

Kalman Predictor/Filter

Stochastic Processes

Optimal Estimation and Prediction

Let us assume now that our plant is:

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$

$$y_k = C_k x_k + v_k$$

with initial condition x_0 given, and where w_k and v_k are independent zero-mean, white stochastic processes (independent of x_0).

$$E(w_k) = 0, E(v_k) = 0, E\left(\begin{bmatrix} w_k \\ w_l^T & v_l^T \\ v_k \end{bmatrix}\right) = \begin{bmatrix} Q_k & 0 \\ 0 & R_k \end{bmatrix} \delta_{k,l}, \quad Q_k, R_k \geq 0 \quad \forall k$$

Prediction Problem: How can we estimate x_k given measurements of $\{u_l, y_l: l \leq k-d\}$? We denote the d -step-ahead prediction as

$$\hat{x}_{k|k-d}$$

Filtering Problem: How do we compute the filtered estimate $\hat{x}_{k|k}$?

Stochastic Processes

How do we take two independent, unbiased measurements, x_1 and x_2 , with variances σ_1^2 and σ_2^2 , of the same quantity x and combine them to get a better, unbiased estimate?

$$\hat{x} = ax_1 + (1 - a)x_2 \quad \text{unbiased}$$

Covariance
$$E\left(\left(\hat{x} - E(\hat{x})\right)^2\right) = a^2\sigma_1^2 + (1 - a)^2\sigma_2^2$$

$$\frac{\partial E\left(\left(\hat{x} - E(\hat{x})\right)^2\right)}{\partial a} = 2a\sigma_1^2 - 2(1 - a)\sigma_2^2 = 0 \Rightarrow a = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$
$$\hat{x} = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} x_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} x_2$$

Stochastic Processes

$$\hat{x} = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} x_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} x_2$$

Linear, variance-weighted sum. Nothing mysterious.

$$E(\hat{x}^2) = \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2} = \left[(\sigma_1^2)^{-1} + (\sigma_2^2)^{-1} \right]^{-1} \leq \min\{\sigma_1^2, \sigma_2^2\}$$

The quality of the estimation is improved. Can we do similar things when x satisfies a state equation? We just need to propagate means and variances.

- taking into account the effect of state equation (easy, deterministic)
- taking into account the new measurements (a bit harder, conditional probability)

Stochastic Processes

Minimum Variance Estimates

We want to find the estimate \hat{x}_k which minimizes

$$E\left(\|x_k - \hat{x}_k\|^2 \mid y_{k-d}, y_{k-d-1}, \dots\right)$$

The minimum variance estimate is given by the conditional mean

$$\hat{x}_k = E(x_k \mid y_{k-d}, y_{k-d-1}, \dots)$$

Most important property
in estimation

Proof:
$$\begin{aligned} E\left(\left(x_k - \hat{x}_k\right)^2 \mid Y\right) &= E\left(x_k^T x_k \mid Y\right) - 2E\left(x_k^T \hat{x}_k \mid Y\right) + E\left(\hat{x}_k^T \hat{x}_k \mid Y\right) \\ &= \left(\hat{x}_k - E(x_k \mid Y)\right)^2 + E\left(x_k^T x_k \mid Y\right) - \left(E(x_k \mid Y)\right)^2 \end{aligned}$$

is minimized when $\hat{x}_k = E(x_k \mid Y)$

The *conditional mean* is the *least square estimate*.

Stochastic Processes

Jointly Gaussian Random variables

x is a gaussian random n -vector if its probability density function is of the form

$$p(x) = \frac{1}{(2\pi)^{n/2}} \frac{1}{|\Sigma|^{1/2}} e^{-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)}$$

where m is the mean value of x , $E(x)$, and non-singular matrix Σ is the covariance matrix, $E[(x-m)(x-m)^T]$.

If x is gaussian $N(m, \Sigma)$ then $y = Ax + b$ is gaussian $N(Am + b, A\Sigma A^T)$.

