n — np] + e[n] (11)

@ Since the white-noise term e[n] enter as direct error in the difference
equation, this model is often called equation error model.

@ The to-be-identified parameter @ is define in this case as

0 = [ aq a9 e ana b1 bg e bnb ]T (12)
o If we introduce

Alq,0) = l+aiqg ' +aq >+ +an,qg ™ (13)

B(g,0) = big ' +bag+ +an,g ™ (14)
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Family of Transfer-Function Models

@ By comparing (11) with (4), we conclude that

Gla.t) = 520 Hah=n g (15)
@ Using (9) we write the one-step predictor for this family of models as
y[n, 0] = [I — A(q,0)]y[n] + B(q, 0)u[n]. (16)
o Defining
o) =[ —yln =1 - —yln—ni un—-1 - uln—mn]]"
we can write
gln,6) = 67¢[n] = ¢[n]"0,  e[n, 6] = y[n] — ¢[n]"0 (17)

o Remark: This defines a linear regression model where ¢[n] is known as the
regression vector. This is very important because powerful and simple
estimation methods can be applied for the determination of 6.
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Family of Transfer-Function Models

ARMAX - Autoregressive moving average with exogeneous input:
y[nl + ary[n — 1] + azyln — 2] + - + an,y[n — na)
=biu[n — 1]+ bou[n — 2] + - - - + by, u[n — np)
+eln]+creln — 1)+ -+ 4+ ¢y e[n — ng (18)

o We add flexibility by describing the equation error as a moving average of
white noise e[n]. The to-be-identified parameter 6 is define in this case as

0=[a1 ay - an, b1 by - by, e e - e |7 (19)

o If we introduce

A(g,0) = 1+ a1qg a4+ an,q " (20)
B(qv 0) = blq_l + b2q_2 +-- 4+ aan_nb (21)
C(q,0) = l4cqg " e+ +cen g™ (22)
e By comparing (18) with (4), we conclude that
B(q,0) C(q,0)
G(q,0) = , ,0) = 23
(@.6) A(q,0) (@.6) A(q,0) (23)
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Family of Transfer-Function Models

o Using (9) we write the one-step predictor for this family of models as

_ Ag,0 B(g,0
R R e
Clq,0)yln, 0] = [Clq,0) — Alq,0)]y[n] + B(q, O)uln]
yn,0] = [1—A(q,0)]yln] + B(q,0)un]
+[C(q,0) = 1][y[n] — yln, 0] (24)
@ Defining
¢, 0] = [~yln—1]-- —y[n—na] uln —1] -+ uln — )
+en—1,0] - eln —ng, 0)]F

we can write
f/U\[na 9] = 9T¢[n7 9] = (;5[71, G]Tev E[n, 9] = y[n] - (;5[71, 9]T9 (25)

o Remark: This defines a pseudo-linear regression model where ¢[n, 6] is
known as the regression vector. Note that this is indeed a nonlinear
regression because of the dependence of ¢ on 6.
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Family of Transfer-Function Models

OE - Output error:
wln] + frwn — 1] + fowln — 2] + -+ + fr ,wln — ny]
= byu[n — 1]+ bauln — 2] 4+ - -+ + by, uln — nyp)
yln] = wn] + eln] (26)

@ Input and noise transfer functions are parametrized independently. The
to-be-identified parameter 6 is define in this case as

O=[br by - by, fi fo o fo, " (27)

o If we introduce
B(q,0) = big ' +bag i+t an,qg ™ (28)
F(g,0) = 14+ fig "+ foa 2+ + fu,q ™ (29)

e By comparing (26) with (4), we conclude that

G(0.0) = ﬁggg; H(g.0) =1 (30)
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Family of Transfer-Function Models

@ Using (9) we write the one-step predictor for this family of models as

bl = Pl = uln.6
@ Defining
B, 0] = [un—1]- uln—ny —whn—1,0] - —wn—ny, 0"

we can write

ﬂ[n, 9] = 9T¢[n’ 0] = (b[n? G]Tea E[n’ 9] = y[n] - (]5[71, 9]T9 (31)

o Remark: This also defines a pseudo-linear regression model where ¢[n, 0] is
known as the regression vector. Note that ¢ depends on 6 once again.
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Family of Transfer-Function Models

