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Nonlinear Controllability

NOTE: This material is not in Khalil’s book.

Let us focus on driftless systems:

ẋ = g1(x)u1 + · · ·+ gm(x)um

Definition: The system is completely controllable if given any T > 0 and any pair
of points x0, x1 ∈ Rn there is an input u = (u1, . . . , um) which is piecewise
analytic on [0, T ] and which steers the system from x(0) = x0 to x(T ) = x1.

Note: Recall that

[g1, g2] =
∂g2
∂x

g1 −
∂g1
∂x

g2
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Nonlinear Controllability

Chow’s Theorem: The system is completely controllable if and only if g1, . . . , gm
plus all repeated Lie brackets span every direction.

Note: If we have only one control u1, then [g1, g1] = 0. Thus, we cannot
generate any other direction. Here we need several controls ui.

Note: The involutive closure of a distribution ∆ is the closure ∆̄ of the
distribution under Lie bracketing.

Given a distribution take all Lie brackets

If you get new vector fields, add them to the distribution

Repeat until you get no new vector field
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Nonlinear Controllability

Control Lie Algebra:

C = {x|x = [xj , [xj−1, [. . . [x1, x0]]]]}

xi ∈ g1, . . . , gm, i = 1, . . . j, j = 1, 2, . . .

L = span {C}
= span {g1, . . . , gm, [g1, g2], [g1, g3], . . . , [g1, [g2, g3], . . .}

Chow’s Theorem: The system is completely controllable if and only if
dimL(x) = n for all x.

Chow’s Theorem: The system is completely controllable if and only if the
involutive closure of {g1, . . . , gm} is of constant rank n for all x.
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Nonlinear Controllability

Consider now the systems:

ẋ = f(x) + g1(x)u1 + · · ·+ gm(x)um

Chow’s Theorem: The system is completely controllable if and only if the
involutive closure of {f, g1, . . . , gm} is of constant rank n for all x.

For example, for m = 1, if the system is input-state linearizable, then it is
completely controllable

completely controllable ⇏ input-state linearizable
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Nonlinear Controllability

Example 1: Unicycle

ẋ = l cos(θ)u1

ẏ = l sin(θ)u1

θ̇ = u2

It is completely controllable

y

x

𝜃

No slipping

l
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Nonlinear Controllability

Example 1: Unicycle

Linearization at x = y = θ = 0:

ẋ = lu1

ẏ = 0

θ̇ = u2

It is NOT controllable! ⇒ completely controllable due to nonlinearity!
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Nonlinear Stabilizability

Linear systems: Controllability ⇒ Stabilizability
Nonlinear systems: Controllability ⇏ Stabilizability

Brockett’s Theorem: If the equilibrium x = 0 of the C1 system ẋ = f(x, u) is
locally asymptotically stabilizable by C1 feedback of x, then (⇒) the image of the
mapping f(x, u) contains some neighborhood of x = 0, i.e., ∃δ > 0 such that
∀|ξ| ≤ δ ∃x, u such that f(x, u) = ξ.

Reminiscent of the Hautus-Popov-Belevitch Controllability Test

rank[sI −A,B] = n ∀s
image[sI −A,B] = Rn ∀s
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Nonlinear Stabilizability

Example 2: Unicycle

ẋ = l cos(θ)u1

ẏ = l sin(θ)u1

θ̇ = u2

on the set |θ| < π/2.

It is not stabilizable by C1 feedback!
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Nonlinear Stabilizability

Brockett’s Theorem:

Only necessary condition

Restricted to C1 feedback of x

There are two possibilities for systems that violate Brockett’s condition:

Non-smooth feedback

Time-varying feedback
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Nonlinear Stabilizability

Example 3: Unicycle

ẋ = l cos(θ)u1

ẏ = l sin(θ)u1

θ̇ = u2
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Control Lyapunov Function (CLF)

We are interested in an extension of the Lyapunov function concept, called a
control Lyapunov function (CLF).

Let us consider the following system:

ẋ = f(x, u), x ∈ Rn, u ∈ R, f(0, 0) = 0,

Task: Find a feedback control law u = α(x) such that the equilibrium x = 0 of
the closed-loop system

ẋ = f(x, α(x))

is globally asymptotically stable.

