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Input-Output Stability

L Stability

Broader concept that Input-State Stability (ISS).

We consider a system with input-output relation

y = Hu, u : [0,∞) → Rm

Space of piecewise continuous, bounded functions:

Lm
∞ : ∥u∥L∞ = sup

t≥0
∥u(t)∥ <∞

Space of piecewise continuous, square-integrable functions:

Lm
2 : ∥u∥L2

=

√∫ ∞

0

uT (t)u(t)dt <∞

More generally, the space Lm
p for 1 ≤ p <∞ (p: p-norm, m : dimension of u)

∥u∥Lm
p
=

(∫ ∞

0

∥u(t)∥pdt
)1/p

<∞

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 2 / 39



Input-Output Stability

Truncated norm for 1 ≤ p ≤ ∞:

∥uτ∥Lm
p
=

{ (∫ τ

0
∥u(t)∥pdt

)1/p
p <∞

supt∈[0,τ ] ∥u(t)∥ p = ∞

allows for the definition of the extended space Lm
p,e, i.e.,

Lm
p,e = {u|uτ ∈ Lm

p ,∀τ ∈ [0,∞)}, uτ (t) =

{
u(t) 0 ≤ t ≤ τ
0 t > τ

Example: Exponential functions are in this space.
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Input-Output Stability

Note: We use L to denote any Lp norm/space without committing to any
particular p.

Definition 5.1: A mapping H : Lm
e → Lq

e is L stable if there is a class K
function α and a nonnegative constant β such that

∥(Hu)τ∥L ≤ α (∥uτ∥L) + β

for all u ∈ Lm
e and τ ∈ [0,∞). It is finite-gain L stable if there are nonnegative

constants γ and β such that

∥(Hu)τ∥L ≤ γ∥uτ∥L + β

for all u ∈ Lm
e and τ ∈ [0,∞). The constant β is called the bias term and is

included in the definition to allow for systems where Hu does not vanish at u = 0.
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Input-Output Stability

Let us consider a linear system. Let y = Hu be described by the convolution
operator

y(t) =

∫ t

0

h(t− σ)u(σ)dσ, h(t) ≡ 0 for t < 0

Theorem (Young’s Convolution Theorem): (See Example 5.2)

∥yτ∥Lp = ∥(h ∗ u)τ∥Lp ≤ ∥h∥L1∥uτ∥Lp , ∀p ∈ [1,∞], ∀τ ∈ [0,∞)

Linear systems are finite-gain Lp stable if h ∈ L1, i.e.

∥h∥L1 =

∫ ∞

0

|h(σ)|dσ <∞

In this case, the gain γ is equal to the L1 norm of the impulse response
(∥h∥L1

<∞).

Holder’s Inequality: If p, q ∈ [1,∞] and 1
p + 1

q = 1, then for every τ ∈ [0,∞)∫ τ

0

|f(t)g(t)|dt ≤
(∫ τ

0

|f(t)|pdt
)1/p (∫ τ

0

|g(t)|qdt
)1/q

, ∀t ≥ 0
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Input-Output Stability

L2 Stability

Theorem 5.4: Consider the linear time-invariant system

ẋ = Ax+Bu

y = Cx+Du

where A is Hurwitz. Let G(s) = C(sI −A)−1B +D. Then, the L2 gain of the
system is ∥G(jω)∥H∞ = supω∈R ∥G(jω)∥2, i.e. ∥y∥L2 ≤ ∥G(jω)∥H∞∥u∥L2 .

Fourier Transform:

Y (jω) =

∫ ∞

0

y(t)e−jωtdt

Parseval’s Theorem:∫ ∞

0

yT (t)y(t)dt =
1

2π

∫ +∞

−∞
Y ∗(jω)Y (jω)dω

Proof: Easy. Note that ∥y∥2L2
=

∫∞
0
yT (t)y(t)dt. Use Parseval theorem and the

fact that Y (jω) = G(jω)U(jω). See proof in the book.

