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Discrete-time LTI Systems

A system is said to be time invariant if its response to a certain input signal
does NOT depend on time.

A system is said to be linear if its output response to a linear combinations of
inputs is the same linear combination of the output responses of the
individual inputs.

A system is said to be causal/strictly causal if the output at a present time
depends on the input up to the present/previous time only.
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Discrete-time LTI Systems

For a linear time-invariant (LTI) system with impulse response g[n], the output
sequence y[n] is related to the input sequence u[n] through the convolution sum,

y[n] = g[n] ∗ u[n] =

∞∑
k=−∞

g[k]u[n− k], (1)

where n is an integer number. For causal systems,

y[n] = g[n] ∗ u[n] =

∞∑
k=0

g[k]u[n− k], g[k] = 0, k < 0. (2)

For strictly causal systems,

y[n] = g[n] ∗ u[n] =

∞∑
k=1

g[k]u[n− k], g[k] = 0, k ≤ 0. (3)
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Discrete-time LTI Systems

According to (3), the output can be exactly calculated once the input is
known.

This is unrealistic. There are always uncontrolled signals affecting the system.

We assume that such effects can be lumped into an additive term v[n] at the
output.

y[n] = g[n] ∗ u[n] + v[n] =

∞∑
k=1

g[k]u[n− k] + v[n]. (4)
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Discrete-time LTI Systems

Let v[n] be given as

v[n] = h[n] ∗ e[n] =

∞∑
k=0

h[k]e[n− k] (5)

where e[n] is white noise, i.e., a sequence of independent (identically
distributed) random variables with a certain probability density function.

For normalization reasons, we usually assume h[0] = 1, which is no loss of
generality since the variance of e[n] can be adjusted.

Note that e[n] and v[n] are stochastic processes (i.e., sequences of random
variables). The disturbance that we observe and that are added to the system
output are thus realizations of the stochastic process v[n]. More on
stochastic processes later.
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Discrete-time LTI Systems

It is usually convenient to introduce a shorthand notation for sums like (3)
and (5). We introduce the forward shift operator q by

qu[n] = u[n+ 1]

and the backward shift operator q−1 by

q−1u[n] = u[n− 1].

We can then rewrite (3) as

∞∑
k=1

g[k]u[n− k] =

∞∑
k=1

g[k](q−ku[n]) =

[ ∞∑
k=1

g[k]q−k

]
u[n] = G(q)u[n]

where

G(q) =

∞∑
k=1

g[k]q−k. (6)
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Discrete-time LTI Systems

Similarly, with

H(q) =

∞∑
k=0

h[k]q−k, (7)

we can write
v[n] = H(q)e[n].

The basic description for a linear system with additive disturbances will thus
be

y[n] = G(q)u[n] +H(q)e[n]. (8)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 7 / 59



Discrete-time LTI Systems

The system G is stable if

G(q) =

∞∑
k=1

g[k]q−k,

∞∑
k=1

|g[k]| <∞ (9)

This definition is consistent with the bounded-input, bounded-output (BIBO)
stability. If the input u[n] satisfies u[n] ≤ C, then the corresponding output
y[n] = G(q)u[n] will also be bounded, i.e., y[n] ≤ C ′.

The system G is strictly stable if

G(q) =

∞∑
k=1

g[k]q−k,

∞∑
k=1

k|g[k]| <∞ (10)

For a rational G(q), stability implies strictly stability and vice versa.
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Frequency Response of LTI Systems

Consider as an input sequence a complex exponential of radian frequency ω,
i.e. u[n] = ejωn for −∞ < n <∞. The output of the system is given by

y[n] = g[n] ∗ u[n] =

∞∑
k=−∞

g[k]u[n− k] =

∞∑
k=−∞

g[k]ejω(n−k) (11)

=

( ∞∑
k=−∞

g[k]e−jωk

)
ejωn.

Defining,

G(ejω) =

∞∑
k=−∞

g[k]e−jωk, (12)

we can write the output sequence as

y[n] = G(ejω)ejωn. (13)
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Frequency Response of LTI Systems

As result we have that the complex exponential ejωn is an eigenfunction of
the LTI system with associated eigenvalue equal to G(ejω). The eigenvalue
G(ejω) is called the Frequency Response of the system and describes the
changes in amplitude and phase of the complex exponential input.

Note that if
u[n] = cos(ωn) = Re{ejωn} (14)

we can write the output sequence as

y[n] = Re{G(ejω)ejωn} = |G(ejω)| cos(ωt+ φ), (15)

where φ = argG(ejω).
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Frequency Response of LTI Systems

An important distinction exists between continuous-time and discrete-time
LTI systems. While in the continuous-time domain we need specify the
frequency response G(Ω) over the interval −∞ < Ω <∞, in the
discrete-time domain we only need specify the frequency response G(ejω)
over an interval of length 2π, e.g., −π < ω ≤ π.