BJ - Box-Jenkins:
wln] + frwln — 1] + fow[n — 2] + - + f ,w[n — ny]
= byu[n — 1]+ bauln — 2] 4+« - - + by, u[n — ny)
vn] + dyv[n — 1] + dov[n — 2] + - - - + dp, v[n — ng)
= e[n]+cien— 1]+ coe[n — 2]+ -+ + ¢y e[n — 1]
ylnl = wn] +wvln] (32)
@ Input and noise transfer functions are parametrized independently.

o If we introduce

F(g,0) = 14+ fi¢ "+ foqa 2+ 4 fa,a™ (33)
B(g,0) = big " 4+bag P4 A by ™ (34)
C(q,0) = 1+4cig ' g+ +eng ™ (35)
D(q,0) = 1+diqg +dog 4 +dp,q ™ (36)
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Family of Transfer-Function Models

e By comparing (32) with (4), we conclude that

Gla.t) = ol Ho) =50 37)
@ Using (9) we write the one-step predictor for this family of models as
i) = (- ol + DT S (39

@ Remark: This model can also be written as a pseudo-linear regression.
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Family of Transfer-Function Models

B(q,0)

Ala,0)yln) = T gyl +

e[n] (39)

Polynomials Used Name of Model Structure

B FIR

AB ARX

ABC ARMAX
AC ARMA
ABD ARARX
ABCD ARARMAX
BF OE
BFCD BJ

o Note: See derivation of pseudo-linear regression form of (39) in the book.
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Family of Transfer-Function Models

State-Space:

zn+1] = A(0)x[n] + B(O)u[n] + wn]
ln = CO)aln] +oln (40
@ The transfer function of system (40) is given by
G(z,0) = C(0)(2I — A(0)) ' B(6) + D(6) (41)

@ The one-step predictor is given by the Kalman Predictor

= (A(60) — M[n, 0]C(0)) Z[n, 0] + ( Juln ]+M[n,9]y[n]
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Family of Transfer-Function Models

@ Assumptions:
— z[0] is Gaussian with mean Zo and covariance P,.
— wn] is Gaussian, zero-mean, white stochastic process, i.e.,
E{w[n]w’ [m]} = Qd[n — m], independent of zo and v[n].
— wv[n] is Gaussian, zero-mean, white stochastic process, i.e.,
E{v[n]vT[m]} = Ré[n — m], independent of o and w[n].

@ The covariance
[n, 0] = E{(z[n] — Z[n, 6])(x[n] — Z[n, )"}

satisfies a Riccati Difference Equation (RDE).
@ The Kalman Predictor is an observer!!!

Zn+1,0] = A(0)Z[n,0] + B(0)u[n] + M[n, ble[n, 6]
eln,0] = y[n] - C(6)z[n,0]
E{e[n,0le[n,0]"} = C(6)Z[n,0/0T(0)+ R

@ We can predict the output as

yln, 6] = C(0)Z[n, 0]
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Prediction Error Method

@ The estimation of  based on N measurements of both input u[n] and output
y[n] is computed as
Oy = argmin Vi (6) (42)

where
N

Z eln, 0lll3 (43)

@ In the case of a linear regression model

gln, 0] = 07¢[n] = ¢[n]"0,  <[n. 0] = y[n] — ¢[n]"6. (44)

@ When we consider a SISO system (¢ :d x 1 and 6 :d x 1), we can write
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Least Square Estimate

@ This quadratic function can be minimized analytically.

@ We find that
[iiﬂw>]5=l§ (46)
N N —

@ This set of linear equations is known as the normal equations.

o If the matrix of the left is invertible, we have the Least Square Estimate (LSE)

iy = [% > qs[n]wn]] ¥ 2 ot (47)
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Least Square Estimate

@ Sometimes the estimate (47) can be written more conveniently in matrix
form.

@ We define the NV x 1 vector and N x d matrix

y[1] ¢ (1]

respectively.

@ We can write

1 1
Vn(0) = N|YN N N(YN — o) (Y — Opnh) (49)

@ The normal equations take the form

[@XN)ON = PR Yy (50)
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Least Square Estimate

@ And the estimate can be written as
Oy = [0L DN L YN (51)

where [®% @]~ 1®7 is the Moore-Penrose pseudoinverse of ® .