Note: This theorem is the foundation of H∞ Control → Robust Control.
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Input-Output Stability

For LTI systems we can find the exact L2 gain. For general systems, we can only
find an upper bound on the L2 gain, as the next theorem states.

Theorem 5.5: Consider the nonlinear time-invariant system

ẋ = f(x) +G(x)u, x(0) = x0, y = h(x)

where f(x) is locally Lipschitz, and G(x), h(x) are continuous over Rn. The
matrix G is n×m and h : Rn → Rq. The function f and h vanish at the origin;
that is, f(0) = 0 and h(0) = 0. Let γ be a positive number and suppose there is a
continuously differentiable, positive semidefinite function V (x) that satisfies the
Hamilton-Jacobi (HJ) inequality

H(V, f,G, h, γ) ≜
∂V

∂x
f(x) +

1

2γ2

∂V

∂x
G(x)GT (x)

(
∂V

∂x

)T

+
1

2
hT (x)h(x) ≤ 0

for all x ∈ Rn. For each x0 ∈ Rn, the system is finite-gain L2 stable and its L2

gain is less than or equal to γ.

Proof: Easy. Complete square for ∂V
∂x f(x) +

∂V
∂xG(x)u, use HJ inequality,

integrate, and work with the inequality. See proof in the book.
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Input-Output Stability

Theorem (Alternative to Theorem 5.4): Consider the linear time-invariant
system

ẋ = Ax+Bu

y = Cx

Suppose there is a positive semidefinite solution P of the Riccati equation

PA+ATP +
1

γ2
PBBTP + CTC = 0

for some γ > 0. Then, the system is L2 stable and its L2 gain is less than or
equal to γ.

Proof: Trivial application of Theorem 5.5. See Example 5.11. It plays critical
role in H∞ Control → (Robust Control) synthesis.

Note: This theorem gives an alternative method for computing an upper bound
on the L2 gain, as opposed to the frequency-domain calculation of Theorem 5.4.
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Input-Output Stability

Feedback Systems

Consider the linear time-invariant system

Figure: Feedback Connection.
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Input-Output Stability

Theorem 5.6 (Small-Gain Theorem): Suppose H1 and H2 are finite-gain L
stable with constants (γ1, β1) and (γ2, β2) respectively. That is,

∥y1τ∥L ≤ γ1∥e1τ∥L + β1, ∀e1 ∈ Lm
e , ∀τ ∈ [0,∞)

∥y2τ∥L ≤ γ2∥e2τ∥L + β2, ∀e2 ∈ Lq
e, ∀τ ∈ [0,∞)

Then, the feedback connection is finite-gain L stable if γ1γ2 < 1.

Proof: Assuming existence of solution, we can write

e1τ = u1τ − (H2e2)τ , e2τ = u2τ − (H1e1)τ .

Then,

∥e1τ∥L ≤ ∥u1τ∥L + ∥(H2e2)τ∥L
≤ ∥u1τ∥L + γ2∥e2τ∥L + β2

≤ ∥u1τ∥L + γ2(∥u2τ∥L + γ1∥e1τ∥L + β1) + β2

= γ1γ2∥e1τ∥L + (∥u1τ∥L + γ2∥u2τ∥L + γ2β1 + β2)
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Input-Output Stability

Since γ1γ2 < 1,

∥e1τ∥L ≤ 1

1− γ1γ2
(∥u1τ∥L + γ2∥u2τ∥L + γ2β1 + β2)

for all τ ∈ [0,∞). Similarly,

∥e2τ∥L ≤ 1

1− γ1γ2
(∥u2τ∥L + γ1∥u1τ∥L + γ1β2 + β1)

for all τ ∈ [0,∞).

Notes:

Phase does NOT matter at all.

Magnitude of one of the gains dos NOT matter at all as long as the other
gain is small enough to satisfy γ1γ2 < 1.