This property is based on the periodicity of the complex exponential. Using
the fact that e±j2πr = 1 for any integer r, we can show that

e−j(ω+2πr)n = e−jωne−j2πrn = e−jωn. (16)

As we will show later, a broad class of input signals can be represented by a
linear combination of complex exponentials. In this case, the knowledge of
the frequency response allows us to find the output of the LTI system.
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Discrete-Time Fourier Transform

Many sequences can be represented by a Fourier integral of the form

u[n] =
1

2π

∫ π

−π
U(ejω)ejωndω, (17)

where
U(ejω) =

∞∑
n=−∞

u[n]e−jωn. (18)

The Inverse Fourier Transform (17) represents u[n] as a superposition of
infinitesimal complex exponentials over the interval −π < ω ≤ π.

The Discrete-Time Fourier Transform (18), or simply Fourier Transform,
determines how much of each frequency component over the interval
−π < ω ≤ π is required to synthesize u[n] using (17).

The Fourier Transform is usually referred to as Spectrum. Comparing (12)
and (18), it is possible to note that the frequency response of a LTI system is
the Fourier Transform of the impulse response h[n].

As we stated above, the frequency response is periodic. Likewise, the Fourier
Transform is periodic with period 2π.
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Z-Transform

Given a sequence u[n], we define the Z-Transform as

U(z) =

∞∑
n=−∞

u[n]z−n. (19)

“Time-shift” property:

Z{u[n− 1]} = z−1U(z), Z{u[n+ 1]} = zU(z).

We can now formally define the transfer function of an LTI system {g[n]∞1 } as

G(z) =

∞∑
n=1

g[n]z−n. (20)
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Z-Transform

By comparing (6) and (20) we can understand why we usually informally call
G(q) transfer operator or transfer function of the LTI system.

Comparing (18) and (19) we note that we can obtain the Fourier Transform
evaluating the Z-Transform at the unit circle (z = ejω).

Based on this property, the frequency response G(ejω) of a discrete-time LTI
system g[n] can be obtained evaluating the Z-Transform G(z) at z = ejω.

Remark: Recall that the frequency response G(jω) of a continuous-time LTI
system g(t) can be obtained evaluating the Laplace Transform G(s) at s = jω.

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 14 / 59



Table of Contents

1 Discrete-time LTI Systems

2 Frequency Response of LTI Systems
Discrete-Time Fourier Transform

3 Z Transform

4 Sampled Signals
Aliasing

5 Discrete Fourier Series
Representing Periodic Sequences
Finite-length → Periodic Sequences
Discrete Fourier Transform

6 Stochastic Processes
Ensemble Averages
Stationary Stochastic Processes
Power Spectrum Density
Quasi-stationary Stochastic Processes
Sample Averages

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 14 / 59



Sampled Signals

A sequence u[n] is generally a representation of a sampled signal. Given a
continuous signal u(t), its sampled version us(t) can be written as
us(t) = u(t)s(t) with

s(t) =

∞∑
n=−∞

δ(t− nTs), (21)

where δ is the Dirac delta function and Ts is the sampling period.

In this case we write

us(t) = u(t)

∞∑
n=−∞

δ(t− nTs) =

∞∑
n=−∞

u(nTs)δ(t− nTs), (22)

and
u[n] = u(nTs). (23)
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Sampled Signals

Based on the definition of the Continuous-Time Fourier Transform,

u[t] =
1

2π

∫ ∞
−∞

U(Ω)ejΩtdΩ (24)

U(Ω) =

∫ ∞
−∞

u(t)e−jΩtdt, (25)

we can obtain the continuous-time spectrum for the sampled signal

Us(Ω) =

∞∑
n=−∞

u(nTs)

∫ ∞
−∞

δ(t− nTs)e−jΩtdt =

∞∑
n=−∞

u(nTs)e
−jΩnTs . (26)
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Sampled Signals

Using the Discrete-Time Fourier Transform (18) we can compute

U(ejω) =

∞∑
n=−∞

u[n]e−jωn. (27)

Comparing (26) and (27), and taking into account (23) we conclude that

Us(Ω) = U(ejω)
∣∣
ω=ΩTs = U(ejΩTs). (28)

The Discrete-Time Fourier Transform U(ejω) is simply a frequency-scaled
version of the Continuous-Time Fourier Transform Us(Ω) where the scale
factor is given by

ω = ΩTs =
Ω

fs
= 2π

f

fs
. (29)
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Sampled Signals

Nyquist theorem relates the sampling frequency fs = 1/Ts with the
maximum frequency fmax of the signal before sampling.

