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Nonparametric ldentification

@ Time-Domain Methods

— Impulse response
— Step response

— Correlation analysis (time)

@ Frequency-Domain Methods

— Sinusoidal excitation

— Correlation analysis (frequency)

Fourier Analysis

Spectral Analysis

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 2/32



Nonparametric ldentification

o Causal, LTI systems:

y[n] = go[n] * u Zgo uln — k] +v[n] = Go(q)u[n] +v[n] (1)
v[n]
un|—— G,(9 >+ - > y[n]

— Time-Domain Methods — Estimation of g,

— Frequency-Domain Methods — Estimation of G,(e™*)
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Time - Impulse Response

Let us consider the system described by (1) subject to a pulse input

uln] = { g Z;g )

Then the output will be

Zgo k] +vln] = ago[n] + vln] )

It is then possible to estimate the impulse-response coefficients g,[n] as

o) = 21 (@)
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Time - Impulse Response

The estimate error is given by

lgoln] — ln]| = 12021

«

@ The error is small if the noise level is low or if a >> 1

@ Physical processes do not allow pulse inputs of high amplitude (o >> 1)

@ Pulse inputs of high amplitude («w >> 1) can make the system exhibit
nonlinear effects (the linear assumption will not longer hold)

@ Estimates of impulse-response coefficients would suffer from large errors in
most practical applications
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Time - Step Response

Let us consider the system described by (1) subject to a step input

a={ & n 20 ®
Then the output will be
yln] =Y golkluln — K] + v[n] = > ago[k] + v[n] (6)
k=0 k=0

It is then possible to estimate the impulse-response coefficients g,[n] as

g = =¥ )
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Time - Step Response

The estimate error is given by

. [v[n] — v[n —1]|

90l — ]| = 2

@ The error is small if the noise level is low or if a >> 1

@ Physical processes do not allow step inputs of high amplitude (o >> 1).
Even if they are allowed, linearity assumption may not longer be valid.

@ Estimates of impulse-response coefficients would suffer from large errors in
most practical applications

@ The method can be very useful in determining basic control-related
characteristics such as delay times, static gains and time constants.
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Time - Correlation Analysis

Let us consider the system described by (1) subject to a quasi-stationary input
sequence with

R[] = E{u[n]u[n — 7]} (8)
and independent of the noise, i.e.,
E{uln)vjn—7]} =0 (9)
Note that this requires open-loop operation!

The cross-correlation between input u[n] and output y[n] is

Ryu[r] = E{ylnJuln -]}
= E{(Go(q)uln] +v[n])uln — 7]}
= EBE{G,(q)uln]uln — 1]} + E{v[n]u[n — 1]}
= E{Go(q)
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Time - Correlation Analysis

Then,

Ry [7]

= E{Go(q)u[n]uln — 7]}

= F {Zgo[k]u[n — kJuln — T]}

= Zgo[k]E{u[n — kluln — 7]}

= Zgo uuT_ ]

= o[}*RUU[]
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Time - Correlation Analysis

The estimators for the auto-correlation and cross-correlation are defined as

R | Nl | Nl

R.[m] = N ulklulk — 7] = N ulklulk — 7], (10)
k=0 k=T

R | Nl 1 Nl

Ru|t] = N ulklv[k — 7] = N ulkv[k — 7]. (11)
k=0 k=1

Both estimators are asymptotically unbiased

lim F{Ruulr]} = Rualrl,  lim B{Ru[r]} = Ruolr]

N—o0
and in addition it can be showed that

E{R[r]} =

N7
= Rl (12)
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Time - Correlation Analysis

R [] E{y n_T} Zgo uuT_ ] go[T]*Ruu[T] (13)

@ Input is white noise:

R[] = E{uln|u[n — 7]} = ad|7] (14)
Note that
Ryu[0] = B{u[n]’} = a (15)
Then, .
Ry.[T] = Zgo[k]aé[T — k] = go[T] * ad[T] = ago[7] (16)
k=0

We determine the impulse-response coefficients g,[7] as

golr) = 2ol _ o (17)
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Time - Correlation Analysis

@ Taking into account the estimators for the auto-correlation and

cross-correlation defined in (10) and (11) respectively, it is then possible to
estimate the impulse-response coefficients g,[7] as

R
where

Rual0] = = 3l Ryl = 2 Y olklulk— 7. (19)

— E{G|7]} — go[T] as N — o0

1

N

— Covariance of the estimation is proportional to
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Time - Correlation Analysis

Ryu[r|=E{y[n]uln — 7]} Zgo Ruyu[T = k]=go[] * Ruu[7]  (20)

@ Input is NOT white noise.