This theorem is the foundation of Robust Control (robust stability), where H1

is seen as a stable nominal system and H2 is seen as a stable perturbation.
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Passivity

Passivity provides us with a useful tool for the analysis of nonlinear systems, which
relates nicely to Lyapunov and L2 stability.

Definition 6.3: The system

ẋ = f(x, u)

y = h(x, u)

is said to be passive if there exists a continuously differentiable positive
semidefinite function V (x) (called the storage function) such that

uT y ≥ V̇ =
∂V

∂x
f(x, u), ∀(x, u) ∈ Rn ×Rp

By integrating this equation, we can note that the system is passive if the energy
(integral of the power uT y) absorbed by the system over any period of time [0, t]
is greater than or equal to the increase in the energy stored in the system over the
same period of time, that is∫ t

0

u(s)T y(s)ds ≥ V (x(t))− V (x(0))

See Example 6.1 in the book.
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Passivity

Example: Khalil 6.1

Voltage source connected to RLC network

Linear inductor and capacitor; nonlinear resistors

Resistors 1 and 3 represented by v− i characteristics i1 = h1(v1), i3 = h3(v3)

Resistor 2 represented by i− v characteristics v2 = h2(i2)
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Passivity

Example: Khalil 6.1

Defining x1 : current through inductor, x2 : voltage across capacitor, and taking
the voltage u as the input and the current y as the output, we can write

Lẋ1 = u− h2(x1)− x2

Cẋ2 = x1 − h3(x2)

y = x1 + h1(u)
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Passivity

Example: Khalil 6.1

The key feature of an RLC network over a resistive network is the the presence of
the energy-storing elements L and C. The system is passive if the energy
absorbed by the network over a period of time is greater than or equal to the
increase in the energy stored in the network over the same period of time, i.e.∫ t

0

u(s)y(s)ds ≥ V (x(t))− V (x(0))

where V (x) = (1/2)Lx21 + (1/2)Cx22 is the energy stored in the network. Note
that a strict inequality implies energy dissipation (resistors). Since this integral
relationship must hold for every t ≥ 0, the instantaneous power inequality

u(t)y(t) ≥ V̇ (x(t))

must hold for all t. Note that u(t)y(t) represents the power (voltage × current)
flow into the network. Therefore, the power flow in the network must be greater
than or equal to the rate of change of the energy stored in the network.
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Passivity

Example: Khalil 6.1

Let us investigate this inequality by computing the derivative of
V (x) = (1/2)Lx21 + (1/2)Cx22 along the system trajectories, i.e.

V̇ = Lx1ẋ1 + Cx2ẋ2 = x1(u− h2(x1)− x2) + x2(x1 − h3(x2))

= x1[u− h2(x1)]− x2h3(x2)

= [x1 + h1(u)]u− uh1(u)− x1h2(x1)− x2h3(x2))

= uy − uh1(u)− x1h2(x1)− x2h3(x2)

Thus
uy = V̇ + uh1(u) + x1h2(x1) + x2h3(x2)
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Passivity

Example: Khalil 6.1

If the memoryless functions h1, h2 and h3 are passive (h(u)u ≥ 0), then
uy ≥ V̇ and the system is passive.
if h1 = h2 = h3 = 0, uy = V̇ and the system is lossless (no energy
dissipation).
if h2 and h3 belong to the sector [0,∞] (h(u)u ≥ 0), uy ≥ V̇ + uh1(u). The
term uh1(u) represents excess (> 0) or shortage (< 0) of passivity. This type
of excess or shortage of passivity can be removed by input feedforward. In the
case of excess of passivity we are talking about input strict passivity.
if h1 = 0 and h3 belong to the sector [0,∞] (h(u)u ≥ 0), uy ≥ V̇ + yh2(y).
The term yh2(y) represents excess (> 0) or shortage (< 0) of passivity. This
type of excess or shortage of passivity can be removed by output feedback. In
the case of excess of passivity we are talking about output strict passivity.
if h1 and h2 belong to the sector [0,∞] (h(u)u ≥ 0), and h3 belongs to the
sector (0,∞) (h(u)u > 0) uy ≥ V̇ + x1h2(x1) + x2h3(x2). The term
x1h2(x1) + x2h3(x2) is a positive definite function of x and represents an
excess of passivity. In the case of excess of passivity we are talking about
state strict passivity.
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Passivity

