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Nonlinear Controllability

NOTE: This material is not in Khalil's book.

Let us focus on driftless systems:
&= gi(z)ur + - + gm (T)um

Definition: The system is completely controllable if given any T' > 0 and any pair
of points xg,z1 € R™ there is an input u = (u1, ..., u,,) which is piecewise
analytic on [0, 7] and which steers the system from x(0) = z¢ to z(T") = z;.

Note: Recall that
[ ] = 992 Oq1
g1, 92 o g1 o g2
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Nonlinear Controllability

Chow’s Theorem: The system is completely controllable if and only if g1,...,g9m
plus all repeated Lie brackets span every direction.

Note: If we have only one control uy, then [g1,g1] = 0. Thus, we cannot
generate any other direction. Here we need several controls u;.

Note: The involutive closure of a distribution A is the closure A of the
distribution under Lie bracketing.

@ Given a distribution take all Lie brackets
@ If you get new vector fields, add them to the distribution

@ Repeat until you get no new vector field
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Nonlinear Controllability

Control Lie Algebra:
C={zle = [zj, [zj1, [ [zr, zo]]]]}
i€ Glyensgm, G=1,...5, j=12...
L = span{C}
= span{g1, -, 9m; (91,92}, [91, 93], -, [91, [92, 93], - - -}

Chow’s Theorem: The system is completely controllable if and only if
dim £(x) = n for all z.

Chow’s Theorem: The system is completely controllable if and only if the
involutive closure of {g1,...,gm} is of constant rank n for all z.
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Nonlinear Controllability

Consider now the systems:

= f(z) + g1(x)ur + -+ + g (T)um

Chow’s Theorem: The system is completely controllable if and only if the
involutive closure of {f,g1,...,9m} is of constant rank n for all z.

For example, for m = 1, if the system is input-state linearizable, then it is
completely controllable

completely controllable # input-state linearizable
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Nonlinear Controllability

Example 1: Unicycle
= lcos(8)uy
= Isin(f)uy

éZ’LLQ

It is completely controllable

No slipping
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Nonlinear Controllability

Example 1: Unicycle

Linearization at z =y =60 = 0:

T = lu1
= 0
é = U2

It is NOT controllable! = completely controllable due to nonlinearity!

Prof. Eugenio Schuster

ME 450 - Nonlinear Systems and Control Spring 2024



Nonlinear Stabilizability

Linear systems: Controllability = Stabilizability
Nonlinear systems: Controllability # Stabilizability

Brockett’s Theorem: If the equilibrium z = 0 of the C! system i@ = f(x,u) is
locally asymptotically stabilizable by C'* feedback of x, then (=) the image of the
mapping f(x,u) contains some neighborhood of 2 = 0, i.e., 35 > 0 such that
V|¢] < § Fx, u such that f(z,u) =&

Reminiscent of the Hautus-Popov-Belevitch Controllability Test

rank[sI —A,B] = n Vs
image[s] — A,B] = R" Vs
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Nonlinear Stabilizability

Example 2: Unicycle
= lcos(f)uy
= Isin(@)uq

é = U2
on the set |0 < /2.

It is not stabilizable by C'! feedback!
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Nonlinear Stabilizability

Brockett’s Theorem:
@ Only necessary condition
@ Restricted to C! feedback of z

There are two possibilities for systems that violate Brockett's condition:
@ Non-smooth feedback

@ Time-varying feedback
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Nonlinear Stabilizability

Example 3: Unicycle

= lcos(f)uy
Isin(0)uy
é = U2
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Control Lyapunov Function (CLF)

We are interested in an extension of the Lyapunov function concept, called a
control Lyapunov function (CLF).

Let us consider the following system:
= f(z,u), x€R", uweR, [(0,0)=0,

Task: Find a feedback control law u = a((x) such that the equilibrium = = 0 of
the closed-loop system

&= f(z,a(z))
is globally asymptotically stable.

