Kalman Predictor/Filter
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Stochastic Processes

Optimal Estimation and Prediction
Let us assume now that our plant is:
X, =A4x, +Bu +w,
Vi =Cpx; v,

with initial condition x, given, and where w, and v, are independent
zero-mean, white stochastic processes (independent of x,).

T T Qk 0
[Wz V, ]) = [ 0 Rk

Prediction Problem: How can we estimate x, given measurements of
{u, y;: Isk-d}? We denote the d-step-ahead prediction as

W

E(w,)=0,E(v,)=0,E S OnR, 20 Vk

Vi

N

Y elk-d
Filtering Problem: How do we compute the filtered estimate )?k‘k ?
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Stochastic Processes

How do we take two independent, unbiased measurements, x;, and x,,
with variances o, and o), of the same quantity x and combine them to
get a better, unbiased estimate?

X = ax, + (1 — a)x2 unbiased

Covariance E(()Ac — E(fc))z) =a’o’ +(1- a)zof

aE((x - E(fc))z) 2
— =2aof-2(1—a)o§=0=>a=012+Og

% 9

Tea T oal
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Stochastic Processes

o ., o
o+ o al

X =

Linear, variance-weighted sum. Nothing mysterious.

-[(@) " +(e)] < minfor.oz]

The quality of the estimation is improved. Can we do similar things
when x satisfies a state equation? We just need to propagate means
and variances.

» taking into account the effect of state equation (easy, deterministic)

» taking into account the new measurements (a bit harder, conditional
probability)
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Stochastic Processes

Minimum Variance Estimates

We want to find the estimate X, which minimizes

2

Vi—d>Yk-d-1>- )

E(ka - X,

The minimum variance estimate is given by the conditional mean

A Most important property
Xp = E(xk‘yk—d Yi—d -1+ ) in estimation

Y)

_ (;%k _ E(JC,C\Y))2 + E(x,ka‘Y) - (E(xk‘y))z

is minimized when X, = E(xk‘Y)

Proof: E((xk - %k)z‘Y) = E(x,ka‘Y) - 2E(x,f§ck Y) + E(fckack

The conditional mean is the least square estimate.
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Stochastic Processes

Jointly Gaussian Random variables

x is a gaussian random rn-vector if its probability density function is of the
form

! Tl xX-m
p(x)=( 1 1 e—E(X—m) > ( )

2n)n/2 |E|l/2

where m is the mean value of x, E(x), and non-singular matrix X is the
covariance matrix, E[(x-m)(x-m)'].

If x is gaussian N(m, X) then y=Ax+b is gaussian N(4dm+b, AZAT).

If x and y are commensurate gaussian random rn-vectors, then x+y is a
gaussian random n-vector N(m +m, 2 , ).

iy =2t 2ut 2t 2,
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Stochastic Processes

If x and y are jointly gaussian, i.e, [x” y']” is a gaussian process
N([m, " m,], Z) with

Exx Exy
2=l3,. 3,
Then,
E[xy|=m, -3, 3 m +3, 3y ()

also a gaussian random n-vector.

E|(x- b)) | B (- b)) ] - 5.3, 308, @

The gaussian conditional-mean estimate has the conditional error

variance equal to the unconditional error variance (not true if not
gaussian).

E[x E| x|y \y] E|xly|- E[x]ly] =0

The conditional-mean estimate is unbiased.
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Stochastic Processes

Kalman Filter
State equations:
X, =A4x, +Bu +w,
Ve =Cix, +v,
Assumptions:
* X, IS gaussian with mean Xx,and covariance P,

* w, is gaussian, zero-mean, white process ( E(w,w])=0,,, ),
independent of x, and v,.

* v, IS gaussian, zero-mean, white process ( E(vkvlT) =R, ),
independent of x, and w,.

Everything is gaussian --- linear operations preserve gaussian properties
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Stochastic Processes

Xg
CoXo

A — T T -1 T T -1
From (1): Xg0 = Xo — FyC (COPOCO + Ro) Co Xy + FC (COPOCO + Ro) Yo

PO POCg
c,p, C,PC, +R,

b

[ ]
yo

=X, + POC(f(COPOCg + RO)_I(yO — CO)_CO) Filter

-1 ] .
From (2): Eom =P, - POCg(COPOCg + Ro) CoPo Filter covariance
Time update: Xyo = AgXgo + Byl One-step predictor
20 = A 2o Ag + 0, Predictor covariance

)A/llo IS gaussian N(Cl'%IIO’CI 2o CIT t R1)
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Stochastic Processes

X X0 210 210 C/
Y Ci Xy

C 20 Ci 20 CIT + R,
A ~ -1 . -1
From (1): Xy =X~ 210 CIT C 20 CIT +R) Cixpo+ 2 C1T (C1 210 CIT + Rl) i

N -1 N .
= X0+ 2o CIT C\ 2o ClT +R, (Y1 - C1x1|0) Filter

Y, isgaussian N

-1 ] .
From (2): 2 = 2o~ 2o CIT(CI 2o CIT + Rl) C\ 2o Filter covariance

Time update: X, =AX, +Bu, One-step predictor

Ezu = A Em AIT + 0, Predictor covariance

)72“ IS gaussian N(C25€2|1’C2 2 CzT t Rz)
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Stochastic Processes