Therefore, the system is said to be passive if uT y ≥ V̇ . Moreover, it is said to be

lossless if uT y = V̇ .

input-feedforward passive if uT y ≥ V̇ + uTϕ(u) for some function ϕ.

input strictly passive if uT y ≥ V̇ + uTϕ(u) and uTϕ(u) > 0, for all u ̸= 0.

output-feedback passive if uT y ≥ V̇ + yT ρ(y) for some function ρ.

output strictly passive if uT y ≥ V̇ + yT ρ(y) and yT ρ(y) > 0, for all y ̸= 0.

strictly passive if uT y ≥ V̇ + ψ(x) for some positive definite function ψ.

In all cases the inequality should hold for all (x, u).
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Passivity

It is useful to write the passivity condition as

V̇ ≤ −ρψ(x)− δyT y − ϵuTu+ uT y

The term uT y contains the phase information. The system is:

lossless if ρ = δ = ϵ = 0, i.e., V̇ ≤ uT y

input strictly passive if ϵ > 0

output strictly passive if δ > 0

state strictly passive if ρ > 0

Note: V is allowed to be positive semidefinite.
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Passivity

Example: Khalil 6.2.
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Passivity

Relationship with L2 stability:

Lemma 6.5: If the system

ẋ = f(x, u)

y = h(x, u)

with f(0, 0) = h(0, 0) = 0 is output strictly passive with uT y ≥ V̇ + δyT y, for
some δ > 0, then it is finite-gain L2 stable and its L2 gain is less than or equal to
1/δ.

Proof: The derivative of the storage function V (x) satisfies

V̇ ≤ uT y − δyT y

= − 1

2δ
(u− δy)T (u− δy) +

1

2δ
uTu− δ

2
yT y

≤ 1

2δ
uTu− δ

2
yT y
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Passivity

Integrating both sides over [0, τ ] yields∫ τ

0

y(t)T y(t)dt ≤ 1

δ2

∫ τ

0

uT (t)u(t)dt− 2

δ
[V (x(τ))− V (x(0))]

Thus,

∥yτ∥L2 ≤ 1

δ
∥uτ∥L2 +

√
2

δ
V (x(0))

where we have used the fact that V (x) ≥ 0 and
√
a2 + b2 ≤ a+ b for

non-negative numbers a and b.
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Passivity

Relationship with Lyapunov stability:

Lemma 6.6: If the system

ẋ = f(x, u)

y = h(x, u)

with f(0, 0) = h(0, 0) = 0 is passive with a positive definite storage function
V (x), then the origin of ẋ = f(x, 0) is stable.

Proof: Take V as Lyapunov function candidate for ẋ = f(x, 0). Then V̇ ≤ 0.

Note: To show asymptotic stability of the origin of ẋ = f(x, 0), we need to
either show that V̇ is negative definite or apply the invariance theorem. The next
lemma uses the invariance theorem in combination with an additional property of
the system to give conditions for asymptotic stability.
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Passivity

Definition 6.5: The system

ẋ = f(x, u)

y = h(x, u)

with f(0, 0) = h(0, 0) = 0 is said to be zero-state observable if no solution of
ẋ = f(x, 0) can stay identically in S = {x ∈ Rn|h(x, 0) = 0}, other than x(t) = 0.