If x and y are commensurate gaussian random n -vectors, then $x+y$ is a gaussian random n -vector $N(m_x + m_y, \Sigma_{x+y})$.

$$\Sigma_{x+y} = \Sigma_{xx} + \Sigma_{xy} + \Sigma_{yx} + \Sigma_{yy}$$

Stochastic Processes

If x and y are jointly gaussian, i.e., $[x^T y^T]^T$ is a gaussian process $N([m_x^T m_y^T], \Sigma)$ with

$$\Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}$$

Then,

$$E[x|y] = m_x - \Sigma_{xy} \Sigma_{yy}^{-1} m_y + \Sigma_{xy} \Sigma_{yy}^{-1} y \quad (1)$$

also a gaussian random n -vector.

$$E[(x - E[x|y])^2 | y] = E[(x - E[x|y])^2] = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx} \quad (2)$$

The gaussian conditional-mean estimate has the conditional error variance equal to the unconditional error variance (not true if not gaussian).

$$E[x - E[x|y] | y] = E[x|y] - E[x|y] = 0$$

The conditional-mean estimate is unbiased.

Stochastic Processes

Kalman Filter

State equations:

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$

$$y_k = C_k x_k + v_k$$

Assumptions:

- x_0 is gaussian with mean \bar{x}_0 and covariance P_0 .
- w_k is gaussian, zero-mean, white process ($E(w_k w_l^T) = Q_k \delta_{k,l}$), independent of x_0 and v_k .
- v_k is gaussian, zero-mean, white process ($E(v_k v_l^T) = R_k \delta_{k,l}$), independent of x_0 and w_k .

Everything is gaussian --- linear operations preserve gaussian properties

Stochastic Processes

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \text{ is gaussian } N\left(\begin{bmatrix} \bar{x}_0 \\ C_0 \bar{x}_0 \end{bmatrix}, \begin{bmatrix} P_0 & P_0 C_0^T \\ C_0 P_0 & C_0 P_0 C_0^T + R_0 \end{bmatrix}\right)$$

$$\begin{aligned} \text{From (1): } \hat{x}_{0|0} &= \bar{x}_0 - P_0 C_0^T (C_0 P_0 C_0^T + R_0)^{-1} C_0 \bar{x}_0 + P_0 C_0^T (C_0 P_0 C_0^T + R_0)^{-1} y_0 \\ &= \bar{x}_0 + P_0 C_0^T (C_0 P_0 C_0^T + R_0)^{-1} (y_0 - C_0 \bar{x}_0) \quad \text{Filter} \end{aligned}$$

$$\text{From (2): } \Sigma_{0|0} = P_0 - P_0 C_0^T (C_0 P_0 C_0^T + R_0)^{-1} C_0 P_0 \quad \text{Filter covariance}$$

$$\begin{aligned} \text{Time update: } \hat{x}_{1|0} &= A_0 \hat{x}_{0|0} + B_0 u_0 && \text{One-step predictor} \\ \Sigma_{1|0} &= A_0 \Sigma_{0|0} A_0^T + Q_0 && \text{Predictor covariance} \end{aligned}$$

$$\hat{y}_{1|0} \text{ is gaussian } N(C_1 \hat{x}_{1|0}, C_1 \Sigma_{1|0} C_1^T + R_1)$$

Stochastic Processes

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \Big| y_0 \quad \text{is gaussian} \quad N\left(\begin{bmatrix} \hat{x}_{1|0} \\ C_1 \hat{x}_{1|0} \end{bmatrix}, \begin{bmatrix} \Sigma_{1|0} & \Sigma_{1|0} C_1^T \\ C_1 \Sigma_{1|0} & C_1 \Sigma_{1|0} C_1^T + R_1 \end{bmatrix}\right)$$

$$\begin{aligned} \text{From (1): } \hat{x}_{1|1} &= \hat{x}_{1|0} - \Sigma_{1|0} C_1^T (C_1 \Sigma_{1|0} C_1^T + R_1)^{-1} C_1 \hat{x}_{1|0} + \Sigma_{1|0} C_1^T (C_1 \Sigma_{1|0} C_1^T + R_1)^{-1} y_1 \\ &= \hat{x}_{1|0} + \Sigma_{1|0} C_1^T (C_1 \Sigma_{1|0} C_1^T + R_1)^{-1} (y_1 - C_1 \hat{x}_{1|0}) \quad \text{Filter} \end{aligned}$$