@ Therefore, the estimate (51) is the solution to the overdetermined (N > d
system of linear equations
YN = ®pn0 (52)

o Let us write
Oy = [¢1... ddl (53)
where ¢; : N x 1 fori=1,...,d.

@ The problem in (52) is to find a linear combination of the vectors ¢; : N x 1
fori=1,...,d that approximates Yy as well as possible.
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Least Square Estimate

o If Yy belongs to the subspace generated by the columns of @, we can
describe it as a unique linear combination of ¢; : N x 1 fori=1,...,d.

@ Otherwise, the best approximation is the vector in the subspace generated by
the columns of @ that has the smallest distance to Yy, which is well know
to be the orthogonal projection of Y on this subspace.

24 /78
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Least Square Estimate

@ Let the projection be denoted as Y. Since it is the orthogonal projection, we

have R -
(Yv —Yn) L & (54)
@ That is, R -
(Yn—Yn)T¢i =0, i=1,...,n (55)
o We can write J
V=206, (56)
j=1
@ This gives
d
Y¥gi=Y 0;67¢:, i=1,....n (57)
j=1

which are the normal equations (50).
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Realization Algorithm

@ Let us assume that we have identified the impulse response coefficients using
a nonparametric method:

glk]  k=0,...,2N (58)

How can we use this data to obtain a parametric state-space realization?

zlk+1] = Azx[k] + Bulk] (59)
ylk] = Czlk] + Dulk]
@ The transfer function of system (59) is given by
G(z2)=C(2I —A)™'B+D (60)
o We recall that -
G(2) =) _glkl=™" (61)

k=0

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 26/78



Realization Algorithm

@ Using the formal geometric series expansion we can write

(zI—A)_lzl(I—é)_lzl[I—Fé—kf—j—i—---] (62)

z z z

@ Therefore

L 1] A A
G(z)=CGEI-A)'B+D=C_|I+ =+ 5+ |B+D (63)

o Comparing (61) and (63) we can conclude that the impulse response
coefficients g[k] are given by the Markov parameters

D k=0
g[k] :{ CA1B E>1 (64)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 27 /78



Realization Algorithm

@ We define the Hankel matrix as

glé] gi+1] - gli+J]
- gli+1]  gli+2] - gliti+1]
Mi, j] = : . : (65)
gli+il gli+j+1 - gli+2j]
o We define
H=M[I,N—-1 H=M[22N-1] (66)
and taking into account (64) we note that
H=H H, H = H,AH, (67)
where
C
CA _ _
Hy = . =0, Hy=[BAB--- AN7'B]=C (68)
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Realization Algorithm

@ We then can note that

D =g[0], C = Hi(1,:), B = Hy(:,1), A= H;f HH; (69)

where
Hf = (HIH,)'H = HfH, =1 (70)
Hy = H (HoH]) ™' = HoHf =1 (71)
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Realization Algorithm

@ How do we compute Hy and Hs?
@ We compute the Singular Value Decomposition (SVD) of H, i.e.,

H = HH, =USV* = Ux'/2x/2y* (72)

where U and V are unitary matrices.
o We compute

H, =UXY? = HfH, = 2Y?20"Ust/? =% (73)
Hy = SV2V* = HyH; = Y2V ysl/2 =5 (74)

and also note that

H, :O:>HTH1

[
Q
~
Q
N
ol
o~
<

Hy,=C = H.H; = (A)’“BBT(AT)’“ (76)
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Realization Algorithm

o If A is stable,
HiH, = Q Hy,H; — P (77)

when N — oo, where P and @) denote the observability and controllability
gramians that satisfy

ATQA+CTC=Q (78)
APAT + BBT =P (79)

@ We can finally note that
P =@ == BALANCED REALIZATION (80)

Can we obtain a BALANCED TRUNCATION?
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Realization Algorithm

@ Note that
01
02

O'N_

where o, for i = 1,..., N, are called Hankel singular values and where

H=USV* = U, U] [ Xé)” EO [ g" } (82)

@ It is usually the case that

01 >02> - >0,>>0p41> " 0ON
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Realization Algorithm

@ In this case we can adopt n as the order of the system and approximate

X 0 | | ¥ O
IR ®
and we can write
H=~H,=U,%, V>, (84)
and R R
H =UXY?  Hy=x2vr (85)
to finally conclude that
D =g[0], C = Hi(1,:), B = Ha(:,1), A= Hy HHS (86)
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@ Let us assume that we have identified the frequency response of a system
using a nonparametric method:

2k

G(ejwk> (A}k:T, k:07,N_]- (87)

How can we use this data to obtain a parametric transfer function?