Lemma 6.7: Consider the system ẋ = f(x, u), y = h(x, u). The origin of
ẋ = f(x, 0) is asymptotically stable if system is

strictly passive or

output strictly passive and zero-state observable

If the storage function is radially unbounded, the origin will be globally
asymptotically stable.

Proof: See proof in the book.
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Passivity

Example: Khalil 6.6.
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Passivity

Feedback Systems:

Consider the linear time-invariant system

Figure: Feedback Connection.
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Passivity

Each system Hi can be represented by a state-space model

ẋi = fi(xi, ei)

yi = hi(xi, ei)

The closed-loop state model is

ẋ = f(x, u)

y = h(x, u)

with f(0, 0) = h(0, 0) = 0 (assumption), where

x =

[
x1
x2

]
, u =

[
u1
u2

]
, y =

[
y1
y2

]
Theorem 6.1: The feedback connection of two passive systems is passive.

Proof: See proof in the book. Very easy. Results are derived from definition of
passivity of individual systems, feedback connection, and taking V = V1 + V2,
where V1 and V2 are storage functions of H1 and H2.
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Passivity

Lemma 6.8: The feedback connection of two output strictly passive systems
with

eTi yi ≥ V̇i + δiy
T
i yi, δi > 0

is finite-gain L2 stable and its L2 gain is less than or equal to 1/min{δ1, δ2}.

Proof: See proof in the book. Very easy. Take once again V = V1 + V2, where
V1 and V2 are storage functions of H1 and H2, and δ = min{δ1, δ2}.

Theorem 6.2: Consider the feedback connection of two time-invariant
dynamical systems that satisfy

eTi yi ≥ V̇i + ϵie
T
i ei + δiy

T
i yi, ϵi, δi > 0

for some storage function Vi(xi). Then, the closed-loop map from u to y is
finite-gain L2 stable if ϵ1 + δ2 > 0, ϵ2 + δ1 > 0.

Proof: See book. Note that Theorem 6.2 reduces to Lemma 6.8 when ϵi ≡ 0.
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Passivity

Theorem 6.3: Consider the feedback connection of two time-invariant
dynamical systems:

ẋi = fi(xi, ei), yi = hi(xi, ei), i = 1, 2

The origin of the close loop system (when u=0) is asymptotically stable if

both feedback components are strictly passive

both feedback components are output strictly passive and zero-state
observable

one component is strictly passive and the other one is output strictly passive
and zero state observable

Moreover, if storage function of each component is radially unbounded, the origin
is globally asymptotically stable.

Proof: Similar to Lemma 6.7. See book.
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Passivity

ISS:
V̇ ≤ −α (|x|) + ρ (|u|)

SS Pasive:
V̇ ≤ −α (|x|) + uT y

“Neither one implies the other”

Feedback Interconnections:

Small gain: Two stable systems that do not increase amplitude remains stable

Passivity: Two stable systems that do not invert phase (sign) remains stable
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Passivity-Based Control

We consider the p-input-p-output system

ẋ = f(x, u)

y = h(x)

We assume that f(0, 0) = 0 so that the origin is an open-loop equilibrium, and
h(0) = 0. The system is said to be passive if there exists a continuously
differentiable positive semidefinite function V (x) (called the storage function)
such that

uT y ≥ V̇ =
∂V

∂x
f(x, u), ∀(x, u) ∈ Rn ×Rp

The system is zero-state observable if no solution of ẋ = f(x, 0) can stay
identically in the set {h(x) = 0} other than the trivial solution.
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Passivity-Based Control

Theorem 14.4: If the p× p system ẋ = f(x, u), y = h(x) is

passive with a radially unbounded positive definite storage function V (x) and
zero-state observable

the the origin x = 0 can be globally stabilized by u = −ϕ(y), where ϕ is any
locally Lipschitz function such that ϕ(0) = 0 and yTϕ(y) > 0 for all y ̸= 0.

