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The Process of Control System Design

1 Study the “plant” to be controlled and learn about control objectives

2 Model the system and simplify the model (if necessary)

3 Analyze the resulting model; determine its properties

4 Decide which variables are to be controlled (controlled outputs)

5 Decide on measurement (sensors)/manipulated (actuators) variables

6 Select the control configuration

7 Decide on the type of controller to be used

8 Decide on performance specifications (based on control objectives)

9 Design a controller

10 Analyze resulting controlled system (redesign if necessary)

11 Simulate the resulting controlled system

12 Repeat from Step 2, if necessary.

13 Choose hardware and software and implement the controller

14 Test and validate control system and tune on-line if necessary
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The Process of Control System Design

Time will be spent on input-output “controllability analysis” of the plant/process.

Always keep in mind

Power of control is limited.

Control quality depends controller AND on plant/process.
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The Control Problem

y = Gu+Gdd (1)

y : output/controlled variable
u : input/manipulated variable
d : disturbance
r : reference/setpoint

Regulator problem : counteract d
Servo problem : let y follow r

Goal of control: make control error e = y − r “small”.

Note: To arrive at a good design for the controller K we need a priori
information about expected disturbances/references and knowledge of plant model
G and disturbance model Gd.
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The Control Problem

Major difficulties: Model (G,Gd) inaccurate ⇒ RealPlant: Gp = G+ E ;

E = “uncertainty” or “perturbation” (unknown but bounded)

Nominal stability (NS) : system is stable with no model uncertainty

Nominal Performance (NP) : system satisfies performance specifications
with no model uncertainty

Robust stability (RS) : system stable for “all” perturbed plants

Robust performance (RP) : system satisfies performance specifications for
all perturbed plants
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Transfer Functions

The course will be make extensive use of the transfer function representation, i.e.,
we will work on the frequency domain.

Given a state-space representation

ẋ = Ax+Bu,

y = Cx+Du,

the transfer-function representation is given by (assuming SISO system)

y(s)

u(s)
= G(s) = C(sI −A)−1B +D, G(s) =

[
A B
C D

]
.

For a MIMO system we write Y (s) = G(s)U(s).
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Transfer Functions

G(s) =
βnz

snz + · · ·+ β1s+ β0

sn + an−1sn−1 + · · ·+ a1s+ a0
(2)

For multivariable systems, G(s) is a matrix of transfer functions.
n = order of denominator (or pole polynomial) or order of the system
nz = order of numerator (or zero polynomial)
n− nz = pole excess or relative order.

Definition:

A system G(s) is strictly proper if G(s)→ 0 as s→∞.

A system G(s) is semi-proper or bi-proper if G(s)→ D 6= 0 as s→∞.

A system G(s) which is strictly proper or semi-proper is proper.

A system G(s) is improper if G(s)→∞ as s→∞.

Remark:
All practical systems have zero gain at sufficiently high frequency, and are
therefore strictly proper. It is often convenient, however, to model high-frequency
effects by a non-zero D-term, and hence semi-proper models are frequently used.
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Transfer Functions

Invaluable insights are obtained from simple frequency-dependent plots.

Important concepts for feedback such as bandwidth and peaks of closed-loop
transfer functions may be defined.

G(jω) gives the response to a sinusoidal input of frequency ω.

A series of interconnected systems corresponds in the frequency domain to
the multiplication of individual transfer functions, whereas in the time
domain, the evaluation of convolution operations is required.

Poles and zeros appear explicitly in factorized transfer functions.

Uncertainty is more easily handled in frequency domain.
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Scaling

Proper scaling simplifies controller design and performance analysis.

SISO :
unscaled:

ŷ = Ĝû+ Ĝdd̂; ê = ŷ − r̂ (3)

scaled:
d = d̂/d̂max, u = û/ûmax (4)

where:

d̂max — largest expected change in disturbance

ûmax — largest allowed input change
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Scaling

Scale ŷ, ê and r̂ by:

êmax — largest allowed control error, or

r̂max — largest expected change in reference value

Usually:
y = ŷ/êmax, r = r̂/êmax, e = ê/êmax (5)

MIMO :
d = D−1

d d̂, u = D−1
u û, y = D−1

e ŷ (6)

e = D−1
e ê, r = D−1

e r̂ (7)

where De = êmax, Du = ûmax, Dd = d̂max and Dr = r̂max are diagonal scaling
matrices
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Scaling