~ B(CI7 9)
G(q,0) = 88
(q,0) A0.0) (88)
where
A(g,0) = 14+aiqg +axq?+- +anqg "™ (89)
B(q,0) = bo+big ' +beqg P4+ an,g ™ (90)
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o We define _ o _
En(wr.0) = [G(e) = G(el,0)] W () (91)

where W (e7**) is a frequency weighting function.

@ We also define the cost function

N-1

J(0) =" En(wi, 0)Ex(wi,0) = || En(w,0)|3 (92)
k=0

with EN(w,G) = [EN(wO,H) EN(w1,6‘) EN(wal,a)].

o We seek

0 = arg min J(0) (93)
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@ Output Error:

- B(eI“x, 0)
— jowky _ 2\ 7))
E(wg,0) = G(e/*%) A, 0) (94)
This defines a nonlinear problem.
o Equation Error:
E(wy,0) = E(wy,0)A(e",0)
G(e7“F)A(e?“%  0) — B(e7*, 0) (95)

This defines a linear problem.

o Note that E(wy,0) is a weighted function of E(wy, 6).
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@ We can write

E(wk,H) = E(wk, Q)W(ejwk) = EN(OJk, 9) (96)
with _ _
W(e?“r) = A(e?“F, 0). (97)
@ Recalling
A@@,0) = T4ar (&%) +ag (7%) -+ ay,, ()"
B(e7%,0) = by +by () by (%) 4t ay, (84) T
we can write ~ ' 4
E(wg,0) = G(e?“F) — 0p(e?“*) (98)
where
0=[a ax -+ an, bo br by -+ by, ] (99)
and
D7) = [=Ger) (1) T = Gler) (7)o Gler ) (1) T
. 1 . 2 . —ny T
1 (ernr) (o) T2 (o) } (100)
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@ We can write the to-be-minimized error as

E(w,0) = G(w) — 0¢(w) (101)
where
B8 = [Bwo,9) Bw.6) ... Ewy_1,0) (102)
Gw) = [G(wo) G(wr) - Glon 1) (103)
pw) = [p(wo) d(w1) ... dlwn—1)] (104)
@ And the cost function as
ZE% “(wn, 0) = || Ew,0)] (105)

@ The minimizing solution is obtalned as
P ey b= Be = Go —oai (109

which results in
(107)
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Prediction vs Simulation

l e[n]

H, ()

_,_l v[n]
G,(9) > > yln]

A 4

u[n]

N

ysim —
G(q,0) —-»?4"’—
gsim

H™(q,0)

l Epred =
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Prediction vs Simulation

@ The simulated output is computed as
Ysim [’I’L, 6} = G(Qa 9)“[”]7 (108)
and the simulation error as

Esim |1, 0] = y[n] — ysim[n, 0] = y[n] — G(q,0)u[n].  (109)

@ The predicted output is computed as
yln,0] = [I — H™'(q,0)ly[n] + H™(¢,0)G(q, )uln], (110)
and the prediction error as

e[n, 0] = y[n] — §ln, 0] = H~'(q,0){yln] - G(g, 0)u[n]}. (111)

e Note that €[n, 0] = H (g, 0)esim[n, 0].
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Prediction vs Simulation

o Note that if G(q,0) = G(q), then
Esim [TL, 9] = ’U[TL] = R’U«Esim [T] =0

since u[n] and v[n] are uncorrelated by assumption (not true for feedback
systems).

o Note that if G(q,0) = G(q) and H(q,0) = H(q) then
g[n, 0]1=H*(q,0)esim[n, 0]=H *(q,0)v[n]=e[n] = R..[r]=0][7]

since e[n] is white noise by assumption.
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Consistency and Convergence

@ The estimation of  based on N measurements of both input u[n] and output

y[n] is computed as
Oy = argmin Vi (6) (112)

where
1 & 1 &
=¥ Z =¥ Z (113)
and

e[n, 0] = y[n] — §ln. 0] = H(q,0){yln] — G(q, O)uln]}
= H '(q,0)esim[n,0)]. (114)

o Consistency of Estimate: Is §N — 0, when N — oco?
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Consistency and Convergence

o System - S:

P X ARCR T AR (419

e Model - M

A(0.0) uln] + A(q,@)e[n] (116)

@ We assume that S € M. The model M has an ARX structure.
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Consistency and Convergence

o We write the system & in linear regression form

y[n] = ¢" [n]6, + €[n] (117)
where
¢n] =[ —yln — 1] —y[n —na] uln] uln —ny] 1"
and
0, = [ ap a2 Qp bo b1 bﬂb ]T

@ The prediction error can be written as

eln, 0] = y[n] —¢"[n]0 = H'(q,0){y[n] — G(g,0)uln]}  (118)
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Consistency and Convergence

@ Where we have written

gln. 0] = [I — H™'(q,0)lyln] + H~'(q,0)G(q, 0)uln] ~ (119)
= [ = A(g,0)ly[n] + B(g, 0)uln]

= ¢"[n)o
@ By defining
y(1] o7 [1] e[1]
YN - ) q)N - , EN = (120)
y[N] ¢"[N] e[V]
we can write
EN = YN — <I)N9 (121)
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Consistency and Convergence

@ The to-be-minimized cost function can be written as

N

1 1
> eln, 6 n, 6) = venek (122)
n=1

Vn(0) =

=

@ ¢ is minimized when ey L }A/N = dpH.

Y
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Consistency and Convergence

@ Then,

0=>0%en =LYy — 0L DN0 (123)
and the estimate can be written as

On = [®RON] 'R YN = R(N) ' f(N) (124)

where

1 1
_ = T -

R(N) =« ;cb[nkb [l N = ;cb[n]y[n] (125)
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Consistency and Convergence

@ Since
y[n] = o7 [n)6, + e[n] (126)
we can write
by = R(N) ﬁ > ol (@7l + e[n])] (127)
1 x 1Y
= R(N)™ [N > ¢lnle" nl6, + ¥ > ¢[n]e[nl]
— 0,4 R(N)‘l% S plnleln)
Then, ) N
Oy — 0, < R(N) ™' > dlnleln] =0 (128)
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Consistency and Convergence

@ We can conclude that _

1 N
¥ L dlaleb) = | T (129)

is zero if e[n] and u[n] are uncorrelated.
@ We can note that

1 & Ry, | R
_ - T1] vy yu
ROV = 5 2 ot = | e (130
is non-singular if persistent excitation for u[n] is guaranteed. R,, is always
non-singular due to e[n]. We need u[n] sufficiently exciting for Ry, to be
non-singular.
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Consistency and Convergence

@ This result can be generalized to any kind of model structure

R 1) SeM
O — 0, — 2) input uncorrelated with noise (131)
3) persistent excitation of the input

@ When the parameters of G(q,6) and H(q,0) are independent (FIR, OE, BJ)
we can replace

1) GeM

@ In closed-loop systems (u[n] becomes correlated with e[n]), we can replace

2) reference uncorrelated with noise — IV Method
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Consistency and Convergence

@ We can also conclude that

(On = 05) ~ N (0, 1) (132)
with )
A = cov(fy) = U—]\;R(J\f)-1 (133)

o Provided 1), 2) and 3) hold:

— §N isAan unbiased estimate
— cov(fn) — 0 when N — oo
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Instrumental Variables

@ There is no assumption about the structure of the model.

yln] = Glq,0)uln] + H(q,0)e[n]
B(g,0) C(g,9)
A(q,ﬁ)u[n] D(qﬁ)e[n] (134)
e By multiplying both sides of the equation by A(q,#) we write
_ A(g,0)C(g,0)
Alg,0)yln] = B(q,0)uln] + We[n]
Alq,0)yln] = B(q,0)uln] + v[n]
and finally
y[n] = ¢" [n]0 + v[n] (135)
where
oln] =[ —yln —1] —y[n —n,]  uln] uln —m] 1*
and
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Instrumental Variables

@ The Instrumental Variable method connects parametric and correlation
methods.

e We correlate y[n] = ¢”'[n]0 + v[n] with an instrumental variable £[n] of
dimension n, + np + 1 that is uncorrelated from the noise v[n], i.e.,

1 & 1 &

7 &l = 5> elnlo” Zé (136)

— o 1; .

