

System Identification and Robust Control

Lecture 1: Introduction

Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics
Lehigh University

SYSTEM IDENTIFICATION **Theory for the User (Second Edition)**

Lennart Ljung

Linköping University, Sweden

Content

- ① Time-invariant Linear Systems [Chapter 2]
- ② Nonparametric Time and Frequency Domain Methods [Chapter 6]
- ③ Simulation and Prediction [Chapter 3]
- ④ Models for Linear Time-invariant Systems [Chapter 4]
- ⑤ Parameter Estimation Methods [Chapter 7]
- ⑥ Convergence and Consistency [Chapter 8]
- ⑦ Computing the Estimate [Chapter 9]
- ⑧ Recursive Estimation Methods [Chapter 10]

Another Books

- T. Söderström and P. Stoica, System Identification, Prentice Hall, 1989.

MULTIVARIABLE FEEDBACK CONTROL **Analysis and design**

Sigurd Skogestad

Norwegian University of Science and Technology

Ian Postlethwaite

University of Leicester

Content

- ① Introduction [Chapter 1]
- ② Classical feedback control [Chapter 2]
- ③ Performance limitations SISO [Chapter 5]
- ④ Uncertainty and robustness SISO [Chapter 7]
- ⑤ Elements of linear systems theory [Chapter 4]
- ⑥ Introduction to multivariable control [Chapter 3]
- ⑦ Performance limitations MIMO [Chapter 6]
- ⑧ Robust stability and performance MIMO [Chapter 8]
- ⑨ Controller design [Chapter 9]

Another Books

- C. Chen, Linear System Theory and Design, Oxford University Press, 1999.
- G. Dullerud and F. Paganini, A Course in Robust Control Theory, Springer, 2000.
- M. Green and D. Limebeer, Linear Robust Control, Prentice Hall, 1995.
- J. Helton and O. Merino, Classical Control Using H-infinity Methods, SIAM, 1998.
- J. Maciejowski, Multivariable Feedback Design, Addison Wesley, 1989.
- R. Sanchez-Pena and M. Sznajer, Robust Systems Theory and Applications, John Wiley & Sons, 1998.
- K. Zhou, Robust and Optimal Control, Prentice Hall, 1996.
- K. Zhou, Essentials of Robust Control, Prentice Hall, 1998.

Web Page

http://www.lehigh.edu/~eus204/teaching/ME450_SIRC/ME450_SIRC.html

The Process of Control System Design

- ① Study the “plant” to be controlled and learn about control objectives
- ② Model the system and simplify the model (if necessary)
- ③ Analyze the resulting model; determine its properties
- ④ Decide which variables are to be controlled (controlled outputs)
- ⑤ Decide on measurement (sensors)/manipulated (actuators) variables
- ⑥ Select the control configuration
- ⑦ Decide on the type of controller to be used
- ⑧ Decide on performance specifications (based on control objectives)
- ⑨ Design a controller
- ⑩ Analyze resulting controlled system (redesign if necessary)
- ⑪ Simulate the resulting controlled system
- ⑫ Repeat from Step 2, if necessary.
- ⑬ Choose hardware and software and implement the controller
- ⑭ Test and validate control system and tune on-line if necessary

The Process of Control System Design

Time will be spent on input-output “controllability analysis” of the plant/process.

Always keep in mind

- Power of control is limited.
- Control quality depends controller **AND** on plant/process.

The Control Problem

$$y = Gu + G_d d \quad (1)$$

- y : output/controlled variable
- u : input/manipulated variable
- d : disturbance
- r : reference/setpoint

- Regulator problem : counteract d
- Servo problem : let y follow r

Goal of control: make control error $e = y - r$ “small”.

Note: To arrive at a good design for the controller K we need *a priori* information about expected disturbances/references and knowledge of plant model G and disturbance model G_d .

The Control Problem

Major difficulties: Model (G, G_d) inaccurate \Rightarrow RealPlant: $G_p = G + E$;

E = “uncertainty” or “perturbation” (unknown but bounded)

- **Nominal stability (NS)** : system is stable with no model uncertainty
- **Nominal Performance (NP)** : system satisfies performance specifications with no model uncertainty
- **Robust stability (RS)** : system stable for “all” perturbed plants
- **Robust performance (RP)** : system satisfies performance specifications for all perturbed plants

Transfer Functions

The course will be make extensive use of the *transfer function* representation, i.e., we will work on the frequency domain.