Generalizing, for the plant
X, =A4x, +Bu +w,

Vi =Cx, +v,

. . 1 A
Xy = Xt + e CI{(Ck S Cp + Rk) ()’k - Ckxklk—l)

X = AXpy + By
T T -1
itk = 2uiket = 2wk C (Ck i Cr + Rk) Cy D

Ek+1lk = Ak Eklk AZ + Qk

These are the discrete-time Kalman filtering equations
They consist of time update and measurement update parts
One-step-ahead predictions and filtered estimates are given
The prediction error is used to update the state estimate
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Stochastic Processes

Kalman Filter properties
X, =Ax, +Bu +w,

=C,x, +Vv
Kalman Predictor: Vi Kk k

xk+1|k (A -MC )'xklk B+ My,

M, = A 2 CZ(Ck i Ci + Rk)_

-1
Ek+1|k = A, Eklk—l AZ - Ay Eklk—l CIZ(Ck Eklk—l CZ + Rk) C, Eklk—l AZ +0,

Kalman Filter:
Xy = (I LC )A Xp_tik-1 T (I_chk)Bk—luk—l + Ly,

-1
L, = Eklk—l CZ(Ck Eklk—l CkT + Rk)
Eklk (I LC )Eklk 1

» The Kalman filter and the Kalman predictor are state observers!

>« Satisfies a Riccati Difference Equation (RDE)
ME 450 — Data-driven Modeling and Robust Control
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Stochastic Processes

Kalman Filter properties

Kalman Filter RDE:
-1
Ek+1|k - Ak Eklk—l AIZ - Ak Eklk—l CIZ(Ck Eklk—l CIZ + Rk) Ck Eklk—l AZ + Qk

LQR RDE:

-1
S = AZSkHAk - A£Sk+1Bk(BIfSk+1Bk + Rk) BZSIHIAk + 0,

I R R T
Covariances: Eklk—l =E (xk - xklk—l)(xk - xklk—l) ]

S = E| (v~ ) (v - )|
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Stochastic Processes

Kalman Filter properties

Observer error equations:

Kalman Predictor:
Xgs1 — fck+llk = A X, + By +w, - (Ak - Mkck);cklk-l - Bu, — Mk(Ck'xk + Vk)

Xiatle = (Ak - Mka)';Cklk—l +w, - My,
Kalman Filter:

Xirl = Xpnier = AX + By, +wy — (1 - Lk+1Ck+1)(Ak'kuk + Bkuk) + Lk+1(Ck+1'xk+1 + Vk+1)

Xfatlnl = (I - Lk+1Ck+1)Ak5Ck|k — L Vgt (I - Lk+1Ck+1)Wk
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Stochastic Processes
Kalman Filter properties
Xiate = (Ak - Mka)'%klk—l +w, - My,
Use this equation to compute the covariance propagation
E(Xeihe) = Xen = (A - MC )X, (A, - M,C,) + MR M +0,

The Kalman filter is an observer in which we balance
» the stabilizing properties of big gain M,

» the role of this stability in reducing the Q, effect effect in X,
» the amplification of the measurement noise variance R, effect in X,

The Kalman filter is an optimal observer which balances the smoothing
of measurements noise v, against the tracking of the state knocked
around by w,.
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Stochastic Processes

Kalman Filter properties
» The Kalman filter is a linear, discrete-time, finite-dimensional system.
« The input of the filter is y, and the output is )%k|k_1 .

* The gains M,, L, and covariance matrix Ek|k_1 do not depend on the
data and can be pre-computed before the filter is run.

* The matrix E k-1 IS the error covariance matrix of the state estimator

e = B[ = o =)

*Even if the underlying signal model [4, B, C, O, R] is time-invariant, the
resulting Kalman filter will be time-varying unless

EO|—1 = Eoo|oo-1
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Stochastic Processes

Kalman Filter properties
» The Kalman filter equations are dual of the LQR equations.
A%AT, B%CT, QC%QO, RC%RO

*The LQR RDE is replaced by the KF RDE evolving forwards in time.
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Stochastic Processes

Extended Kalman Filter

For the nonlinear signal model
Xipl = f(xk’uk) T Wy

y, = h(xk) +Vv,
with the usual assumptions holding and all functions sufficiently
continuously differentiable. The extended Kalman filter is given by

§Ck+1lk = f('%klk’uk)
Xpe = Xy + Lk(yk - h(';cklk—l))
L, = Eklk—l CZ(Ck Eklk—l CZ + Rk)_l

-1
2k+1|k = Ay Eklk—l AZ - A, Eklk—l CZ(Ck Eklk—l CZ + Rk) C, Eklk—l AZ + 0,

0 oh
Ak _ i ’Ck _
ax )eklk ax fklk

The Extended Kalman Filter is a non-linear filter! The linearization is only

in the gain calculation.
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