@ Taking into account the estimators for the auto-correlation and
cross-correlation defined in (10) and (11) respectively, it is then possible to
estimate the impulse-response coefficients g,[7] from the relationship

M—1
Ryulr] = Y Gk Ruulr — K] (21)
k=0
’Riyu[o] }Euu [0] ﬁgu[fl] T éuu[f(M - 1)] 27\[0]
Ryu[1] Ruu[l] Ruu[0] coo Ryu[—(M —2)] gl1]
RyulM - 1] RuulM —1] RuulM -2 - R [0] gIM — 1]
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Time - Correlation Analysis

o Notice that Ry, [r] = Ryuyu|—7]. The estimates are given by

glo] Ryu[0] Ruu[—1] Ryu[—(M — 1)) Ry [0]
g[1] Ry (1] Ruyu[0] Ryu[—(M — 2)] Ryu 1]
§[M'— 1] z?cuu[M —1] ﬁzuu[M -2 - : ﬁzu;[o] EW[M —1]

— Unique solution <= Persistency of Excitation

— Same estimate regardless of the noise spectrum
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Frequency - Sinusoidal Excitation

@ Let us have a Discrete-Time LTI system described by
yln] = G(g)uln] + v[n], (22)
where v[n] represents a noise sequence. If the input sequence u[n] is given by
u[n] = Acos(won). (23)
We already showed that the output will be

yln] =A |G(ej“’°) cos(won + arg[G(ej“" )]) + v[n]. (24)

Recall that cos(wen) = (e7€o™ 4 e=iwom) /2,

o With input (23) determine the amplitude and phase shift of resulting output
cosine signal (24). Calculate an estimate G(e/*°) based on that information.
Repeat for a number of frequencies w, in the frequency band of interest.

@ This is known as frequency analysis and is a simple method for obtaining
detailed information about a linear system.
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Frequency - Sinusoidal Excitation

@ In presence of noise v[n] it may be difficult to determine |G(e7“*)| and
arg[G(e?*)]. A good approach to deal with this problem is Correlation
Analysis. Since the component of y[n] of interest is a cosine function of
known frequency, it is possible to correlate it out from the noise.

@ Given the sums

| N-1 | N1
I.(N) = N Z y[n] cos(wen), =~ Z y[n] sin(wen), (25)
n=0 n=0

we can insert (24) in (25) to obtain:
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Frequency - Correlation Analysis

N-1

I.(N) = e ZA|GeM

cos(won + arg[G(e7*°)]) cos(won)

N-—
E ] cos(won)

N-1
jw 11 jWo
= A[GE) 55 nz% [cos(2w,n + arg[G(e™?)])
| Nl
to )
+ cos(arg[G(e N nzo v[n] cos(won
A , .
= 5 |G(e7°) | cos(arg[G (7))
A 1=
i Jwo )| —_ Jwo
+5 |G(e7) NTLZ%COS(QMOH—Farg[G(e )

1 N-1
+ E v cos won
n:O
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Frequency - Correlation Analysis

I,(N) = —§|G(ej‘”°) sin(arg[G(e7*°)])

N-1

% D sin(2w,n + arg[G(e™)])

n=0

+§ |G(e?)

N-1

1
+N v sm wo

n=0
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Frequency - Correlation Analysis

@ When N — oo, the second and third terms in the expressions for I.(N) and
I;(N) tend to zero. We finally obtain

A ,
5 |G(€‘7wo)

A .
- JWo
 |Gler)

&

o
&

S~—
[

cos(arg[G(e’)]) (26)

o

o
&

S~—"
[

sin(arg[G (e7*°))). (27)

@ These two expressions suggest the following estimators for the Frequency

Response:
‘@(ejwo) _ \/IC(N?Z/‘; Is(N)? (28)
arg[G(e?“?)] = —arctan ﬁgxi . (29)
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Frequency - Correlation Analysis

@ The Discrete Fourier Transform of the output sequence y[n] is given by

eIem, (30)

Hmz

WithwzQﬁk(OSkSN—l;OSw<2ﬂ').

o Comparing this expression with (25) we can write

Ly (). (31)

IC(N) _JIS(N) = N
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Frequency - Correlation Analysis

@ The Discrete Fourier Transform of the input sequence u[n] is computed as

N—-1 ) N—-1 ejwon + e_jwon )
U(w) = Z u[nle ¢ = Z Afe”“m, (32)
n=0 n=0

WithwzQW’Tk:(OSk:SN—l;OSw<27T).

@ Exploiting the periodicity property of the complex exponential function, this

results in
N% forw:woifw(,:%”k'
Uw) = for some integer 0 < k < N — 1, (33)
0 otherwise.
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Frequency - Correlation Analysis

o It is straightforward now to show that

)| = !525; (34)
F(G()] = arg [EEZH (35)

which means that an estimation of the Frequency Response at the frequency
of the input signal can be computed based on the Discrete Fourier Transform
of the input and output sequences:

Y (wo)

G(e/) = Ulon)’

(36)

o Note that this result is consistent with the DFT-filtering Theorem (Equation
(58) - Lecture 2), where R(w) = 0 for periodic inputs.
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Frequency - ETFE

o We found that equation (36) corresponds to frequency analysis with a single
sinusoid of frequency w, as input.