Task: Find a feedback control law u = α(x) and a Lyapunov function candidate
V (x) such that

V̇ =
∂V

∂x
(x)f(x, α(x)) ≤ −W (x), W (x) positive definite

A system for which a good choice of V (x) and W (x) exists is said to possess a
CLF.
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Control Lyapunov Function (CLF)

Definition: A smooth positive definite and radially unbounded function
V : Rn → R+ is called a control Lyapunov function (CLF) if

inf
u∈R

{∂V
∂x

(x)f(x, u)} < 0 ∀x ̸= 0

(or ∀x∃u s.t.
∂V

∂x
(x)f(x, u) < 0)
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Control Lyapunov Function (CLF)

Let us consider the following system affine in control:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R, f(0) = 0,

Definition: A smooth positive definite and radially unbounded function
V : Rn → R+ is called a control Lyapunov function (CLF) if ∀x ∃u such that

∂V

∂x
(x)f(x) +

∂V

∂x
(x)g(x)u < 0 ∀x ̸= 0

So, V (x) must satisfy (equivalent)

∂V

∂x
(x)g(x) = 0 ⇒ ∂V

∂x
(x)f(x) < 0 ∀x ̸= 0

The “uncontrollable” part is stable by itself.
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Control Lyapunov Function (CLF)

Artstein (’83): If a CLF exists, then α(x) exists (but the proof is not
constructive)

Naive formula: (not continuous at ∂V
∂x (x)g(x) = 0)

u = α(x) = −
∂V
∂x (x)f(x) +W (x)

∂V
∂x (x)g(x)

Sontag’s formula (’89):

u = αs(x) =

 −
∂V
∂x (x)f(x)+

√
( ∂V

∂x (x)f(x))
2
+( ∂V

∂x (x)g(x))
4

∂V
∂x (x)g(x)

∂V
∂x (x)g(x) ̸= 0

0 ∂V
∂x (x)g(x) = 0

This control gives V̇ = −
√(

∂V
∂x (x)f(x)

)2
+
(
∂V
∂x (x)g(x)

)4
< 0
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Control Lyapunov Function (CLF)

Question: Is αs(x) continuous on R
n?

Lemma: αs(x) is smooth on Rn.

Lemma: αs(x) is continuous at x = 0 if and only if the CLF satisfies the small
control property: ∀ϵ, ∃δ(ϵ) > 0 such that if |x| < δ, ∃|u| < ϵ such that

∂V

∂x
(x)[f(x) + g(x)u] < 0

In other words, if there is a continuous controller stabilizing x = 0 w.r.t. the given
V , then αs(x) is also continuous at zero.

Sontag’s formula is continuous at the origin and smooth away from the
origin
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Control Lyapunov Function (CLF)

Theorem: A system is stabilizable if and ony if there exists a CLF

Proof:

There is a CLF ⇒ system is stabilizable (proved)

System is stabilizable ⇒ there is a CLF (Converse Lyapunov theorem)
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Control Lyapunov Function (CLF)

Example 4:
ẋ = −x3 + u

Example 5:
ẋ = x3 + x2u

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 18 / 45



Backstepping

Let us consider the following system affine in control:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R, f(0) = 0,

Assumption: There exist u = α(x) and V (x) such that

∂V

∂x
[f(x) + g(x)α(x)] ≤ −W (x), W (x) positive definite
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Backstepping

Lemma: Integrator Backstepping

ẋ = f(x) + g(x)ξ

ξ̇ = u

There is a whole integrator between u and ξ. Under the previous assumption, the
system has a CLF

Va(x, ξ) = V (x) +
1

2
(ξ − α(x))2, (a: augmented)

and the corresponding feedback that gives global asymptotical stability is

u = −c(ξ − α(x)) +
∂α

∂x
(x)[f(x) + g(x)ξ]− ∂V

∂x
g(x), c > 0

Backstepping: We have a “virtual” control ξ and we have to go back through an
integrator.
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Backstepping

Proof: In class.
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Backstepping

Example 6: Avoid singularities in feedback linearization

ẋ = xξ

ξ̇ = u
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Backstepping

In the case of more than one integrator

ẋ = f(x) + g(x)ξ1

ξ̇1 = ξ2
...