In order to avoid aliasing distortion, it is required that

fs > 2fmax. (30)

Therefore, every time we sample with frequency fs we are assuming that the
maximum frequency of the signal to be sampled is less than fs/2.

In other words, we are assuming that

U(Ω) =

{
6= 0 −2π fs2 < Ω ≤ 2π fs2
= 0 otherwise.

(31)

Based on the scaling (29), we will have

U(ejω) =

{
6= 0 −π < ω ≤ π
= 0 otherwise.

(32)

implying that the interval −π < ω ≤ π in the discrete-time domain
corresponds to the interval −πfs < Ω ≤ πfs (−fs/2 < f ≤ fs/2) in the
continuous-time domain.
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Aliasing

Figure: Time-domain Interpretation

The original (red) sinusoidal has fr ≈ 0.9Hz and Tr = 1/0.9 = 1.11s.

The signal is sampled every 1s, therefore with a frequency fs = 1Hz.

Note that the original (red) sinusoidal will be seen as a ficticious (blue)
sinusoidal of fb ≈ 0.1Hz and Tb = 10s!!!!

http://www.dsptutor.freeuk.com/aliasing/AD102.html
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Aliasing

We can write the periodic function s(t) =
∑∞
n=−∞ δ(t− nTs), with period

Ts, by a Fourier series.

Then,

s(t) =

∞∑
n=−∞

δ(t− nTs) =

∞∑
k=−∞

cke
j 2πk
Ts

t (33)

where

ck =
1

Ts

∫ Ts/2

−Ts/2

∞∑
n=−∞

δ(τ − nTs)e−j
2πk
Ts

τdτ

=
1

Ts

∫ Ts/2

−Ts/2
δ(τ)e−j

2πk
Ts

τdτ

=
1

Ts
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Aliasing

By defining ωs = 2πfs = 2π
Ts

, we can then write

s(t) =

∞∑
n=−∞

δ(t− nTs) =
1

Ts

∞∑
k=−∞

ejkωst (34)

Based on the definition of the Continuous-Time Fourier Transform (25), we
can obtain the continuous-time spectrum for the sampled signal
us(t) = u(t)s(t) as

Us(Ω) =

∫ ∞
−∞

u(τ)
1

Ts

∞∑
k=−∞

ejkωsτe−jΩτdτ

=
1

Ts

∞∑
k=−∞

∫ ∞
−∞

u(τ)e−j(Ω−kωs)τdτ

=
1

Ts

∞∑
k=−∞

U(Ω− kωs) (35)

where U(Ω) is the continuous-time spectrum of u(t).
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Aliasing

Figure: Frequency-domain Interpretation
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Discrete Fourier Series

We come back now to the idea of representing signals by a linear
combination of complex exponential and we consider at this time the periodic
sequence ũ[n] with period N , i.e. ũ[n] = ũ[n+ rN ] for any integer r.

As in the continuous case, we can represent ũ[n] by its Fourier Series,

ũ[n] =
1

N

∑
k

Ũ [k]ej
2π
N kn. (36)

By the Fourier Series, the periodic sequence is represented as a sum of
complex exponentials with frequencies that are integer multiples of the
fundamental frequency 2π/N .

We say that these are harmonically related complex exponentials.
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Discrete Fourier Series

The Fourier Series representing continuous-time periodic signals require an
infinite number of harmonically related complex exponentials, whereas the
Fourier Series for any discrete-time periodic signal requires only N
harmonically related complex exponentials.

This is explained by the periodicity of the complex exponential (16).

Thus, the Discrete Fourier Series of the periodic sequence ũ[n] with period N
can be written as

ũ[n] =
1

N

N−1∑
k=0

Ũ [k]ej
2π
N kn, (37)

where the Fourier Series coefficients have the form

Ũ [k] =

N−1∑
n=0

ũ[n]e−j
2π
N kn. (38)

The sequence Ũ [k] is periodic with period N .
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Representing Periodic Sequences

Sequences that can be expressed as a sum of complex exponentials, as it is
the case for all periodic sequences, can be considered to have a Fourier
Transform as a train of impulses.

It is simple to demonstrate that the expression

U(ejω) =

∞∑
r=−∞

2πδ(ω − ωo + 2πr), (39)

where we assume that −π < ωo ≤ π, corresponds to the Fourier Transform
of the complex exponential sequence ejωon.