@ In a linear system, different frequencies pass through the system
independently of each other (thanks to linearity!!!). It is therefore quite
natural to extend the frequency analysis estimate (36) to the case of
multi-frequency inputs.

@ We introduce the following estimate of the transfer function:
&) = 1) (37
@ We call the estimate (37) the empirical transfer-function estimate (ETFE).

We assume that U(w) # 0. If this does not hold for some frequencies, we
consider the ETFE as undefined for those frequencies.

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 23 /32



Frequency - ETFE

o Let us consider both y[n] and u[n| sequences of length N.

@ Then, the ETFE is a complex sequence of length N providing an estimate of
the transfer function at frequencies w = 27k/N, k=0,...,N — 1.

@ However, since y[n] and u[n] are real, we have

o~
N

5(ej27rk/N) _ G*(ejZTr(N—k)/N).

@ Therefore the ETFE consists of N/2 essential points.

@ For the following lemmas, Let U(w) and V(w) be defined by

;N1 ;N1
ulnle ™" V(iw) = — v[n]e %n
Nﬂ; (w) an::o [n]
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Frequency - ETFE

Lemma 1: Consider a strictly stable system
y[n] = Go(q)u[n] + v[n]

with a disturbance v[n| being a stationary stochastic process with spectrum
®,,(w) and covariance function R,,[7] subject to

Z |7 Ryy[7]| < 00
Let u[n] be independent of v[n] and assume that |u[n]| < C Vn. Then,

E{B(e7)) = Gole?®) + 21N (38)

where |p1(N)| < \(/J_lﬁ
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Frequency - ETFE

| wop[@ew) +p(N)] ifE=w
) 16 —w| =2k k=12 N-1

where |p2(N)| < 5—% The constants are given by

C, = <2Z|kgo[k’]|> max |u[n]]|

Cy = C¥+ Z |7 Ryo[7]]

— 00

If u[n] periodic = p1(N) =0 at w = 27k/N = C; = 0.
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Frequency - ETFE

Lemma 2: Let v[n] be given by

where e[n] is a white noise sequence with variance A and fourth moment ;2 and
H is a strictly stable filter. Let ®,,(w) be the spectrum of v[n]. Then,

E{|[V(w)]’} = ®pu(w) + p3(N) (40)
E{(IV(@)]* = @uu(w)) (VP — @00(€)) } (41)
_ { (@ (W)]2 4+ pa(N) féE=w, w#0,7
pa(N) iflé—w =% k=1,2,...,N—1

where |p3(N)| < = and |pa(N)| < =
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Frequency - ETFE

Case 1: Periodic Input

When the input u[n] is periodic and N is a multiple of the period, |U(w)|?
increases like N for some w and is zero for others. The number of frequencies
w = 27k/N for which |U(w)|? is nonzero, and hence for which the ETFE is
defined, is fixed and no more than the period length of the signal. Then,

e The ETFE é(ej‘”) is defined only for a fixed number of frequencies

@ At these frequencies the ETFE is unbiased and its variance decays like 1/N

NOTE: When u[n] is not periodic, the variance does not decay with N but
remains at the noise-to-signal ratio.
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Frequency - ETFE

Case 1: Stochastic Input

Lemma 2 shows that the periodogram |U(w)|? is an erratic function of w, which
fluctuates around ®,,,(w), which we assume to be bounded. Lemma 1 thus tells
us that

@ The ETFE is an asymptotically unbiased estimate of the transfer function at
increasingly (with N) many frequencies

@ The variance of the ETFE does not decrease as N increases, and it is given
as the noise-to-signal ratio at frequency in question

@ The estimates at different frequencies are asymptotically uncorrelated
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Frequency - Spectral Analysis

In addition to the ETFE G(e7*), the relationship (Equation (87) - Lecture 2)
Doy () = G() Ry (€7¥) (42)
suggests that the frequency response can also be estimated as:

uy(ejw)

uu(ejw)

G(e?) = 7 (43)

)| 1)

which reduces to (37) when we take into account (Equations (98)-(99) - Lecture 2)

Buu(@) = U@, Byulw) = LY @)U (). (44)
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Frequency - Spectral Analysis

It is possible to “smooth” the ETFE by redefining the power spectra as

~ . 1
Bule) = [ AW @U©P (45)
~ , 1 .
Bu(e) = [ AW YU (46)
where W, called frequency weighting function or frequency window, satisfies
W, (§)ds =1, EW,(8)ds =1

The width of this window controls the trade-off between bias and variance. A
wider window implies more smoothing, less variance and more bias. Typical
frequency windows are shown in the figure below.

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 31/32



Frequency - Spectral Analysis

e Solid line: Parzen.
@ Dashed line: Hamming.
o Dotted line: Bartlett.

WT[.EI
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