$$\text{From (2): } \Sigma_{1|1} = \Sigma_{1|0} - \Sigma_{1|0} C_1^T (C_1 \Sigma_{1|0} C_1^T + R_1)^{-1} C_1 \Sigma_{1|0} \quad \text{Filter covariance}$$

$$\begin{aligned} \text{Time update: } \hat{x}_{2|1} &= A_1 \hat{x}_{1|1} + B_1 u_1 && \text{One-step predictor} \\ \Sigma_{2|1} &= A_1 \Sigma_{1|1} A_1^T + Q_1 && \text{Predictor covariance} \end{aligned}$$

$$\hat{y}_{2|1} \quad \text{is gaussian} \quad N(C_2 \hat{x}_{2|1}, C_2 \Sigma_{2|1} C_2^T + R_2)$$

Stochastic Processes

Generalizing, for the plant

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$

$$y_k = C_k x_k + v_k$$

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + \sum_{k|k-1} C_k^T \left(C_k \sum_{k|k-1} C_k^T + R_k \right)^{-1} (y_k - C_k \hat{x}_{k|k-1}) \quad \text{Filter}$$

$$\hat{x}_{k+1|k} = A_k \hat{x}_{k|k} + B_k u_k \quad \text{Predictor}$$

$$\sum_{k|k} = \sum_{k|k-1} - \sum_{k|k-1} C_k \left(C_k \sum_{k|k-1} C_k^T + R_k \right)^{-1} C_k \sum_{k|k-1}$$

$$\sum_{k+1|k} = A_k \sum_{k|k} A_k^T + Q_k$$

These are the discrete-time Kalman filtering equations

They consist of time update and measurement update parts

One-step-ahead predictions and filtered estimates are given

The prediction error is used to update the state estimate

Stochastic Processes

Kalman Filter properties

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$

$$y_k = C_k x_k + v_k$$

Kalman Predictor:

$$\hat{x}_{k+1|k} = (A_k - M_k C_k) \hat{x}_{k|k-1} + B_k u_k + M_k y_k$$

$$M_k = A_k \sum_{k|k-1} C_k^T (C_k \sum_{k|k-1} C_k^T + R_k)^{-1}$$

$$\sum_{k+1|k} = A_k \sum_{k|k-1} A_k^T - A_k \sum_{k|k-1} C_k^T (C_k \sum_{k|k-1} C_k^T + R_k)^{-1} C_k \sum_{k|k-1} A_k^T + Q_k$$

Kalman Filter:

$$\hat{x}_{k|k} = (I - L_k C_k) A_k \hat{x}_{k-1|k-1} + (I - L_k C_k) B_{k-1} u_{k-1} + L_k y_k$$

$$L_k = \sum_{k|k-1} C_k^T (C_k \sum_{k|k-1} C_k^T + R_k)^{-1}$$

$$\sum_{k|k} = (I - L_k C_k) \sum_{k|k-1}$$

- The Kalman filter and the Kalman predictor are state observers!
- $\sum_{k|k-1}$ satisfies a Riccati Difference Equation (RDE)

Stochastic Processes

Kalman Filter properties

Kalman Filter RDE:

$$\Sigma_{k+1|k} = A_k \Sigma_{k|k-1} A_k^T - A_k \Sigma_{k|k-1} C_k^T (C_k \Sigma_{k|k-1} C_k^T + R_k)^{-1} C_k \Sigma_{k|k-1} A_k^T + Q_k$$

LQR RDE:

$$S_k = A_k^T S_{k+1} A_k - A_k^T S_{k+1} B_k (B_k^T S_{k+1} B_k + R_k)^{-1} B_k^T S_{k+1} A_k + Q_k$$

Covariances:

$$\Sigma_{k|k-1} = E \left[(x_k - \hat{x}_{k|k-1}) (x_k - \hat{x}_{k|k-1})^T \right]$$
$$\Sigma_{k|k} = E \left[(x_k - \hat{x}_{k|k}) (x_k - \hat{x}_{k|k})^T \right]$$

Stochastic Processes

Kalman Filter properties

Observer error equations:

Kalman Predictor:

$$\begin{aligned}x_{k+1} - \hat{x}_{k+1|k} &= A_k x_k + B_k u_k + w_k - (A_k - M_k C_k) \hat{x}_{k|k-1} - B_k u_k - M_k (C_k x_k + v_k) \\ \tilde{x}_{k+1|k} &= (A_k - M_k C_k) \tilde{x}_{k|k-1} + w_k - M_k v_k\end{aligned}$$

Kalman Filter:

$$\begin{aligned}x_{k+1} - \hat{x}_{k+1|k+1} &= A_k x_k + B_k u_k + w_k - (I - L_{k+1} C_{k+1}) (A_k \hat{x}_{k|k} + B_k u_k) + L_{k+1} (C_{k+1} x_{k+1} + v_{k+1}) \\ \tilde{x}_{k+1|k+1} &= (I - L_{k+1} C_{k+1}) A_k \tilde{x}_{k|k} - L_{k+1} v_{k+1} + (I - L_{k+1} C_{k+1}) w_k\end{aligned}$$

Stochastic Processes

Kalman Filter properties

$$\tilde{x}_{k+1|k} = (A_k - M_k C_k) \tilde{x}_{k|k-1} + w_k - M_k v_k$$

Use this equation to compute the covariance propagation

$$E(\tilde{x}_{k+1|k} \tilde{x}_{k+1|k}^T) = X_{k+1} = (A_k - M_k C_k) X_k (A_k - M_k C_k)^T + M_k R_k M_k^T + Q_k$$

The Kalman filter is an observer in which we balance

- the stabilizing properties of big gain M_k
- the role of this stability in reducing the Q_k effect in X_k
- the amplification of the measurement noise variance R_k effect in X_k

The Kalman filter is an optimal observer which balances the smoothing of measurements noise v_k against the tracking of the state knocked around by w_k .

Stochastic Processes

Kalman Filter properties

- The Kalman filter is a linear, discrete-time, finite-dimensional system.
- The input of the filter is y_k and the output is $\hat{x}_{k|k-1}$.
- The gains M_k , L_k and covariance matrix $\Sigma_{k|k-1}$ do not depend on the data and can be pre-computed before the filter is run.
- The matrix $\Sigma_{k|k-1}$ is the error covariance matrix of the state estimator

$$\Sigma_{k|k-1} = E\left[\left(x_k - \hat{x}_{k|k-1}\right)\left(x_k - \hat{x}_{k|k-1}\right)^T\right]$$

- Even if the underlying signal model $[A, B, C, Q, R]$ is time-invariant, the resulting Kalman filter will be time-varying unless

$$\Sigma_{0|-1} = \Sigma_{\infty|\infty-1}$$

Stochastic Processes

Kalman Filter properties

- The Kalman filter equations are dual of the LQR equations.

$$A \rightarrow A^T, \quad B \rightarrow C^T, \quad Q^C \rightarrow Q^O, \quad R^C \rightarrow R^O$$

- The LQR RDE is replaced by the KF RDE evolving forwards in time.

Stochastic Processes

Extended Kalman Filter

For the nonlinear signal model

$$x_{k+1} = f(x_k, u_k) + w_k$$

$$y_k = h(x_k) + v_k$$

with the usual assumptions holding and all functions sufficiently continuously differentiable. The extended Kalman filter is given by

$$\hat{x}_{k+1|k} = f(\hat{x}_{k|k}, u_k)$$

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + L_k (y_k - h(\hat{x}_{k|k-1}))$$

$$L_k = \sum_{k|k-1} C_k^T (C_k \sum_{k|k-1} C_k^T + R_k)^{-1}$$

$$\Sigma_{k+1|k} = A_k \sum_{k|k-1} A_k^T - A_k \sum_{k|k-1} C_k^T (C_k \sum_{k|k-1} C_k^T + R_k)^{-1} C_k \sum_{k|k-1} A_k^T + Q_k$$

$$A_k = \left. \frac{\partial f}{\partial x} \right|_{\hat{x}_{k|k}}, C_k = \left. \frac{\partial h}{\partial x} \right|_{\hat{x}_{k|k}}$$

The Extended Kalman Filter is a non-linear filter! The linearization is only in the gain calculation.