To show that, we replace the expression in (17) to obtain

u[n] =
1

2π

∫ π

−π
U(ejω)ejωndω =

∫ π

−π
δ(ω − ωo)ejωndω = ejωon.
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Representing Periodic Sequences

Then, if a sequence u[n] can be represented as a sum of complex
exponentials, i. e.,

u[n] =
∑
k

ake
jωkn (40)

for ∞ < n <∞, it has a Fourier Transform given by

U(ejω) =

∞∑
r=−∞

∑
k

ak2πδ(ω − ωk + 2πr). (41)

This means that if ũ[n] is periodic with period N and Discrete Fourier Series
coefficients Ũ [k], we can write

ũ[n] =
1

N

N−1∑
k=0

Ũ [k]ej
2π
N kn, (42)

and the Fourier Transform Ũ(ejω) is defined to be the impulse train

Ũ(ejω) =

∞∑
r=−∞

N−1∑
k=0

2π
Ũ [k]

N
δ(ω− 2πk

N
+2πr) =

∞∑
k=−∞

2π
Ũ [k]

N
δ(ω− 2πk

N
). (43)
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Representing Periodic Sequences

As an example, consider now a periodic impulse train

p̃[n] =

∞∑
r=−∞

δ[n− rN ] =

{
1 n = rN
0 otherwise

(44)

where r is an integer and N is the period.

We can compute first the Discrete Fourier Series coefficients

P̃ [k] =

N−1∑
n=0

p̃[n]e−j
2π
N kn =

N−1∑
n=0

δ[n]e−j
2π
N kn = 1. (45)

Therefore, according to (43) the Fourier Transform is given by

P̃ (ejω) =

∞∑
k=−∞

2π

N
δ(ω − 2πk

N
). (46)

The Fourier Transform of the periodic impulse train becomes important when
we want to relate finite-length and periodic sequences.
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Finite-length → Periodic Sequences

Consider now a finite length sequence u[n] (u[n] = 0 everywhere except over
the interval 0 ≤ n ≤ N − 1).

We can construct an associated periodic sequence ũ[n] as the convolution of
the finite-length sequence with the impulse train (44) of period N:

ũ[n] = u[n] ∗ p̃[n] = u[n] ∗
∞∑

r=−∞
δ[n− rN ] =

∞∑
r=−∞

u[n− rN ].

The periodic sequence ũ[n] is a set of periodically repeated copies of the
finite-length sequence u[n].

Assuming that the Fourier Transform of u[n] is U(ejω), and recalling that the
Fourier Transform of a convolution is the product of the Fourier Transforms,
we can obtain the Fourier Transform for ũ[n] as

Ũ(ejω) = U(ejω)P̃ (ejω) =

∞∑
k=−∞

2π

N
U(ej

2πk
N )δ(ω − 2πk

N
),

where we have used (46).
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Finite-length → Periodic Sequences

This result must be coincident with our definition (43) and therefore it must
be

Ũ [k] = U(ej
2πk
N ) = U(ejω)

∣∣∣ω= 2πk
N

. (47)

This very important result implies that the periodic sequence Ũ [k] with
period N of Discrete Fourier Series coefficients are equally spaced samples of
the Fourier Transform of the finite-length sequence u[n] obtained by
extracting one period of ũ[n].

This corresponds to sample the Fourier Transform at N equally spaced
frequencies over the interval −π < ω ≤ π with spacing 2π/N .

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 29 / 59



Table of Contents

1 Discrete-time LTI Systems

2 Frequency Response of LTI Systems
Discrete-Time Fourier Transform

3 Z Transform

4 Sampled Signals
Aliasing

5 Discrete Fourier Series
Representing Periodic Sequences
Finite-length → Periodic Sequences
Discrete Fourier Transform

6 Stochastic Processes
Ensemble Averages
Stationary Stochastic Processes
Power Spectrum Density
Quasi-stationary Stochastic Processes
Sample Averages

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 29 / 59



Discrete Fourier Transform

As we defined

u[n] =

{
ũ[n] 0 ≤ n ≤ N − 1
0 otherwise

(48)

ũ[n] = u[(n modulo N)] (49)

We define now for consistency (and to maintain duality between time and
frequency),

U [k] =

{
Ũ [k] 0 ≤ k ≤ N − 1
0 otherwise

(50)

Ũ [k] = U [(k modulo N)]. (51)

We have used the fact that the Discrete Fourier Series sequence Ũ [k] is itself
a sequence with period N .
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Discrete Fourier Transform

The sequence U [k] is named Discrete Fourier Transform and is written as

U [k] =

N−1∑
n=0

u[n]e−j
2π
N kn, (52)

u[n] =
1

N

N−1∑
k=0

U [k]ej
2π
N kn. (53)

The Discrete Fourier Transform (53) gives us the Discrete-Time Fourier
Transform (or simply the Fourier Transform) (18) at N equally spaced
frequencies over the interval 0 ≤ ω ≤ 2π (or −π < ω ≤ π):

U [k] = U(ejω)
∣∣∣ω= 2πk

N
, 0 ≤ k ≤ N − 1. (54)
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Discrete Fourier Transform

In addition to its theoretical importance as a Fourier representation of
sequences, the Discrete Fourier Transform (DFT) plays a central role in
digital signal processing because there exist efficient algorithms for its
computation.