Proof: Use the storage functio0n V (x) as Lyapunov function candidate for the
closed-loop system ẋ = f(x,−ϕ(y)). The derivative of V is given by

V̇ =
∂V

∂x
f(x,−ϕ(y)) ≤ yTu = −yTϕ(y) ≤ 0

Hence, V̇ is negative semidefinite and V̇ = 0 if and only if y = 0. By zero-state
observability,

y(t) ≡ 0 ⇒ u(t) ≡ 0 ⇒ x(t) ≡ 0

Then, by the Invariance Principle, the origin is globally asymptotically stable.

Note: Intuition behind theorem becomes clear when we think the storage
function as energy of system. A passive system has a stable origin. All that is
needed to stabilize origin is the injection of damping so that energy will dissipate
whenever x(t) is different from zero. Required damping is injected by function ϕ
(freedom in the choice).
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Passivity-Based Control

The utility of Theorem 14.4 can be increased by transforming nonpassive systems
into passive ones. We consider a special case of ẋ = f(x, u), where

ẋ = f(x) +G(x)u

Suppose a radially unbounded, positive definite, continuously differentiable
function V (x) exists such that

∂V

∂x
f(x) ≤ 0, ∀x (origin is open-loop stable)

If we take

y = h(x) =

[
∂V

∂x
G(x)

]T
,

the system with input u and output y is passive. If it is also zero-state
observable, we can apply Theorem 14.4
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Passivity-Based Control

Example: Khalil 14.15
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Passivity-Based Control

Allowing ourselves the freedom to choose the output function is useful, but
we are still limited to state equations for which the origin is open-loop stable.
If a feedback control

u = α(x) + β(x)v

and a function h(x) exist such that the system

ẋ = f(x) +G(x)α(x) +G(x)β(x)v

y = h(x)

with input v and output y, satisfies the conditions of Theorem 14.4, we can
globally stabilize the origin by using v = −ϕ(y). The use of feedback to
convert a nonpassive system into a passive one is known as feedback
passivation.
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Passivity-Based Control

The cascade connection of a passive system with a system whose unforced
dynamics has a stable equilibrium at the origin is amenable to feedback
passivation. Let us consider

ż = fa(z) + F (z, y)y (1)

ẋ = f(x) +G(x)u (2)

y = h(x) (3)

If the driving-system (2)-(3) is passive with a radially unbounded positive
definite storage function V (x), and if the origin of the driven-system (1) with
y = 0, i.e., the origin of ż = fa(z) is stable with a radially unbounded
Lyapunov function W (z) that satisfies

∂W

∂z
fa(z) ≤ 0 ∀z
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Passivity-Based Control

Then, the feedback control

u = −
(
∂W

∂z
F (z, y)

)T

+ v

makes the system

ż = fa(z) + F (z, y)y (4)

ẋ = f(x)−G(x)

(
∂W

∂z
F (z, y)

)T

+G(x)v (5)

y = h(x) (6)

with input v, output y is passive with U(z, x) =W (z) + V (x) as the storage
function. If the system (4)-(6) is zero-state observable, we can apply Theorem
14.4 to globally stabilize the origin.
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Passivity-Based Control

Checking zero-state observability of the system (4)-(6) can be avoided by
strengthening the assumption on W (z). If the driving-system (2)-(3) is
zero-state observable and passive with a radially unbounded positive definite
storage function V (x), and if the origin of the driven-system (1) with y = 0,
i.e., the origin of ż = fa(z), is globally asymptotically stable with a radially
unbounded Lyapunov function W (z) that satisfies

∂W

∂z
fa(z) < 0 ∀z ̸= 0,

∂W

∂z
(0) = 0.

The feedback control

u = −
(
∂W

∂z
F (z, y)

)T

− ϕ(y), ϕ(0) = 0, yTϕ(y) > 0 ∀y ̸= 0

globally stabilizes the origin (z = 0, x = 0).
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Passivity-Based Control

Example: Khalil 14.18
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