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Kalman Predictor/Filter 
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Stochastic Processes 
Optimal Estimation and Prediction 
Let us assume now that our plant is: 

Prediction Problem: How can we estimate xk given measurements of 
{ul, yl: l≤k-d}? We denote the d-step-ahead prediction as 

with initial condition x0 given, and where wk and vk are independent 
zero-mean, white stochastic processes (independent of x0).   

€ 

E wk( ) = 0,E vk( ) = 0,E
wk

vk

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ wl

T vl
T[ ]

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

Qk 0
0 Rk

⎡ 

⎣ 
⎢ 
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⎥ δk,l ,      Qk,Rk ≥ 0  ∀k

Filtering Problem: How do we compute the filtered estimate          ? 
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Stochastic Processes 

How do we take two independent, unbiased measurements, x1 and x2, 
with variances  σ1

2 and σ2
2, of the same quantity x and combine them to 

get a better, unbiased estimate? 

€ 

ˆ x = ax1 + 1− a( )x2
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E ˆ x − E ˆ x ( )( )2( ) = a2σ1
2 + 1− a( )2

σ2
2

unbiased 

Covariance 
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2 = 0⇒ a =
σ2

2

σ1
2 +σ2

2

€ 

ˆ x = σ2
2

σ1
2 +σ2

2 x1 +
σ1

2

σ1
2 +σ2

2 x2



ME 450 – Data-driven Modeling and Robust Control 4 

Stochastic Processes 

Linear, variance-weighted sum. Nothing mysterious. 

The quality of the estimation is improved. Can we do similar things 
when x satisfies a state equation? We just need to propagate means 
and variances. € 
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2σ1

2σ2
2

σ1
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2( )−1

+ σ2
2( )−1[ ]
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2{ }€ 
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2
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2 x2

•  taking into account the effect of state equation (easy, deterministic) 

•  taking into account the new measurements (a bit harder, conditional 
probability) 
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Stochastic Processes 

We want to find the estimate        which minimizes 

The minimum variance estimate is given by the conditional mean 
  

€ 

E xk − ˆ x k
2 yk−d , yk−d −1,…( )

Proof: 

Minimum Variance Estimates 

  

€ 

ˆ x k = E xk yk−d ,yk−d −1,…( ) Most important property 
in estimation 

€ 

E xk − ˆ x k( )2
Y⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ = E xk

T xk Y( ) − 2E xk
T ˆ x k Y( ) + E ˆ x k

T ˆ x k Y( )
= ˆ x k − E xk Y( )( )

2
+ E xk

T xk Y( ) − E xk Y( )( )
2

is minimized when 

€ 

ˆ x k = E xk Y( )
The conditional mean is the least square estimate. 
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Stochastic Processes 

x is a gaussian random n-vector if its probability density function is of the 
form 

€ 

p x( ) =
1

2π( )n / 2
1
∑1/ 2 e

−
1
2
x−m( )T ∑−1 (x−m )

where m is the mean value of x, E(x), and non-singular matrix  Σ is the 
covariance matrix, E[(x-m)(x-m)T]. 

Jointly Gaussian Random variables 

If x is gaussian N(m, Σ) then y=Ax+b is gaussian N(Am+b, AΣAT). 

If x and y are commensurate gaussian random n-vectors, then x+y is a 
gaussian random n-vector N(mx+my, Σx+y). 
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Stochastic Processes 

€ 

E x y[ ] = mx −∑xy∑yy
−1my +∑xy∑yy

−1 y

also a gaussian random n-vector.  

The gaussian conditional-mean estimate has the conditional error 
variance equal to the unconditional error variance (not true if not 
gaussian). 

If x and y are jointly gaussian, i.e, [xT yT]T is a gaussian process  
N([mx

T my
T], Σ) with  

(1) 

€ 

E x − E x y[ ]( )
2
y

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= E x − E x y[ ]( )
2⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ =∑xx −∑xy∑yy

−1∑yx (2) 

€ 

E x − E x y[ ] y[ ] = E x y[ ] − E x y[ ] = 0
The conditional-mean estimate is unbiased.  

Then, 
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•  x0 is gaussian with mean     and covariance    . 

•  wk is gaussian, zero-mean, white process (                          ), 
   independent of x0 and vk.   