ξ̇n−1 = ξn

ξ̇n = u

we only have to apply the backstepping lemma n times.
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Backstepping

Example 7: Khalil Examples 14.8

ẋ1 = x21 − x31 + x2

ẋ2 = u

Example 8: Khalil Examples 14.9

ẋ1 = x21 − x31 + x2

ẋ2 = x3

ẋ3 = u
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Backstepping

In the more general case

ẋ = f(x) + g(x)ξ

ξ̇ = fa(x, ξ) + ga(x, ξ)u

If ga(x, ξ) ̸= 0 over the domain of interest, the input transformation

u =
1

ga(x, ξ)
[v − fa(x, ξ)]

will reduce the system to

ẋ = f(x) + g(x)ξ

ξ̇ = v

and the backstepping lemma can be applied.
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Backstepping

Strict Feedback Systems: By recursive application of backstepping, we can
stabilize strict-feedback systems of the form

ẋi = xi+1 + ϕi(x̄i) i = 1, . . . , n− 1

ẋn = u+ ϕn(x)

where x̄i = [x1, . . . , xi]
T , ϕi(x̄i) are smooth and ϕi(0) = 0.

We have a local triangular structure:

ẋ1 = x2 + ϕ1(x1)

ẋ2 = x3 + ϕ2(x1, x2)

...

ẋn = u+ ϕn(x1, x2, . . . , xn)

Linear part: Brunovsky canonical form ⇒ feedback linearizable
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Backstepping

The control law

zi = xi − αi−1(x̄i−1) α0 = 0

αi(x̄i) = −zi−1 − cizi − ϕi +

i∑
j=1

∂αi−1

∂xj
(xj+1 + ϕj), ci > 0

u = αn

guarantees global asymptotic stability of x = 0.
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Backstepping

Proof: In class.
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Backstepping

The technique can be extended to more general Strict Feedback Systems:

ẋi = ψi(x̄i)xi+1 + ϕi(x̄i) i = 1, . . . , n− 1

ẋn = ψn(x)u+ ϕn(x)

where x̄i = [x1, . . . , xi]
T (x̄n = x), ϕi(x̄i) are smooth and ϕi(0) = 0, and

ψi(x̄i) ̸= 0 for i = 1, . . . , n over the domain of interest.
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Backstepping

Assumption: There exist ξ = ϕ(η) with ϕ(0) = 0, and V (x) such that

∂V

∂η
[f(η) +G(η)ϕ(η)] ≤ −W (η), W (η) positive definite

Lemma: Block Backstepping

η̇ = f(η) +G(η)ξ

ξ̇ = fa(η, ξ) +Ga(η, ξ)u

where η ∈ Rn, ξ ∈ Rm, and u ∈ Rm, in which m can be greater than one.
Under the previous assumption, the system has a CLF

Vc(η, ξ) = V (η) +
1

2
[ξ − ϕ(η)]T [ξ − ϕ(η)],

and the corresponding feedback that gives asymptotical stability for the
equilibrium at the origin is

u = G−1
a

[
∂ϕ

∂η
[f(η) +G(η)ξ]−

(
∂V

∂η
G(η)

)T

− fa − k(ξ − ϕ(η))

]
with k > 0.
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Backstepping

Proof: Check the book.
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Backstepping

Robust Control: Consider the system

η̇ = f(η) + g(η)ξ + δn(η, ξ)

ξ̇ = fa(η, ξ) + ga(η, ξ)u+ δξ(η, ξ)

where η ∈ Rn, ξ ∈ R, and ga(η, ξ) ̸= 0. The uncertainty terms δn and δξ satisfy
inequalities

∥δn(η, ξ)∥2 ≤ a1∥η∥2
|δξ(η, ξ)| ≤ a2∥η∥2 + a3|ξ|

Let ξ = ϕ(η) with ϕ(0) = 0 be a stabilizing state feedback control law for the
η-system that satisfies

|ϕ(η)| ≤ a4∥η∥2,
∥∥∥∥∂ϕ∂η

∥∥∥∥
2

≤ a5
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Backstepping

and V (η) be a Lyapunov function that satisfies

∂V

∂η
[f(η) + g(η)ϕ(η) + δn(η, ξ)] ≤ −b∥η∥22

Then, the state feedback control law

u =
1

ga

[
∂ϕ

∂η
[f(η) + g(η)ξ]− ∂V

∂η
g(η)− fa − k(ξ − ϕ)

]
with k sufficiently large, stabilizes the origin of our system. Moreover, if all
assumptions hold globally and V (η) is radially unbounded, the origin will be
globally asymptotically stable.
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Backstepping

Proof: Take Vc(η, ξ) = V (η) + 1
2 [ξ − ϕ(η)]2. Check the book.
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Backstepping

Example 9: Avoid cancellation

ẋ = x− x3 + ξ

ξ̇ = u
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Lyapunov Redesign

Stabilization: Let us consider the following system:

ẋ = f(t, x) +G(t, x) [u+ δ(t, x, u)] , x ∈ Rn, u ∈ Rp.

