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Nonparametric Identification

Time-Domain Methods

− Impulse response

− Step response

− Correlation analysis (time)

Frequency-Domain Methods

− Sinusoidal excitation

− Correlation analysis (frequency)

− Fourier Analysis

− Spectral Analysis
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Nonparametric Identification

Causal, LTI systems:

y[n] = go[n] ∗ u[n] + v[n] =

∞∑
k=0

go[k]u[n− k] + v[n] = Go(q)u[n] + v[n] (1)

− Time-Domain Methods → Estimation of go

− Frequency-Domain Methods → Estimation of Go(e
iω)
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Time - Impulse Response

Let us consider the system described by (1) subject to a pulse input

u[n] =

{
α, n = 0
0, n 6= 0

(2)

Then the output will be

y[n] =

∞∑
k=0

go[k]u[n− k] + v[n] = αgo[n] + v[n] (3)

It is then possible to estimate the impulse-response coefficients go[n] as

ĝ[n] =
y[n]

α
(4)
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Time - Impulse Response

The estimate error is given by

|go[n]− ĝ[n]| = |v[n]|
α

The error is small if the noise level is low or if α >> 1

Physical processes do not allow pulse inputs of high amplitude (α >> 1)

Pulse inputs of high amplitude (α >> 1) can make the system exhibit
nonlinear effects (the linear assumption will not longer hold)

Estimates of impulse-response coefficients would suffer from large errors in
most practical applications
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Time - Step Response

Let us consider the system described by (1) subject to a step input

u[n] =

{
α, n ≥ 0
0, n < 0

(5)

Then the output will be

y[n] =

∞∑
k=0

go[k]u[n− k] + v[n] =

n∑
k=0

αgo[k] + v[n] (6)

It is then possible to estimate the impulse-response coefficients go[n] as

ĝ[n] =
y[n]− y[n− 1]

α
(7)
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Time - Step Response

The estimate error is given by

|go[n]− ĝ[n]| = |v[n]− v[n− 1]|
α

The error is small if the noise level is low or if α >> 1

Physical processes do not allow step inputs of high amplitude (α >> 1).
Even if they are allowed, linearity assumption may not longer be valid.

Estimates of impulse-response coefficients would suffer from large errors in
most practical applications

The method can be very useful in determining basic control-related
characteristics such as delay times, static gains and time constants.
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Time - Correlation Analysis

Let us consider the system described by (1) subject to a quasi-stationary input
sequence with

Ruu[τ ] = E{u[n]u[n− τ ]} (8)

and independent of the noise, i.e.,

E{u[n]v[n− τ ]} ≡ 0 (9)

Note that this requires open-loop operation!

The cross-correlation between input u[n] and output y[n] is

Ryu[τ ] = E{y[n]u[n− τ ]}
= E{(Go(q)u[n] + v[n])u[n− τ ]}
= E{Go(q)u[n]u[n− τ ]}+ E{v[n]u[n− τ ]}
= E{Go(q)u[n]u[n− τ ]}
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Time - Correlation Analysis

Then,

Ryu[τ ] = E{Go(q)u[n]u[n− τ ]}

= E

{ ∞∑
k=0

go[k]u[n− k]u[n− τ ]

}

=

∞∑
k=0

go[k]E{u[n− k]u[n− τ ]}

=

∞∑
k=0

go[k]Ruu[τ − k]

= go[τ ] ∗Ruu[τ ]
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Time - Correlation Analysis

The estimators for the auto-correlation and cross-correlation are defined as

R̂uu[τ ] =
1

N

N−1∑
k=0

u[k]u[k − τ ] =
1

N

N−1∑
k=τ

u[k]u[k − τ ], (10)

R̂uv[τ ] =
1

N

N−1∑
k=0

u[k]v[k − τ ] =
1

N

N−1∑
k=τ

u[k]v[k − τ ]. (11)

Both estimators are asymptotically unbiased

lim
N→∞

E{R̂uu[τ ]} = Ruu[τ ], lim
N→∞

E{R̂uv[τ ]} = Ruv[τ ]

and in addition it can be showed that

E{R̂[τ ]} =
N − |τ |
N

R[τ ]. (12)
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Time - Correlation Analysis

Ryu[τ ]=E{y[n]u[n− τ ]}=
∞∑
k=0

go[k]Ruu[τ − k]=go[τ ] ∗Ruu[τ ] (13)

Input is white noise:

Ruu[τ ] = E{u[n]u[n− τ ]} = αδ[τ ] (14)

Note that
Ruu[0] = E{u[n]2} = α (15)