•  vk is gaussian, zero-mean, white process (                          ), 
   independent of x0 and wk.  

Stochastic Processes 

Assumptions: 

Kalman Filter 
State equations: 

Everything is gaussian --- linear operations preserve gaussian properties 

€ 

E wkwl
T( ) =Qkδk,l

€ 

E vkvl
T( ) = Rkδk,l
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Stochastic Processes 

From (1): 

is gaussian 

€ 

x0
y0
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⎢ 

⎤ 
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x 0

C0x 0
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⎢ 
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€ 

ˆ x 0|0 = x 0 − P0C0
T C0P0C0

T + R0( )−1
C0x 0 + P0C0

T C0P0C0
T + R0( )−1

y0

= x 0 + P0C0
T C0P0C0

T + R0( )−1
y0 −C0x 0( )

From (2): 

€ 

∑0|0 = P0 − P0C0
T C0P0C0

T + R0( )−1C0P0

Time update: 

€ 

∑1|0 = A0∑0|0 A0
T +Q0

€ 

ˆ x 1|0 = A0 ˆ x 0|0 + B0u0 One-step predictor 

Predictor covariance 

is gaussian 

€ 

N C1 ˆ x 1|0,C1∑1|0 C1
T + R1( )

Filter 

Filter covariance 
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Stochastic Processes 

From (1): 

is gaussian 

€ 

x1
y1
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⎢ 
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N
ˆ x 1|0

C1 ˆ x 1|0
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⎢ 
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⎢ 
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€ 

ˆ x 1|1 = ˆ x 1|0 −∑1|0 C1
T C1∑1|0 C1

T + R1( )−1
C1 ˆ x 1|0 +∑1|0 C1

T C1∑1|0 C1
T + R1( )−1

y1

= ˆ x 1|0 +∑1|0 C1
T C1∑1|0 C1

T + R1( )−1
y1 −C1 ˆ x 1|0( )

From (2): 

€ 

∑1|1 =∑1|0 −∑1|0C1
T C1∑1|0C1

T + R1( )−1C1∑1|0

Time update: 

€ 

∑2|1 = A1∑1|1 A1
T +Q1

€ 

ˆ x 2|1 = A1 ˆ x 1|1 + B1u1 One-step predictor 

Predictor covariance 

is gaussian 

€ 

N C2 ˆ x 2|1,C2∑2|1 C2
T + R2( )

Filter 

Filter covariance 
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Stochastic Processes 
Generalizing, for the plant 

€ 

ˆ x k|k = ˆ x k|k−1 +∑k|k−1 Ck
T Ck ∑k|k−1 Ck

T + Rk( )−1
yk −Ck ˆ x k|k−1( )

€ 

∑k|k =∑k|k−1 −∑k|k−1Ck
T Ck∑k|k−1Ck

T + Rk( )−1Ck∑k|k−1

€ 

∑k+1|k = Ak∑k|k Ak
T +Qk€ 

ˆ x k +1|k = Ak ˆ x k|k + Bkuk Predictor 

These are the discrete-time Kalman filtering equations 
They consist of time update and measurement update parts 
One-step-ahead predictions and filtered estimates are given 
The prediction error is used to update the state estimate 

Filter 
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Stochastic Processes 
Kalman Filter properties 

€ 

ˆ x k +1|k = Ak − MkCk( ) ˆ x k|k−1 + Bkuk + Mk yk

Mk = Ak ∑k|k−1 Ck
T Ck ∑k|k−1 Ck

T + Rk( )−1

∑k +1|k = Ak ∑k|k−1 Ak
T − Ak ∑k|k−1 Ck

T Ck ∑k|k−1 Ck
T + Rk( )−1

Ck ∑k|k−1 Ak
T + Qk

•  The Kalman filter and the Kalman predictor are state observers! 
•            satisfies a Riccati Difference Equation (RDE) 

Kalman Predictor: 

€ 

xk+1 = Akxk + Bkuk + wk

yk = Ckxk + vk

€ 

ˆ x k|k = I − LkCk( )Ak ˆ x k−1|k−1 + I − LkCk( )Bk−1uk−1 + Lk yk

Lk =∑k|k−1 Ck
T Ck ∑k|k−1 Ck

T + Rk( )−1

∑k|k = I − LkCk( )∑k|k−1

Kalman Filter: 
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Stochastic Processes 
Kalman Filter properties 