Task: Find a feedback control law u = «(z) and a Lyapunov function candidate
V(x) such that

oV

V= ?(Jf)f(%oé(ﬂﬂ)) < —W(x), W/(x) positive definite
x
A system for which a good choice of V() and W (z) exists is said to possess a

CLF.
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Control Lyapunov Function (CLF)

Definition: A smooth positive definite and radially unbounded function
V : R™ — R, is called a control Lyapunov function (CLF) if

(@)l <0 Ve £0

(or Vz Ju s.t. g—‘;(x)f(x,u) < 0)
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Control Lyapunov Function (CLF)

Let us consider the following system affine in control:
= f(zx)+g(x)u, xz€R*, uweR, f(0)=0,

Definition: A smooth positive definite and radially unbounded function
V :R"™ — R, is called a control Lyapunov function (CLF) if V& 3u such that

ov ov

o Of (@) + 5 (@)g(z)u <0 Vo #0

So, V() must satisfy (equivalent)

& @) =0= T (@)) <0 va#0

The “uncontrollable” part is stable by itself.
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Control Lyapunov Function (CLF)

Artstein ('83): If a CLF exists, then a(x) exists (but the proof is not
constructive)

Naive formula: (not continuous at 2% (z)g(z) = 0)

N (0)f(@) + W)
I (2)g(x)

u=ar)=

Sontag’s formula ('89):

@@/ (@ @) (B @e@) oy 0
Te(x)g(z) g
0 %5 (@)g(z) =0

Q|

u=as(z) =

This control gives V = —\/(‘?9—‘;(:c)f(as))2 + (%—‘;(a:)g(x))4 <0
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Control Lyapunov Function (CLF)

Question: s as(z) continuous on R"?
Lemma: o;(z) is smooth on R™.

Lemma: o (z) is continuous at x = 0 if and only if the CLF satisfies the small
control property: Ve, 36(e) > 0 such that if |z| < d, 3|u| < € such that

P @)+ gyl < 0

In other words, if there is a continuous controller stabilizing z = 0 w.r.t. the given
V, then a4(x) is also continuous at zero.

Sontag’s formula is continuous at the origin and smooth away from the
origin
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Control Lyapunov Function (CLF)

Theorem: A system is stabilizable if and ony if there exists a CLF

Proof:
@ There is a CLF = system is stabilizable (proved)
@ System is stabilizable = there is a CLF (Converse Lyapunov theorem)

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024



Control Lyapunov Function (CLF)

Example 4:
t=—-2>+u

Example 5:
&=+ 2%u
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Backstepping

Let us consider the following system affine in control:

= f(z)+g(x)u, z€R", uweR, [f(0)=0,

Assumption: There exist u = a(z) and V(z) such that
ov

%[f(x) + g(x)a(z)] < —W(x), W/(x) positive definite
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Backstepping

Lemma: Integrator Backstepping

& f(@) +9(x)¢
£ = u
There is a whole integrator between u and £. Under the previous assumption, the

system has a CLF

Val(z,8) =V(x) + %(5 —a(z))?, (a: augmented)

and the corresponding feedback that gives global asymptotical stability is

w= —ele — a(e)) + @I @) +9(@)el - Togla), >0

Backstepping: We have a “virtual” control £ and we have to go back through an
integrator.
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Backstepping

Proof: In class.

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024



Backstepping

Example 6: Avoid singularities in feedback linearization

z = x€
£ = u
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Backstepping

In the case of more than one integrator

o= f(x)+9(@)6

G = &
én—l = gn
én = u

we only have to apply the backstepping lemma n times.
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Backstepping

Example 7: Khalil Examples

Example 8: Khalil Examples

Prof. Eugenio Schuster

14.8

: 2 3

T = T} —2]+ 22
1‘2 u

14.9

: 2 3

T, = T —T]+ 22
g = X3

1‘3 u
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Backstepping

In the more general case

: f(@) + g(x)§
§ = fa(x7€)+ga(xﬂ§)u

If go(z,&) # 0 over the domain of interest, the input transformation

x

u =

ga(x’g) [’l) - fa(xag)]

will reduce the system to

o= )+l
E = v

and the backstepping lemma can be applied.
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Backstepping

Strict Feedback Systems: By recursive application of backstepping, we can
stabilize strict-feedback systems of the form

T = w1+ 0i(T) i=1,...,n—1
Tn = U+ on(x)
where 7; = [z1,...,2;]T, ¢:i(Z;) are smooth and ¢;(0) = 0.

We have a local triangular structure:

& = x4 ¢1(x1)
oy = a3+ ¢a(x1,22)
fbn - U+¢n($1,$2,...,$n)

Linear part: Brunovsky canonical form = feedback linearizable
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Backstepping

The control law

zi = xi—o;i—1(Ti—1) =0
a;(Z;) = —zi—1— iz — Qi + Z l‘g+1 +¢;), ¢ >0
U = ap

guarantees global asymptotic stability of x = 0.
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Backstepping

Proof: In class.
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Backstepping

The technique can be extended to more general Strict Feedback Systems:

& = (@) +oi(T) i=1,...,n—1

where Z; = [z1,...,2;]T (2, = z), ¢:(Z;) are smooth and ¢;(0) = 0, and
¥;i(Z;) #0 for i = 1,...,n over the domain of interest.
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Backstepping

Assumption: There exist £ = ¢(n) with ¢(0) =0, and V(x) such that
ov
an

Lemma: Block Backstepping

o= fn)+Gm)¢
£ = fa(1,6) +Galn,u

where n € R", £ € R™, and u € R™, in which m can be greater than one.
Under the previous assumption, the system has a CLF

Vel €) = Vo) + 5 — sG]"TE ~ o),

and the corresponding feedback that gives asymptotical stability for the
equilibrium at the origin is

4 |09 T
S+ Gone - (%Gw) = fu— k(e - o))

[F(n) + G(m)o(n)] < =W (n), W(n) positive definite

=G

with & > 0.
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Backstepping

Proof: Check the book.
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Backstepping

Robust Control: Consider the system

o= ) +gmE+n(n,¢)
£ = fa(,8) + ga(n,Eu+ de(n,€)

where n € R", £ € R, and ¢4(7,&) # 0. The uncertainty terms ¢,, and ¢ satisfy
inequalities

16n.(1, )2
106 (0, €

Let &€ = ¢(n) with ¢(0) = 0 be a stabilizing state feedback control law for the
7-system that satisfies

ax|nll2

<
< aglnllz + a3

0
6] < aallnlle, Ha—jH < as
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Backstepping

and V(n) be a Lyapunov function that satisfies

%—‘;[f(n) T gm)dm) +3a(mE)] < —bllnl2

Then, the state feedback control law

w= a¢[f(n)+g(n)£]—g—‘; (1) = fa — k(- 6)

" ga LOn
with k sufficiently large, stabilizes the origin of our system. Moreover, if all
assumptions hold globally and V(1) is radially unbounded, the origin will be
globally asymptotically stable.
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Backstepping

Proof: Take V.(n,&) = V(n) + 4[¢ — #(n)]*. Check the book.
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Backstepping

Example 9: Avoid cancellation

i = z—a+¢
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Lyapunov Redesign

Stabilization: Let us consider the following system:
&= f(t,z)+G(t,x) [u+0(t,z,u)], =€ R", wuecRP

The uncertain term § is an unknown function that lumps together various
uncertain terms due to model simplification, parameter uncertainty, etc. The
uncertain term ¢ satisfies the matching condition, i.e., the uncertain term ¢ enters
the state equation at the same point as the control input w.

Suppose we designed a control law u = (¢, ) such that the origin of the nominal
closed loop system

= f(ta .’E) + G(tvx)w(tvx)

is uniformly asymptotically stable.
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Lyapunov Redesign

Suppose further that we know a Lyapunov function V (¢, ) that satisfies
ar(flz]) < V (¢, 2) < az(]|]])

%‘; n %‘; [f(t,2) + G(t, 2)0(t, 2)] < —as([l2])

for all t > 0 and for all x € D, where o1, a2 and a3 are class K functions.

We assume that, with u = v (¢, z) + v, the uncertainty term ¢ satisfies the
inequality

16(t ¢ (8, x) + v)[| < p(t, ) + Kollvl] p=0,0 < ko <1

GOAL: Design v s.t. overall control uw = ¥(t, z) + v stabilizes the actual system
in the presence of the uncertainty.
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Lyapunov Redesign

Let us apply the control law u = 9 (¢, z) + v to our original system, i.e.
&= f(t,z) + Gt x)y(t,x) + Gt x) [v+ 0(t, 2, 9(t, ) + v)]

And let us calculate the derivative along its trajectories, i.e.

vV 8l(f + o)+ o+ 6) < —as(all) +

Vv
5 5 —G(v+9)

0
Ox
Let us set w? £ 2Y.G to rewrite the inequality as

V < —as(||z]]) + wTv+wTs

Due to matching condition, ¢ enters the equation in the same way v does.
Therefore, it is possible to choose v to cancel the destabilizing effect of ¢.
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Lyapunov Redesign

Solutions: Non-Continuous

16Ct, 2, (t, ) +v)|l2 < p(t,2) + kollvlla = v =—nlt,2)

Jw

t
llwllz
16Ct, 2, 9(t, ) +v)]loo < p(t,2) + kol[vllec = v =—n(t,x)sgn(w)
where
Note that (inequality satisfied with || - || = || - ||2)

V < —as(|lzll) + wTv+w"o (lzll) + wv + wl[(p(t, 2) + Ko||v]])
ag([|lz]l) = nllwll + lwlpt, ) + konllwl|
ag([|lz]]) = (n(1 = ko) — p(t, z))[w]]