- ekl

@ The estimate can be written as
08 = R(N)"'f(N) (137)
where

1 & 1 <
=N > &leTn]  F(N) = i > &nlyln] (138)

n=1 n=1
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Instrumental Variables

@ Since
y[n] = ¢*[n)6, + v[n] (139)

we can write

oy = RN H > &[] (@7 )6, + vln]) (140)
1 w 1 <
= RV [N > €l + 2 S g[n]vw]
~ g4 R(N)‘l% S ¢fnlol)
@ Then, N
T 0, = ROV > lololo] =0 (141)
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Instrumental Variables

o We need
- EEU[T] =0 = £[n], v[n] uncorrelated
— R(N) no singular = £[n], ¢[n] correlated enough

@ In summary,

R 1) GeM
o0y — 0, — 2)  ¢[n] uncorrelated with noise v[n] (142)
N
3) &[n] correlated enough with ¢[n]

@ In open loop, the i.v. is constructed from input u[n]

§[n] :[ u[n—nb—l] u[n—nb—na] u[n] U[n—nb] ]T

@ In closed loop, the i.v. is constructed from reference r[n]

Enl=[rn] rin—=1] -+ rp—ng—ny—1] ]T
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Instrumental Variables

v[n]

+
—> yin]

+ uln] +
r[n] G |—{
K(g) e
o Alternatively,
— Estimate ¥ = ﬁ = S5(0). Note that we can also estimate
Y 1

R = 14G,K__
either from S(0) or T'(0).

= =T(6). Knowing K (g) we can obtain an estimate for G,(q)

— Filter the noise by computing @[n] = S(q, 8) = r[n]. Therefore, @[n] is

uncorrelated with v[n] = £[n] = u[n].
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Approximate ldentification

o Let us assume now the case where S ¢ M:
— G €M, H ¢ M: Still consistent estimation of G,

+ IV Method

+ LS Method for FIR, OE, BJ
(G and H independently parameterized)

— G ¢ M, H e M: What can we expect?
— G & M, H ¢ M: What can we expect?

e System - S:

yln] = G(q,00)uln] + H(q,0,)e[n] = Go(q)uln] + Ho(q)e[n] (143)

e Model - M

yln] = G(q, 0)uln] + H(q, 0)eln] = Go(q)uln] + Ho(g)e[n] (144)
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Approximate ldentification

@ The prediction error is given by

eln,0] = Hy '(a){y[n] - Go(q)uln]}
= Hy  (9{Go(q)uln] + Ho(q)e[n] — Go(q)uln]}
= Hy  (0{(Gola) = Gola))uln] + (Ho(q) — Ho(q))e[n]} + e[n]

which can be written as

coln] = Hy (q) [ (Gola) — Gola)  (Holg) — Ha(q)) ] [ el

[+ et

where we have defined ¢[n, 0] = 4[n].
@ Assumptions:

— There is a delay both in the system and in the model (G, and Gy both
contain a delay) or in the controller. That is, u[n] depends only on y[n — 1]
and earlier values in the case of feedback control.

— H, and Hy are monic. That is, (H, — Hg)e[n] is independent of e[n].
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Approximate ldentification
n|!

@ Therefore, e[n] will be uncorrelated with the first term of gg[n]
(I)uu éue |:G G9:| + A

1
e (w,0) = |H 2 (Go — Go) (H, — H@)][ b, A H, — Hy
where
By e | [ 1 0 Pyy 0 I e
ew A | [ 3 T]l0 A3 0 I

@ Let us introduce

BG(ejw) = éuu(w)

(] I hen, we can Wllte
2 Doy 2

uu A
+ Ho|? +

G, — Gy + By|?
P (w, 0)= %‘I’
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Approximate ldentification

@ The estimation of  based on N measurements of both input u[n] and output
y[n] is computed as

Oy = arg min Viv(6) (145)
where
1
_ 2 o~
Vi (0) = ;s [, 6] =5:(0) (146)
@ By Parseval's theorem
1 ™
e = 5o » D, (w)dw (147)
@ Then, -
Oy = arg mein/ D, (w, 0)dw (148)
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Approximate ldentification

@ Open-loop case: u[n] L e[n] = By(e’¥) = 0.