€ 

∑k+1|k = Ak∑k|k−1 Ak
T − Ak∑k|k−1Ck

T Ck∑k|k−1Ck
T + Rk( )−1Ck∑k|k−1 Ak

T +Qk

Kalman Filter RDE: 

€ 

∑k|k−1 = E xk − ˆ x k|k−1( ) xk − ˆ x k|k−1( )T[ ]
∑k|k = E xk − ˆ x k|k( ) xk − ˆ x k|k( )T[ ]

LQR RDE: 

€ 

Sk = Ak
T Sk+1Ak − Ak

T Sk+1Bk Bk
T Sk+1Bk + Rk( )−1Bk

T Sk+1Ak +Qk

Covariances: 
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Stochastic Processes 
Kalman Filter properties 

€ 

xk +1 − ˆ x k +1|k = Ak xk + Bkuk + wk − Ak − MkCk( ) ˆ x k|k−1 − Bkuk − Mk Ck xk + vk( )
˜ x k +1|k = Ak − MkCk( ) ˜ x k|k−1 + wk − Mkvk

Kalman Predictor: 

€ 

xk +1 − ˆ x k +1|k +1 = Ak xk + Bkuk + wk − I − Lk +1Ck +1( ) Ak ˆ x k|k + Bkuk( ) + Lk +1 Ck +1xk +1 + vk +1( )
˜ x k +1|k +1 = I − Lk +1Ck +1( )Ak ˜ x k|k − Lk +1vk +1 + I − Lk +1Ck +1( )wk

Kalman Filter: 

Observer error equations: 
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Stochastic Processes 
Kalman Filter properties 

€ 

˜ x k +1|k = Ak − MkCk( ) ˜ x k|k−1 + wk − Mkvk

Use this equation to compute the covariance propagation 

€ 

E ˜ x k +1|k ˜ x k +1|k
T( ) = Xk +1 = Ak − MkCk( )Xk Ak − MkCk( )T

+ MkRk Mk
T + Qk

The Kalman filter is an observer in which we balance 
•  the stabilizing properties of big gain Mk 

•  the role of this stability in reducing the Qk effect effect in Xk 

•  the amplification of the measurement noise variance Rk effect in Xk 

The Kalman filter is an optimal observer which balances the smoothing 
of measurements noise vk against the tracking of the state knocked 
around by wk.  
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•  The Kalman filter is a linear, discrete-time, finite-dimensional system. 

•  The input of the filter is yk and the output is           .  

•  The gains Mk, Lk and covariance matrix         do not depend on the 
data and can be pre-computed before the filter is run.  

•  The matrix             is the error covariance matrix of the state estimator  

• Even if the underlying signal model [A, B, C, Q, R] is time-invariant, the 
resulting Kalman filter will be time-varying unless  

Stochastic Processes 
Kalman Filter properties 

€ 

∑k|k−1 = E xk − ˆ x k|k−1( ) xk − ˆ x k|k−1( )T[ ]
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•  The Kalman filter equations are dual of the LQR equations. 

• The LQR RDE is replaced by the KF RDE evolving forwards in time.  

Stochastic Processes 
Kalman Filter properties 
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Stochastic Processes 

with the usual assumptions holding and all functions sufficiently 
continuously differentiable. The extended Kalman filter is given by 

Extended Kalman Filter 
For the nonlinear signal model  

€ 

xk+1 = f xk,uk( ) + wk

yk = h xk( ) + vk

The Extended Kalman Filter is a non-linear filter! The linearization is only 
in the gain calculation.  

€ 

ˆ x k +1|k = f ˆ x k|k,uk( )
ˆ x k|k = ˆ x k|k−1 + Lk yk − h ˆ x k|k−1( )( )
Lk =∑k|k−1 Ck

T Ck ∑k|k−1 Ck
T + Rk( )−1

∑k +1|k = Ak ∑k|k−1 Ak
T − Ak ∑k|k−1 Ck

T Ck ∑k|k−1 Ck
T + Rk( )−1

Ck ∑k|k−1 Ak
T + Qk

Ak =
∂f
∂x ˆ x k|k

,Ck =
∂h
∂x ˆ x k|k