Given a state-space representation

$$\begin{aligned}\dot{x} &= Ax + Bu, \\ y &= Cx + Du,\end{aligned}$$

the transfer-function representation is given by (assuming SISO system)

$$\frac{y(s)}{u(s)} = G(s) = C(sI - A)^{-1}B + D, \quad G(s) = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

For a MIMO system we write $Y(s) = G(s)U(s)$.

Transfer Functions

$$G(s) = \frac{\beta_{n_z} s^{n_z} + \cdots + \beta_1 s + \beta_0}{s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0} \quad (2)$$

For multivariable systems, $G(s)$ is a matrix of transfer functions.

n = order of denominator (or pole polynomial) or *order of the system*

n_z = order of numerator (or zero polynomial)

$n - n_z$ = pole excess or *relative order*.

Definition:

- A system $G(s)$ is *strictly proper* if $G(s) \rightarrow 0$ as $s \rightarrow \infty$.
- A system $G(s)$ is *semi-proper* or *bi-proper* if $G(s) \rightarrow D \neq 0$ as $s \rightarrow \infty$.
- A system $G(s)$ which is strictly proper or semi-proper is *proper*.
- A system $G(s)$ is *improper* if $G(s) \rightarrow \infty$ as $s \rightarrow \infty$.

Remark:

All practical systems have zero gain at sufficiently high frequency, and are therefore strictly proper. It is often convenient, however, to model high-frequency effects by a non-zero D -term, and hence semi-proper models are frequently used.

Transfer Functions

- Invaluable insights are obtained from simple frequency-dependent plots.
- Important concepts for feedback such as bandwidth and peaks of closed-loop transfer functions may be defined.
- $G(j\omega)$ gives the response to a sinusoidal input of frequency ω .
- A series of interconnected systems corresponds in the frequency domain to the multiplication of individual transfer functions, whereas in the time domain, the evaluation of convolution operations is required.
- Poles and zeros appear explicitly in factorized transfer functions.
- Uncertainty is more easily handled in frequency domain.

Scaling

Proper scaling simplifies controller design and performance analysis.

SISO :

unscaled:

$$\hat{y} = \hat{G}\hat{u} + \hat{G}_d\hat{d}; \quad \hat{e} = \hat{y} - \hat{r} \quad (3)$$

scaled:

$$d = \hat{d}/\hat{d}_{\max}, \quad u = \hat{u}/\hat{u}_{\max} \quad (4)$$

where:

- \hat{d}_{\max} — largest expected change in disturbance
- \hat{u}_{\max} — largest allowed input change

Scaling

Scale \hat{y} , \hat{e} and \hat{r} by:

- \hat{e}_{\max} — largest allowed control error, or
- \hat{r}_{\max} — largest expected change in reference value

Usually:

$$y = \hat{y}/\hat{e}_{\max}, \quad r = \hat{r}/\hat{e}_{\max}, \quad e = \hat{e}/\hat{e}_{\max} \quad (5)$$

MIMO :

$$d = D_d^{-1}\hat{d}, \quad u = D_u^{-1}\hat{u}, \quad y = D_e^{-1}\hat{y} \quad (6)$$

$$e = D_e^{-1}\hat{e}, \quad r = D_r^{-1}\hat{r} \quad (7)$$

where $D_d = \hat{d}_{\max}$, $D_u = \hat{u}_{\max}$, $D_e = \hat{e}_{\max}$ and $D_r = \hat{r}_{\max}$ are diagonal scaling matrices

Scaling

Substituting (6) and (7) into (3):

$$D_e y = \hat{G} D_u u + \hat{G}_d D_d d; \quad D_e e = D_e y - D_e r$$

and introducing the scaled transfer functions

$$G = D_e^{-1} \hat{G} D_u, \quad G_d = D_e^{-1} \hat{G}_d D_d \quad (8)$$

Model in terms of scaled variables:

$$y = G u + G_d d; \quad e = y - r \quad (9)$$

Often also:

$$\tilde{r} = \hat{r} / \hat{r}_{\max} = D_r^{-1} \hat{r} \quad (10)$$

so that:

$$r = R \tilde{r} \quad \text{where} \quad R \stackrel{\Delta}{=} D_e^{-1} D_r = \hat{r}_{\max} / \hat{e}_{\max} \quad (11)$$

Scaling

Figure: Model in terms of scaled variables

Objective:

for $|d(t)| \leq 1$ and $|\tilde{r}(t)| \leq 1$,
manipulate u with $|u(t)| \leq 1$
such that $|e(t)| = |y(t) - r(t)| \leq 1$.