G, — Gol? H, — Hy|?
R e

2
— H
_ 1G,— Gyl (Du“(‘ o,

A+ A

2
+1>A

e But as min [ _|R[*dw = min [_(|R — 1|? + 1)dw, we can write the
expression to minimize as

PIL(w,0) = |Go — Gol?

|Hol|? Hy

Dy | |Ho2A
[Hol? * [Hp[*

¢’U4u QU’U

=G, -G 2 —
o= Gol (1,12 T2
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Approximate ldentification

e ARX Model - M

y[nl = Go(q)uln] + Ho(q)eln] =
@ The to-be-minimized expression is given by

(I)g;(wve) = |GO - G9|2q)uu|A9|2 +

e If ®,, =1, the limit model is a compromise between fitting 1/|A4y|? to the
noise spectrum and minimizing

/ Gy — Gol?] Ag|2dus

o Note that this problem is a (linear) curve fitting problem, where we minimize
the equation error

E(w,0) = B(w,0)A(w,0) = (Go(e’) — Gg(e7*)) Ag(e’™)
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Approximate ldentification

o OE Model - M

y[n] = Go(q)u[n] + Ho(q)e[n] = uln] + e[n] (150)

@ The to-be-minimized expression is given by
q)geb(w7 6) = |G0 - Ge‘Qq)uu + q)vv

o If &, =1, the goal is the minimization of

/ ‘Go - G9|2dw

—T

o Note that this problem is a (nonlinear) curve fitting problem, where we
minimize the output error

E(w,0) = Go(e?) — Gy(e?*)
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Practical Identification

o Given
ZN = {y[n],u[n];n < N}
o We want:
— A model for the plant

— A model for the noise

— An estimate of the accuracy

@ We know how to identify a “model” inside an a-priori given “model structure”
— We need to choose a model structure

— Input design

— Pre-treatment of data

— Model set selection

— Model validation
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Input Design

@ The input must be sufficiently exciting

o White Noise: It is persistently exciting of order co. Advantage: It excites all
the frequencies. Drawback: It is hard to generate in practice because it has
infinity energy. Solution: Filtered white noise

ug[n] = L(q)uln] = ®upu, = |L()]?

The white noise u[n] is generated in the computer. The filter L(gq) can be a

low/band/high-pass filter.

@ Pseudo-random Binary Signal (PRBS):

z[n] with probability p

.L“[n] =1, x[n—i— 1] = { _x[n} with probability 1—p

@ Sum of Sinusoids: It excites specific frequencies.
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Input Design

@ We must remember that

Oy = arg mein/ D, (w, 0)dw (151)
H _ H |2 )\ _ ‘q'\'eur‘z
|G, — Go + Bl |Ho — Ho ( Puu
P O)=—"— Dy, A
E£<w7 ) |H9|2 + |H9|2 +
where () ()
; H,(e?*¥) — Hg(e?¥
By(e?¥) = Dye(w
() = 22 (@)
@ Open-loop case: u[n] L e[n] = By(e¥) = 0.
‘GO_G9|2 ‘HO_H0|2
P )= ————Puy + ——5—A+ A
55(&)7 ) ‘H9|2 + |H9|2 +

d,,,, works as a weight function in the fitting process.
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Data Pre-treatment

o Bias Removal: Given
A(q)y[n] = B(q)u[n] + v[n]

o If E{v[n]} =0, then the relation between the static input % and static
output ¢ is given by
A(l)y =B(1)u

@ The static component of y[n], §, may not be entirely due to @, i.e., the noise
might be biased (E{v[n]} # 0).
@ Method 1: Subtract the means. Define

1 & 1 &
?J:N;:lym[n]; ﬂ:ﬁ;um[n]
where y™[n] and u™[n] represent the measured data. Generate new data:
yln] =y™n] -y uln] =u"[n] -a

@ Method 2: Model the offset by an unknown constant 8 and estimate it
Aq)yln] = B(g)u[n] + B + v[n]
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Data Pre-treatment

e Sampling: Without an anti-aliasing filter, high frequency content is folded to

low frequency

u(r)

v(1)

L)

N

Luln

G,(5)

|

——>®——> y(1)

L,(s)

| yln]
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Data Pre-treatment

@ The sampling interval T = %

1- Defines the maximum frequency fraz = %fs = %% that we will see in the
sampled signal. Do not sample too slowly.