These algorithms are usually referred as Fast Fourier Transform (FFT). The
FFT is simply an efficient implementation of the DFT.

In applications based on Fourier analysis of signals, it is the Discrete-Time
Fourier Transform (FT) that is desired, while it is the Discrete Fourier
Transform (DFT) that is actually computed.

For finite-length signals, the DFT provides frequency-domain samples of the
FT and the implications of this sample must be clearly understood and
accounted for.
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Discrete Fourier Transform

Given a sequence u[n] of N points sampled at frequency fs, we can compute
the DFT via the FFT as

U [k] =

N−1∑
n=0

u[n]e−j
2π
N kn, 0 ≤ k ≤ N − 1 (55)

u[n] =
1

N

N−1∑
k=0

U [k]ej
2π
N kn, 0 ≤ n ≤ N − 1. (56)

Considering the relationship (54) between DFT and FT, we can write the
spectrum as

U(ω) = U(ejω) =

N−1∑
n=0

u[n]e−jωn, ω =
2π

N
k(0 ≤ k ≤ N − 1; 0 ≤ ω < 2π).

(57)
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Discrete Fourier Transform

Considering the scaling (29) between sequences and sampled signals, we can
write the spectrum as

U(Ω) =

N−1∑
n=0

u[n]e−jΩTsn,Ω =
2πk

NTs
(0 ≤ k ≤ N − 1; 0 ≤ Ω <

2π

Ts
= 2Ωmax)

U(f) =

N−1∑
n=0

u[n]e−j
2πf
fs

n, f =
kfs
N

(0 ≤ k ≤ N − 1; 0 ≤ f < fs = 2fmax)

In addition to the periodicity of the DFT (U(ω + 2π) = U(ω)), we have that
U(−ω) = U(ω) for real u[n]. Therefore, the function U(ω) is uniquely
defined by its values over the interval [0, π].

We associate high frequencies with frequencies close to π and low frequencies
with frequencies close to 0.

As a consequence of these properties, it is exactly the same to define U(ω)
over the interval 0 ≤ ω < 2π or the interval −π < ω ≤ π. The DFT will give
the values of the FT over any of these intervals with a frequency spacing
equal to 2π/N .
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Discrete Fourier Transform - Filtering

Theorem: Let y[n] and u[n] be related by strictly stable system G(q):

y[n] = G(q)u[n].

The input u[n] for n ≤ 0 is unknown but obeys |u[n]| ≤ Cu for all n. Let U(ω)
and Y (ω) denote the DFT of u[n] and y[n] respectively at ω = 2π

N k with
0 ≤ k ≤ N − 1, 0 ≤ ω < 2π defined as in (57). Then,

Y (ω) = G(eiω)U(ω) +R(ω) (58)

where |R(ω)| ≤ 2CuCG CG =
∑∞
k=1 k|g[k]|.

Corolary: Suppose u[n] is periodic with period N . Then R(ω) in (58) is zero for
ω = 2πk/N .
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Stochastic Processes

Until now, we have assumed that the signals are deterministic. Sometimes,
the mechanism of signal generation is so complex that it is very difficult, if
not impossible, to represent the signal as deterministic. In these cases,
modeling the signal as an outcome of a random variable is extremely useful.

Each individual sample u[n] of a particular signal is assumed to be an
outcome of a random variable un. The entire signal is represented by a
collection of such random variables, one for each sample time, −∞ < n <∞.

The collection of these random variables is called a random process. We
assume that the sequence u[n] for −∞ < n <∞ is generated by a random
process with specific probability distribution that underlies the signal.
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Stochastic Processes

An individual random variable un is described by the probability distribution
function

Fun(un, n) = Probability[un ≤ un], (59)

where un denotes the random variable and un is a particular value of un.