Then,

Ryu[τ ] =

∞∑
k=0

go[k]αδ[τ − k] = go[τ ] ∗ αδ[τ ] = αgo[τ ] (16)

We determine the impulse-response coefficients go[τ ] as

go[τ ] =
Ryu[τ ]

α
=
Ryu[τ ]

Ruu[0]
(17)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 11 / 32



Time - Correlation Analysis

Taking into account the estimators for the auto-correlation and
cross-correlation defined in (10) and (11) respectively, it is then possible to
estimate the impulse-response coefficients go[τ ] as

ĝ[τ ] =
R̂yu[τ ]

R̂uu[0]
(18)

where

R̂uu[0] =
1

N

N−1∑
k=0

u[k]2, R̂yu[τ ] =
1

N

N−1∑
k=τ

y[k]u[k − τ ]. (19)

− E{ĝ[τ ]} → go[τ ] as N →∞

− Covariance of the estimation is proportional to 1
N
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Time - Correlation Analysis

Ryu[τ ]=E{y[n]u[n− τ ]}=
∞∑
k=0

go[k]Ruu[τ − k]=go[τ ] ∗Ruu[τ ] (20)

Input is NOT white noise.

Taking into account the estimators for the auto-correlation and
cross-correlation defined in (10) and (11) respectively, it is then possible to
estimate the impulse-response coefficients go[τ ] from the relationship

R̂yu[τ ] =

M−1∑
k=0

ĝ[k]R̂uu[τ − k] (21)


R̂yu[0]

R̂yu[1]

.

.

.

R̂yu[M − 1]

 =


R̂uu[0] R̂uu[−1] · · · R̂uu[−(M − 1)]

R̂uu[1] R̂uu[0] · · · R̂uu[−(M − 2)]

.

.

.
.
.
.

. . .
.
.
.

R̂uu[M − 1] R̂uu[M − 2] · · · R̂uu[0]




ĝ[0]
ĝ[1]

.

.

.
ĝ[M − 1]


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Time - Correlation Analysis

Notice that R̂uu[τ ] = R̂uu[−τ ]. The estimates are given by


ĝ[0]
ĝ[1]

.

.

.
ĝ[M − 1]

 =


R̂uu[0] R̂uu[−1] · · · R̂uu[−(M − 1)]

R̂uu[1] R̂uu[0] · · · R̂uu[−(M − 2)]

.

.

.
.
.
.

. . .
.
.
.

R̂uu[M − 1] R̂uu[M − 2] · · · R̂uu[0]


−1 

R̂yu[0]

R̂yu[1]

.

.

.

R̂yu[M − 1]



− Unique solution ⇐⇒ Persistency of Excitation

− Same estimate regardless of the noise spectrum
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Frequency - Sinusoidal Excitation

Let us have a Discrete-Time LTI system described by

y[n] = G(q)u[n] + v[n], (22)

where v[n] represents a noise sequence. If the input sequence u[n] is given by

u[n] = A cos(ωon). (23)

We already showed that the output will be

y[n] = A
∣∣G(ejωo)

∣∣ cos(ωon+ arg[G(ejωo)]) + v[n]. (24)

Recall that cos(ωon) = (ejωon + e−jωon)/2.

With input (23) determine the amplitude and phase shift of resulting output

cosine signal (24). Calculate an estimate Ĝ(ejωo) based on that information.
Repeat for a number of frequencies ωo in the frequency band of interest.

This is known as frequency analysis and is a simple method for obtaining
detailed information about a linear system.
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Frequency - Sinusoidal Excitation

In presence of noise v[n] it may be difficult to determine
∣∣G(ejωo)

∣∣ and
arg[G(ejωo)]. A good approach to deal with this problem is Correlation
Analysis. Since the component of y[n] of interest is a cosine function of
known frequency, it is possible to correlate it out from the noise.

Given the sums

Ic(N) =
1

N

N−1∑
n=0

y[n] cos(ωon), Is(N) =
1

N

N−1∑
n=0

y[n] sin(ωon), (25)

we can insert (24) in (25) to obtain:
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Frequency - Correlation Analysis

Ic(N) =
1

N

N−1∑
n=0

A
∣∣G(ejωo)

∣∣ cos(ωon+ arg[G(ejωo)]) cos(ωon)

+
1

N

N−1∑
n=0

v[n] cos(ωon)

= A
∣∣G(ejωo)

∣∣ 1

2

1

N

N−1∑
n=0

[
cos(2ωon+ arg[G(ejωo)])

+ cos(arg[G(ejωo)])
]