2- Determines the observation time assuming the number of samples N fixed,
i.e., T'= NTs. Do not sample too fast.

3- Defines pole location: z = e*T, where s denotes the pole in continuous time.
If Ts ~ 0, all the poles of the sampled system are driven to 1 (bad conditioned
system near to instability). Do not sample too fast.
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Data Pre-treatment

@ Qutliers: These data points can be either erroneous or highly-disturbed.
They can have a very bad effect on the estimate since the PEM will try to fit
them. They must be removed.
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Data Pre-treatment

o High-frequency Content Filtering: “High" means “above the frequency
range of interest.” We filter both input and output with a LTI low-pass (LP)
filter L(q), i.e.,

@ The model can now be written as
A(q)yr[n] = B(g)ur[n] + v[n]
with v[n] = H(q)e[n].

o Equivalently,

@ Therefore, we multiply the noise by 1/L(q) (high-pass filter — low-frequency
attenuation).
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Data Pre-treatment

@ We must remember that

™

Oy = arg mein/ D7 (w, 0)dw (152)

—T

where now

Lz@uu H, 2\
B (w,0) = |Gy — GoP 2 [Ho|

T HP
L|2<I> 0}

_ GO—G 2‘ [N VU

o= Col T T,

o Note that if Gy and Hy are independently parameterized, the fitting method
will use Hy to fit the noise spectrum ®vv and Gy to fit G,.

@ Note that L can be used as a frequency weighting function to emphasize
those frequencies where the fitting is more important.
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Model Set Selection

@ The goal is to fit the data with the least complex model structure and in this
way to avoid over-fitting, which amounts to fitting noise.

@ Order Selection: Use the singular values of the Hankel matrix to determine
the order n of the system. Avoid over-fitting the data with n too high.

o Delay Selection: Estimate time delay using
— Correlation Method

— Parametric Identification using FIR model structure

@ Model Selection: Lots of trial and error!!!
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Model Validation

l e[n]

H, ()

_,_l v[n]
G,(9) > > yln]

A 4

u[n]

N

ysim —
G(q,0) —-»?4"’—
gsim

H™(q,0)

l Epred =

Prof. Eugenio Schuster

ME 450 - System Identification and Robust Control Spring 2020 74/78



Model Validation

@ The simulated output is computed as
Ysim [’I’L, 6} = G(Qa 9)“[”]7 (153)
and the simulation error as

Esim |1, 0] = y[n] — ysim[n, 0] = y[n] — G(q,0)uln].  (154)

@ The predicted output is computed as
gln,0) = [I — H™'(q,0)ly[n] + H™"(q,0)G(q, )uln], (155)
and the prediction error as

e[n, 0] = y[n] — §ln, 0] = H~'(q,0){yln] — G(g, 0)u[n]}. (156)

e Note that €[n, 0] = H (g, 0)esim[n, 0].
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Model Validation

o Note that if G(q,0) = G(q), then
€sim|[n, 0] = v[n] = Rye.,, [7] =0

since u[n] and v[n] are uncorrelated by assumption (not true for feedback
systems).
o Note that if G(q,0) = G(q) and H(q,0) = H(q) then
g[n, 0]1=H *(q,0)esim[n, 0]=H *(q,0)v[n]=e[n] = R..[r]=0][7]
since e[n] is white noise by assumption.

@ We can always compare the Bode plot of the identified parametric model
with the Bode plot obtained used non-parametric methods (ETFE/SPA).
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Model Validation

@ Loss Function: The estimation of 6 based on N measurements of both
input u[n] and output y[n] is

Oy = arg min Vi (0) (157)
where
1 N
V() =+ > lleln, 01113 (158)
n=1

@ Then, for an assumed model structure family we can plot the loss-function

. 1 X .
Vn(0) = ~ > lleln. 61113 (159)

as a function of the number of parameters, i.e., the size of the vector 6.

@ Choose the number of parameters that minimize VN(a).
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Model Validation

Akaike’s Information Theoretic Criterion (AIC):

log Vi (0) + % (160)

Akaike's Final Prediction Error Criterion (FPE):

14+n/N

mVN(Q) (161)

These criteria penalize the number of parameters n compared with the number of
data points V.

NOTE: Use different sets of data for identification and validation.
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