If un takes on a continuous range of values, it can be specified by the
probability density function

fun(un, n) =
∂Fun(un, n)

∂un
(60)

Fun(un, n) =

∫ un

−∞
fun(u, n)du. (61)
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Stochastic Processes

When we have two stochastic processes un and vn, the interdependence is
described by the joint probability distribution function

Fun,vm(un, n, vm,m) = Probability[un ≤ un and vm ≤ vm], (62)

and by the joint probability density

fun,vm(un, n, vm,m) =
∂2Fun,vm(un, n, vm,m)

∂un∂vm
. (63)

When Fun,vm(un, n, vm,m) = Fun(un, n)Fvm(vm,m) we say that the
processes are independent.
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Ensemble Averages

It is often useful to characterize a random variable in terms of its mean,
variance and autocorrelation. The mean of a random process un is defined as

mu[n] = mun = E{un} =

∫ ∞
−∞

ufun(u, n)du, (64)

where E denotes and operator called mathematical expectation. Keeping in
mind that the sequence u[n] is the outcome of the random variable un, we
can simplify the notation writing alternatively the mean of the sequence u[n]
as

mu[n] = E{u[n]} =

∫ ∞
−∞

ufun(un, n)du, (65)

The variance of un is defined as

σ2
u[n] = σ2

un = E{(un −mun)2} =

∫ ∞
−∞

(u−mun)2fun(u, n)du. (66)

or alternatively

σ2
u[n] = E{(u[n]−mu[n])2} =

∫ ∞
−∞

(u−mun)2fun(u, n)du. (67)
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Ensemble Averages

The autocorrelation of un is defined as

Ruu[n,m] = E{unu∗m} =

∫ ∞
−∞

∫ ∞
−∞

unu
∗
mfun,um(un, n, um,m)dundum,

(68)
whereas the autocovariance sequence is defined as

Cuu[n,m] = E{(un −mun)(um −mum)∗} = Ruu[n,m]−munm
∗
um . (69)

In the same way, given two stochastic processes un and vn we can define the
cross-correlation as

Ruv[n,m] = E{unv∗m} =

∫ ∞
−∞

∫ ∞
−∞

unv
∗
mfun,vm(un, n, vm,m)dundvm,

(70)
whereas the cross-covariance sequence is defined as

Cuv[n,m] = E{(un −mun)(vm −mvm)∗} = Ruv[n,m]−munm
∗
vm . (71)
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Stationary Stochastic Processes

In general the statistical properties of a random variable may depend on n.

For a stationary process the statistical properties are invariant to a shift of
time origin. This means that the first order averages such as the mean and
variance are independent of time and the second order averages such as the
autocorrelation are dependent on the time diference.

Thus, for a stationary process we can write

mu[n] = mu = E{un} (72)

σ2
u[n] = σ2

u = E{(un −mu)2} (73)

Ruu[n+m,n] = Ruu[m] = E{un+mu∗n}. (74)

In many cases, the random processes are not stationary in the strict sense
because their probability distributions are not time invariant but (72)–(74)
still hold. We name those random processes as wide-sense stationary.
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Power Spectrum Density

While stochastic signals are not absolutely summable or square summable
and consequently do not have Fourier Transforms, many of the properties of
such signals can be summarized in terms of the autocorrelation or
autocovariance sequence, for which the Fourier Transform often exists.

We define the Power Spectrum Density (PSD) as the Fourier Transform of
the auto-covariance sequence

Φuu(ω) = Φuu(ejω) =

∞∑
n=−∞

Cuu[n]e−jωn, (75)

and the Cross Spectrum Density (CSD) as the Fourier Transform of the
cross-covariance sequence

Φuv(ω) = Φuv(e
jω) =

∞∑
n=−∞

Cuv[n]e−jωn. (76)
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Power Spectrum Density

By definition of the auto-covariance and the Inverse Fourier Transform we
can write

σ2
u = E{(un −mun)2} = Cuu[0] =

1

2π

∫ π

−π
Φuu(ω)dω. (77)

Assuming that the sequence u[n] is the sampled version of a stationary
random signal s(t) whose PSD Φss(Ω) is bandlimited by the antialiasing
lowpass filter (−2π fs2 < Ω < 2π fs2 ), its PSD Φuu(ω) is proportional to
Φss(Ω) over the bandwith of the antialiasing filter, i.e.,

Φuu(ω) =
1

Ts
Φss

(
ω

Ts

)
, |ω| < π (78)

Φuu(f) = Φss

(
ω

Ts

)
=

Φuu (ω)

fs
, |ω| < π, f =

ωfs
2π

. (79)
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Power Spectrum Density - Filtering

For a linear time-invariant (LTI) system with impulse response g[n], we know
that the output sequence y[n] is related to the input sequence u[n] through
the convolution sum,

y[n] = g[n] ∗ u[n] =

∞∑
k=−∞

g[k]u[n− k]. (80)

We assume for convenience that mu = 0. Then we have

my = E{y[n]} =

∞∑
k=−∞

g[k]E{u[n− k]} =

∞∑
k=−∞

g[k]mu = 0. (81)
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Power Spectrum Density - Filtering