+
1

N

N−1∑
n=0

v[n] cos(ωon)

=
A

2

∣∣G(ejωo)
∣∣ cos(arg[G(ejωo)])

+
A

2

∣∣G(ejωo)
∣∣ 1

N

N−1∑
n=0

cos(2ωon+ arg[G(ejωo)])

+
1

N

N−1∑
n=0

v[n] cos(ωon)
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Frequency - Correlation Analysis

Is(N) = −A
2

∣∣G(ejωo)
∣∣ sin(arg[G(ejωo)])

+
A

2

∣∣G(ejωo)
∣∣ 1

N

N−1∑
n=0

sin(2ωon+ arg[G(ejωo)])

+
1

N

N−1∑
n=0

v[n] sin(ωon).
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Frequency - Correlation Analysis

When N →∞, the second and third terms in the expressions for Ic(N) and
Is(N) tend to zero. We finally obtain

Ic(N) =
A

2

∣∣G(ejωo)
∣∣ cos(arg[G(ejωo)]) (26)

Is(N) = −A
2

∣∣G(ejωo)
∣∣ sin(arg[G(ejωo)]). (27)

These two expressions suggest the following estimators for the Frequency
Response: ∣∣∣Ĝ(ejωo)

∣∣∣ =

√
Ic(N)2 + Is(N)2

A/2
(28)

ârg[G(ejωo)] = − arctan
Is(N)

Ic(N)
. (29)
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Frequency - Correlation Analysis

The Discrete Fourier Transform of the output sequence y[n] is given by

Y (ω) =

N−1∑
n=0

y[n]e−jωn, (30)

with ω = 2π
N k (0 ≤ k ≤ N − 1; 0 ≤ ω < 2π).

Comparing this expression with (25) we can write

Ic(N)− jIs(N) =
1

N
Y (ωo). (31)
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Frequency - Correlation Analysis

The Discrete Fourier Transform of the input sequence u[n] is computed as

U(ω) =

N−1∑
n=0

u[n]e−jωn =

N−1∑
n=0

A
ejωon + e−jωon

2
e−jωn, (32)

with ω = 2π
N k (0 ≤ k ≤ N − 1; 0 ≤ ω < 2π).

Exploiting the periodicity property of the complex exponential function, this
results in

U(ω) =

 N A
2 for ω = ωo if ωo = 2π

N k
for some integer 0 ≤ k ≤ N − 1,

0 otherwise.
(33)
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Frequency - Correlation Analysis

It is straightforward now to show that∣∣∣Ĝ(ejωo)
∣∣∣ =

∣∣∣∣Y (ωo)

U(ωo)

∣∣∣∣ (34)

ârg[G(ejωo)] = arg

[
Y (ωo)

U(ωo)

]
, (35)

which means that an estimation of the Frequency Response at the frequency
of the input signal can be computed based on the Discrete Fourier Transform
of the input and output sequences:

Ĝ(ejωo) =
Y (ωo)

U(ωo)
. (36)

Note that this result is consistent with the DFT-filtering Theorem (Equation
(58) - Lecture 2), where R(ω) = 0 for periodic inputs.
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Frequency - ETFE

We found that equation (36) corresponds to frequency analysis with a single
sinusoid of frequency ωo as input.

In a linear system, different frequencies pass through the system
independently of each other (thanks to linearity!!!). It is therefore quite
natural to extend the frequency analysis estimate (36) to the case of
multi-frequency inputs.

We introduce the following estimate of the transfer function:

̂̂
G(ejω) =

Y (ω)

U(ω)
. (37)

We call the estimate (37) the empirical transfer-function estimate (ETFE).
We assume that U(ω) 6= 0. If this does not hold for some frequencies, we
consider the ETFE as undefined for those frequencies.
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Frequency - ETFE

Let us consider both y[n] and u[n] sequences of length N .

Then, the ETFE is a complex sequence of length N providing an estimate of
the transfer function at frequencies ω = 2πk/N , k = 0, . . . , N − 1.

However, since y[n] and u[n] are real, we have

̂̂
G(ej2πk/N ) =

̂̂
G
∗
(ej2π(N−k)/N ).

Therefore the ETFE consists of N/2 essential points.