(D)

az([l«|

as([l]|

VAN VAN VAN VAN
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Lyapunov Redesign

Note that (inequality satisfied with || - || = || - ||o)

V< —as(flz]) + wo+ws < —as(al) + wlo + wli(p(t @) + kollv] o)
< —ag([l2l]) = nllwlly + wllipt, 2) + konllwlly
< —ag(llzl]) = (n(1 = ko) — p(t, 2))[[wlh
< —ag(llz])

These control laws are discontinuous functions of state z:
@ Division by zero = Control law needs to be redefined
@ Not locally Lipschitz = Solution existence/uniqueness?

o Chattering (fast switching fluctuations)

Note: In both cases we used Holder's inequality

1 1
T
z Y < |zllpl|Ylqgs -+ -=1
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Lyapunov Redesign
Solutions: Continuous (just for one of the controllers: |- || = - ||2)
1t )
V=
{

We already showed that V < 0 for 7(t, z)|jw||2 > €. We need now to check V' for
n(t z)llwllz < e

if n(t, z)llwllz > €
it n(t, @) w2 <€

|EE

V< —as(lle) +wTv+w"s < —as(llal) +w'[-n? = + 9]

2
n
< —ag(llef]) - ?lel2 + pllwll + Eol[w]||v]]
2 2
n n
= —as([zl) - ?lel2 + pllwl + ko?HwIIZ
< - 1—k I
< —as(llel) + (1= ko) { =~ llwll® + nllwl]

where we have used ||0|| < p+ ko|lv]| and n > p/(1 — ko) <= p < (1 —ko)n.
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Lyapunov Redesign

The term —"éHwH2 + n]jw|| attains a maximum value €/4 at n||w| = ¢/2. Then,

. e(l—Fk
Vo< —ag(lal) + LR
whenever 7(t, z)||w||2 < €. On the other hand, when 7(t, z)||w|2 > € we have
. 6(1 - ko)
Vo< —as(llel) < —es(llzll) + ———

Then, this inequality is satisfied irrespective of the value of (¢, z)||w||2. Choosing
€ < 2az(ay (a1(r))) /(1 — ko), setting 1 = a3 ' (e(1 — ko) /2) < ay (a1 (7)), and
taking 7 > 0 such that B, C D. Then,

. 1
V< —sasllzla), < el <r

@ In general, continuous Lyapunov redesign does NOT stabilize origin as its
discontinuous counterpart does

@ However, it guarantees boundedness of the solution

@ Stabilizes origin if uncertainty vanishes at origin and if

as([lzll2) = ¢*(@),  n(t,x) =m0 >0, p(t,x) < pig()
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Lyapunov Redesign

Nonlinear Damping: Let us consider again the system:
&= f(t,z)+G(t,x) [u+0(t,z,u)], =€ R", wuecRP

but with 6(¢, z,u) = T'(¢,2)d0(t, x,u), where &y is a uniformly bounded uncertain
term. The function T'(¢, z) is known.

Suppose we designed a control law u = (¢, x) such that the origin of the nominal
closed loop system

= f(t,x) + G(t,x)(t, x)

is uniformly asymptotically stable.

GOAL: Design v s.t. overall control u = 9 (t, x) + v stabilizes the actual system
in the presence of the uncertainty.
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Lyapunov Redesign

Suppose further that we know a Lyapunov function V (¢, ) that satisfies
ar(flz]) < V (¢, 2) < az(]|]])

ov oV
S+ St 2) + Gl )9t 2)] < —as(a])
for all t > 0 and for all x € D, where a1, as and a3 are class K4, functions.
o If upper bound of &g is known — stabilization as before (Lyapunov redesign).

@ If upper bound of dg is NOT known — nonlinear damping guarantees
boundedness if
v=—kw|T(t )3, k>0

Note that

V= al+al[f+G¢] V G [v+T6o) < —as(||z]]) + w” (v +Tdp)
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Lyapunov Redesign

Taking v = —kw||T(¢,2)||?, we obtain (|| - || = || - [|2)
V < —as(llzl)) — kllwl*(IT(t, 2)* + Jw[ITllko
where kg is an unknown upper bound on [|dg]|.

The term —k|lw||?||T'(¢, z)||? + ||w||||T||ko attains a maximum value k3 /4k at
|lw|||T|| = ko/2k. Therefore

V < —aa(fle]) + K0
= sl T g

Then, the solution of the closed-loop system is uniformly bounded.
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