The autocorrelation sequence for the output y[n] is given by

Ryy[τ ] = E{y[n]y[n− τ ]}

= E

{ ∞∑
k=−∞

∞∑
r=−∞

g[k]u[n− k]g[r]u[n− τ − r]

}

=

∞∑
k=−∞

g[k]

∞∑
r=−∞

g[r]E{u[n− k]u[n− τ − r]}

=

∞∑
k=−∞

g[k]

∞∑
r=−∞

g[r]Ruu[τ + r − k]
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Power Spectrum Density - Filtering

By making the substitution −l = r − k we can write

Ryy[τ ] =

∞∑
l=−∞

Ruu[τ − l]
∞∑

r=−∞
g[l + r]g[r]

Ryy[τ ] =

∞∑
l=−∞

Ruu[τ − l]Rgg[l]. (82)

Taking into account that the Fourier Tranform of Rgg(l) = g[n] ∗ g[−n] is

equal to G(ejω)G∗(ejω) =
∣∣G(ejω)

∣∣2 and applying Fourier Transform to the
last equation we can obtain the relationship

Φyy(ejω) =
∣∣G(ejω)

∣∣2 Φuu(ejω). (83)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 46 / 59



Power Spectrum Density - Filtering

The stochastic process described by

v[n] = H(q)e[n], (84)

where e[n] is a sequence of independent random variables with zero mean
values and variances λ, has the PSD

Φvv(e
jω) = λ

∣∣H(ejω)
∣∣2 . (85)

Spectral Factorization: Suppose that Φvv(e
jω) > 0 is a rational function of

ejω. Then, there always exists a monic rational function of z, H(z), with no
poles and no zeros on or outside the unit circle such that (85) is satisfied.
The spectral factorization concept is important since it provides a way of
representing the disturbance in the standard form v = H(q)e from
information about its PSD only.
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Power Spectrum Density - Filtering

The cross-correlation between the input u[n] and output y[n] is given by

Ruy[τ ] = E{u[n]y[n− τ ]}

= E

{
u[n]

∞∑
k=−∞

g[k]u[n− τ − k]

}

=

∞∑
k=−∞

g[k]E{u[n]u[n− τ − k]}

=

∞∑
k=−∞

g[k]Ruu[τ + k]

= g[τ ] ∗Ruu[−τ ]

Invoking properties of the autocorrelation, Ruu[−τ ] = Ruu[τ ], we can write

Ruy[τ ] = g[τ ] ∗Ruu[τ ] (86)

Applying Fourier Transform to the last equation we can obtain

Φuy(ejω) = G(ejω)Φuu(ejω). (87)
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Common Framework

We consider the input sequence as deterministic and the noise or disturbance
as stochastic.

As a result, the output becomes a stochastic process with deterministic
components.

Ey[n] = EG(q)u[n] + EH(q)e[n] = G(q)u[n] +H(q)Ee[n] = G(q)u[n].

We loose stationarity!!!!
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Quasi-stationary Stochastic Processes

A sequence s[n] is quasi-stationary if it is subject to

E{s[n]} = ms[n], |ms[n]| ≤ C ∀n (88)

E{s[n]s[m]} = Rs[n,m], |Rs[n,m]| ≤ C (89)

lim
N→∞

1

N

N∑
n=1

Rs[n, n− τ ] = Rs(τ), ∀τ

− If s[n] is a stationary stochastic process, (88)–(89) are trivially satisfied.
− if s[n] is a deterministic sequence, the expectation is without effect and

quasi-stationarity means that s[n] is bounded, i.e., |s[n]| < C, and the
following limit exists:

Rs(τ) = lim
N→∞

1

N

N∑
n=1

s[n]s[n− τ ].
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Quasi-stationary Stochastic Processes

Let the sequence y[n] be given by

y[n] = G(q)u[n] +H(q)e[n], (90)

where u[n] is a zero-mean, quasi-stationary, deterministic sequence with
spectrum Φuu(ejω) and e[n] is white noise with variance λ.

Let G(q) and H(q) be stable filters. Then y[n] is quasi-stationary and

Φyy(ejω) =
∣∣G(ejω)

∣∣2 Φuu(ejω) + λ
∣∣H(ejω)

∣∣2 (91)

Φuy(ejω) = G(ejω)Φuu(ejω). (92)

This results from the fact that for s[n] = u[n] + v[n] where u[n] is a
zero-mean deterministic signal with spectrum Φuu(ejω) and v[n] is a
zero-mean stationary stochastic process with spectrum Φvv(e

jω), then

− (Ruv[τ ] = 0) Rss[τ ] = Ruu[τ ] +Rvv[τ ]

− Φss(ejω) = Φuu(ejω) + Φvv(ejω)
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Relationship DFT-PSD

Suppose that s[n] is quasi-stationary with power spectrum Φss(e
jω).