For the following lemmas, Let U(ω) and V (ω) be defined by

U(ω) =
1√
N

N−1∑
n=0

u[n]e−jωn, V (ω) =
1√
N

N−1∑
n=0

v[n]e−jωn
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Frequency - ETFE

Lemma 1: Consider a strictly stable system

y[n] = Go(q)u[n] + v[n]

with a disturbance v[n] being a stationary stochastic process with spectrum
Φvv(ω) and covariance function Rvv[τ ] subject to

∞∑
−∞
|τRvv[τ ]| <∞

Let u[n] be independent of v[n] and assume that |u[n]| ≤ C ∀n. Then,

E{ ̂̂G(ejω)} = Go(e
jω) +

ρ1(N)

U(ω)
(38)

where |ρ1(N)| ≤ C1√
N

.
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Frequency - ETFE

And,

E

{(̂̂
G(ejω)−Go(ejω)

)(̂̂
G(e−jξ)−Go(e−jξ)

)}
(39)

=

{
1

|U(ω)|2 [Φvv(ω) + ρ2(N)] if ξ = ω
ρ2(N)

U(ω)U(−ξ) if |ξ − ω| = 2πk
N , k = 1, 2, . . . , N − 1

where |ρ2(N)| ≤ C2√
N

. The constants are given by

C1 =

(
2

∞∑
k=1

|kgo[k]|

)
max |u[n]|

C2 = C2
1 +

∞∑
−∞
|τRvv[τ ]|

If u[n] periodic ⇒ ρ1(N) = 0 at ω = 2πk/N ⇒ C1 = 0.
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Frequency - ETFE

Lemma 2: Let v[n] be given by

v[n] = H(q)e[n]

where e[n] is a white noise sequence with variance λ and fourth moment µ2 and
H is a strictly stable filter. Let Φvv(ω) be the spectrum of v[n]. Then,

E
{
|V (ω)|2

}
= Φvv(ω) + ρ3(N) (40)

E
{(
|V (ω)|2 − Φvv(ω)

) (
|V (ξ)|2 − Φvv(ξ)

)}
(41)

=

{
[Φvv(ω)]2 + ρ4(N) if ξ = ω, ω 6= 0, π
ρ4(N) if |ξ − ω| = 2πk

N , k = 1, 2, . . . , N − 1

where |ρ3(N)| ≤ C√
N

and |ρ4(N)| ≤ C√
N

.
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Frequency - ETFE

Case 1: Periodic Input

When the input u[n] is periodic and N is a multiple of the period, |U(ω)|2
increases like N for some ω and is zero for others. The number of frequencies
ω = 2πk/N for which |U(ω)|2 is nonzero, and hence for which the ETFE is
defined, is fixed and no more than the period length of the signal. Then,

The ETFE
̂̂
G(ejω) is defined only for a fixed number of frequencies

At these frequencies the ETFE is unbiased and its variance decays like 1/N

NOTE: When u[n] is not periodic, the variance does not decay with N but
remains at the noise-to-signal ratio.
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Frequency - ETFE

Case 1: Stochastic Input

Lemma 2 shows that the periodogram |U(ω)|2 is an erratic function of ω, which
fluctuates around Φuu(ω), which we assume to be bounded. Lemma 1 thus tells
us that

The ETFE is an asymptotically unbiased estimate of the transfer function at
increasingly (with N) many frequencies

The variance of the ETFE does not decrease as N increases, and it is given
as the noise-to-signal ratio at frequency in question

The estimates at different frequencies are asymptotically uncorrelated
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Frequency - Spectral Analysis

In addition to the ETFE
̂̂
G(ejω), the relationship (Equation (87) - Lecture 2)

Φuy(ejω) = G(ejω)Φuu(ejω) (42)

suggests that the frequency response can also be estimated as:

Ĝ(ejω) =
Φ̂uy(ejω)

Φ̂uu(ejω)
, (43)

which reduces to (37) when we take into account (Equations (98)-(99) - Lecture 2)

Φ̂uu(ω) =
1

N
|U(ω)|2, Φ̂yu(ω) =

1

N
Y (ω)U∗(ω). (44)
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Frequency - Spectral Analysis

It is possible to “smooth” the ETFE by redefining the power spectra as

Φ̂uu(ejω) =
1

N

∫
−π

πWγ(ξ − ω)|U(ξ)|2dξ (45)

Φ̂yu(ejω) =
1

N

∫
−π

πWγ(ξ − ω)Y (ξ)U∗(ξ)dξ (46)

where Wγ , called frequency weighting function or frequency window, satisfies∫ π

−π
Wγ(ξ)dξ = 1,

∫ π

−π
ξWγ(ξ)dξ = 1

The width of this window controls the trade-off between bias and variance. A
wider window implies more smoothing, less variance and more bias. Typical
frequency windows are shown in the figure below.
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Frequency - Spectral Analysis

Solid line: Parzen.
Dashed line: Hamming.
Dotted line: Bartlett.
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