Linearization

Given the general nonlinear model

$$\dot{x} = f(x, u) \quad (12)$$

where (x^*, u^*) is an equilibrium, i.e., $f(x^*, u^*) = 0$.

The linearization around this equilibrium is given by

$$\dot{\tilde{x}} = \left(\frac{\partial f}{\partial x} \right)^* \tilde{x} + \left(\frac{\partial f}{\partial u} \right)^* \tilde{u} = A\tilde{x} + B\tilde{u} \quad (13)$$

where $\tilde{x} = x - x^*$ and $\tilde{u} = u - u^*$. Therefore,

$$\tilde{x}(s) = (sI - A)^{-1} B\tilde{u} \quad (14)$$

Notation

(a) One degree-of-freedom control configuration

(b) Two degrees-of-freedom control configuration

Notation

(c) General control configuration

Figure: Control configurations

Table: Nomenclature

K controller, in whatever configuration. Sometimes broken down into parts. For example, in Figure 2(b), $K = [K_r \ K_y]$ where K_r is a prefilter and K_y is the feedback controller.

Conventional configurations (Fig 2(a), 2(b)):

G plant model

G_d disturbance model

r reference inputs (commands, setpoints)

d disturbances (process noise)

n measurement noise

y plant outputs. (include the variables to be controlled (“primary” outputs with reference values r) and possibly additional “secondary” measurements to improve control)

y_m measured y

u control signals (manipulated plant inputs)

General configuration (Fig 2(c)):

- P generalized plant model. Includes G and G_d and the interconnection structure between the plant and the controller.
May also include weighting functions.
- w exogenous inputs: commands, disturbances and noise
- z exogenous outputs; “error” signals to be minimized, e.g. $y - r$
- v controller inputs for the general configuration, e.g. commands, measured plant outputs, measured disturbances, etc. For the special case of a one degree-of-freedom controller with perfect measurements we have
 $v = r - y$.
- u control signals

How to Obtain Linear Models?

Linear models may be obtained from:

- “First-principles” modeling. Linearization may be needed.
- “Data-driven” modeling. Model identified from input-output data.
- Combination of these two approaches.

Note that regardless of how the model is obtained, the model (G, G_d) will always be inaccurate:

RealPlant: $G_p = G + E$;

E = “uncertainty” or “perturbation” (unknown but bounded)

System Identification

T : Sampling period; $f = 1/T$: Sampling rate/frequency (Hz)

System Identification

1. Identification of Discrete-time Model

Difference Equation:

$$y[k] + a_1y[k-1] + \cdots + a_ny[k-n] = b_0u[k] + \cdots + b_mu[k-m]$$

Transfer Function (Z-Transform):

$$(1 + a_1z + \cdots + a_nz^{-n}) Y(z) = (b_0 + \cdots + b_mz^{-m}) U(z)$$

$$G(z) = \frac{Y(z)}{U(z)} = \frac{b_0 + \cdots + b_mz^{-m}}{1 + a_1z + \cdots + a_nz^{-n}}$$

System Identification

2. Discrete-time → Continuous-time Model

Difference Equation → **Differential Equation**:

$$y^{(n)} + \hat{a}_1 y^{(n-1)} + \cdots + \hat{a}_n y = \hat{b}_0 u^{(m)} + \hat{b}_1 u^{(m-1)} + \cdots + \hat{b}_m u$$

Transfer Function (Z-Transform) → **Transfer Function (s-Transform)**:

$$(s^n + \hat{a}_1 s^{n-1} + \cdots + \hat{a}_n) Y(s) = (\hat{b}_0 s^m + \hat{b}_1 s^{m-1} + \cdots + \hat{b}_m) U(s)$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\hat{b}_0 s^m + \hat{b}_1 s^{m-1} + \cdots + \hat{b}_m}{s^n + \hat{a}_1 s^{n-1} + \cdots + \hat{a}_n}$$

READY FOR ROBUST CONTROL DESIGN!!!