Then, the square of the DFT converges weakly to the power spectrum,

E{|S(ω)|2} −→ Φss(e
jω).

Thus,

lim
N→∞

∫ π

−π
E{|S(ω)|2}Ψ(ω)dω =

∫ π

−π
Φss(ω)Ψ(ω)dω

with Ψ(ω) a sufficiently smooth function for |ω| ≤ π with Fourier coefficients
aτ such that

∑∞
τ=−∞ |aτ |. Recall that

S(ω) = S(ejω) =
N−1∑
n=0

s[n]e−jωn,

where ω = 2π
N k (0 ≤ k ≤ N − 1; 0 ≤ ω < 2π).
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Relationship DFT-PSD

Suppose that s[n] is a zero-mean stationary stochastic process with
auto-correlation Rss[τ ] and power spectrum Φss(e

jω).

Then, the square of the DFT converges to the power spectrum,

E{|S(ω)|2} −→ Φss(e
jω)

as N →∞ assuming that
∑∞
τ=−∞ |τRss[τ ]| <∞.
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Sample Averages

For a stationary random process, the essential characteristics of the process
are represented by averages such as the mean, variance or autocorrelation.

Therefore, it is essential to be able to estimate these quantities from
finite-length segments of data.

An estimator for the mean value is the sample mean, defined as

m̂u =
1

N

N−1∑
n=0

u[n], (93)

which is unbiased (E{m̂u} = mu).

An estimator for the variance is the sample variance, defined as

σ̂2
u =

1

N

N−1∑
n=0

(u[n]− m̂u)2, (94)

which is asymptotically unbiased (limN→∞E{σ̂2
u} = σ2

u).
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Sample Averages

The estimators for the auto-covariance and cross-covariance are respectively
defined as

Ĉuu[τ ] =
1

N

N−1∑
n=0

(u[n]− m̂u)(u[n− τ ]− m̂u), (95)

Ĉuv[τ ] =
1

N

N−1∑
n=0

(u[n]− m̂u)(v[n− τ ]− m̂v). (96)

Both estimators are asymptotically unbiased

− limN→∞E{Ĉuu[τ ]} = Cuu[τ ]

− limN→∞E{Ĉuv[τ ]} = Cuv[τ ]

In addition it can be showed that

E{Ĉ[τ ]} =
N − |τ |
N

C[τ ]. (97)
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Sample Averages

It is possible to show that

Φ̂uu(ω) =

∞∑
n=−∞

Ĉuu[n]e−jωn =
1

N
|U(ω)|2 = Puu(ω), (98)

and

Φ̂uv(ω) =

∞∑
n=−∞

Ĉuv[n]e−jωn =
1

N
U(ω)V ∗(ω), (99)

where U(ω) and V (ω) are the Discrete Fourier Transforms of u[n] and v[n]
respectively and Puu(ω) is the Periodogram of the sequence u[n].
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Ergodicity

Let s[n] be a quasi-stationary sequence. Let E{s[n]} = m[n].

We assume that

s[n]−m[n] = v[n] =

∞∑
k=0

hn[k]e[n− k] = Hn(q)e[n] (100)

where e[n] is a sequence of independent random variables with zero mean
values and E{e2[n]} = λn. Hn(q) for n = 1, 2, . . . is a uniformly stable
family of filters.
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Ergodicity

Then with probability 1 as N tends to infinity,

R̂ss[τ ] =
1

N

N−1∑
n=0

s[n]s[n− τ ]→ Rss[τ ] (101)

R̂sm[τ ] =
1

N

N−1∑
n=0

s[n]m[n− τ ]→ Rsm[τ ] (102)

R̂sv[τ ] =
1

N

N−1∑
n=0

s[n]v[n− τ ]→ Rsv[τ ] (103)

This also implies that Φ̂ss(ω)→ Φss(ω), Φ̂sm(ω)→ Φsm(ω) and

Φ̂sv(ω)→ Φsv(ω).
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Ergodicity

This result is quite important. It says that, provided the stochastic part of a
sequence can be described as a filtered white noise, the correlation and power
spectrum of an observed single realization of s[n], computed as for a
deterministic signal (sample averages), coincides, with probability 1 as
N →∞, with that of the stochastic process s[n] (ensemble averages)
computed through the expectation operator E.

Most computations in system identification depend on given realizations of a
quasi-stationary process.

Ergodicity allows us to make statements about repeated experiments.
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