Substituting (6) and (7) into (3):

Dey = ĜDuu+ ĜdDdd; Dee = Dey −Der

and introducing the scaled transfer functions

G = D−1
e ĜDu, Gd = D−1

e ĜdDd (8)

Model in terms of scaled variables:

y = Gu+Gdd; e = y − r (9)

Often also:
r̃ = r̂/r̂max = D−1

r r̂ (10)

so that: r = Rr̃ where R
∆
= D−1

e Dr = r̂max/êmax (11)
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Scaling
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Figure: Model in terms of scaled variables

Objective:
for |d(t)| ≤ 1 and |r̃(t)| ≤ 1,
manipulate u with |u(t)| ≤ 1
such that |e(t)| = |y(t)− r(t)| ≤ 1.
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Linearization

Given the general nonlinear model

ẋ = f(x, u) (12)

where (x∗, u∗) is an equilibrium, i.e., f(x∗, u∗) = 0.

The linearization around this equilibrium is given by

˙̃x =

(
∂f

∂x

)∗

x̃+

(
∂f

∂u

)∗

ũ = Ax̃+Bũ (13)

where x̃ = x− x∗ and ũ = u− u∗. Therefore,

x̃(s) = (sI −A)−1
Bũ (14)
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Notation
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(a) One degree-of-freedom control configuration
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Notation
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Figure: Control configurations
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Notation

Table: Nomenclature

K controller, in whatever configuration. Sometimes broken down into parts.
For example, in Figure 2(b), K =

[
Kr Ky

]
where Kr is a prefilter and

Ky is the feedback controller.

Conventional configurations (Fig 2(a), 2(b)):
G plant model
Gd disturbance model
r reference inputs (commands, setpoints)
d disturbances (process noise)
n measurement noise
y plant outputs. ( include the variables to be controlled (“primary” outputs

with reference values r) and possibly additional “secondary” measure-
ments to improve control)

ym measured y
u control signals (manipulated plant inputs)
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Notation

General configuration (Fig 2(c)):
P generalized plant model. Includes G and Gd and the interconnection

structure between the plant and the controller.
May also include weighting functions.

w exogenous inputs: commands, disturbances and noise
z exogenous outputs; “error” signals to be minimized, e.g. y − r
v controller inputs for the general configuration, e.g. commands, measured

plant outputs, measured disturbances, etc. For the special case of a
one degree-of-freedom controller with perfect measurements we have
v = r − y.

u control signals
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How to Obtain Linear Models?

Linear models my be obtained from:

“First-principles” modeling. Linearization may be needed.

“Data-driven” modeling. Model identified from input-output data.

Combination of these two approaches.

Note that regardless of how the model is obtained, the model (G,Gd) will always
be inaccurate:

RealPlant: Gp = G+ E ;

E = “uncertainty” or “perturbation” (unknown but bounded)

Prof. Eugenio Schuster ME 450 - System Identification and Robust Control Spring 2020 25 / 28



System Identification

T : Sampling period; f = 1/T : Sampling rate/frequency (Hz)
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System Identification

1. Identification of Discrete-time Model

Difference Equation:

y[k] + a1y[k − 1] + · · ·+ any[k − n] = bou[k] + · · ·+ bmu[k −m]

Transfer Function (Z-Transform):(
1 + a1z + · · ·+ anz

−n
)
Y (z) =

(
bo + · · ·+ bmz

−m
)
U(z)

G(z) =
Y (z)

U(z)
=

bo + · · ·+ bmz
−m

1 + a1z + · · ·+ anz−n
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System Identification

2. Discrete-time → Continuous-time Model

Difference Equation → Differential Equation:

y(n) + â1y
(n−1) + · · ·+ âny = b̂ou

(m) + b̂1u
(m−1) + · · ·+ b̂mu

Transfer Function (Z-Transform) → Transfer Function (s-Transform):(
sn + â1s

n−1 + · · ·+ ân
)
Y (s) =

(
b̂os

m + b̂1s
m−1 + · · ·+ b̂m

)
U(s)

G(s) =
Y (s)

U(s)
=
b̂os

m + b̂1s
m−1 + · · ·+ b̂m

sn + â1sn−1 + · · ·+ ân

READY FOR ROBUST CONTROL DESIGN!!!
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