The uncertain term δ is an unknown function that lumps together various
uncertain terms due to model simplification, parameter uncertainty, etc. The
uncertain term δ satisfies the matching condition, i.e., the uncertain term δ enters
the state equation at the same point as the control input u.

Suppose we designed a control law u = ψ(t, x) such that the origin of the nominal
closed loop system

ẋ = f(t, x) +G(t, x)ψ(t, x)

is uniformly asymptotically stable.
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Lyapunov Redesign

Suppose further that we know a Lyapunov function V (t, x) that satisfies

α1(∥x∥) ≤ V (t, x) ≤ α2(∥x∥)

∂V

∂t
+
∂V

∂x
[f(t, x) +G(t, x)ψ(t, x)] ≤ −α3(∥x∥)

for all t ≥ 0 and for all x ∈ D, where α1, α2 and α3 are class K functions.

We assume that, with u = ψ(t, x) + v, the uncertainty term δ satisfies the
inequality

∥δ(t, x, ψ(t, x) + v)∥ ≤ ρ(t, x) + k0∥v∥ ρ ≥ 0, 0 ≤ k0 < 1

GOAL: Design v s.t. overall control u = ψ(t, x) + v stabilizes the actual system
in the presence of the uncertainty.
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Lyapunov Redesign

Let us apply the control law u = ψ(t, x) + v to our original system, i.e.

ẋ = f(t, x) +G(t, x)ψ(t, x) +G(t, x) [v + δ(t, x, ψ(t, x) + v)]

And let us calculate the derivative along its trajectories, i.e.

V̇ =
∂V

∂t
+
∂V

∂x
(f +Gψ) +

∂V

∂x
G(v + δ) ≤ −α3(∥x∥) +

∂V

∂x
G(v + δ)

Let us set wT ≜ ∂V
∂xG to rewrite the inequality as

V̇ ≤ −α3(∥x∥) + wT v + wT δ

Due to matching condition, δ enters the equation in the same way v does.
Therefore, it is possible to choose v to cancel the destabilizing effect of δ.
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Lyapunov Redesign

Solutions: Non-Continuous

∥δ(t, x, ψ(t, x) + v)∥2 ≤ ρ(t, x) + k0∥v∥2 → v = −η(t, x) w
∥w∥2

∥δ(t, x, ψ(t, x) + v)∥∞ ≤ ρ(t, x) + k0∥v∥∞ → v = −η(t, x)sgn(w)

where

wT =
∂V

∂x
G, η(t, x) ≥ ρ(t, x)/(1− k0) ∀(t, x)

Note that (inequality satisfied with ∥ · ∥ = ∥ · ∥2)

V̇ ≤ −α3(∥x∥) + wT v + wT δ ≤ −α3(∥x∥) + wT v + ∥w∥(ρ(t, x) + k0∥v∥)
≤ −α3(∥x∥)− η∥w∥+ ∥w∥ρ(t, x) + k0η∥w∥
≤ −α3(∥x∥)− (η(1− k0)− ρ(t, x))∥w∥
≤ −α3(∥x∥)
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Lyapunov Redesign

Note that (inequality satisfied with ∥ · ∥ = ∥ · ∥∞)

V̇ ≤ −α3(∥x∥) + wT v + wT δ ≤ −α3(∥x∥) + wT v + ∥w∥1(ρ(t, x) + k0∥v∥∞)

≤ −α3(∥x∥)− η∥w∥1 + ∥w∥1ρ(t, x) + k0η∥w∥1
≤ −α3(∥x∥)− (η(1− k0)− ρ(t, x))∥w∥1
≤ −α3(∥x∥)

These control laws are discontinuous functions of state x:

Division by zero ⇒ Control law needs to be redefined

Not locally Lipschitz ⇒ Solution existence/uniqueness?

Chattering (fast switching fluctuations)

Note: In both cases we used Holder’s inequality

|xT y| ≤ ∥x∥p∥y∥q,
1

p
+

1

q
= 1

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 40 / 45



Lyapunov Redesign

Solutions: Continuous (just for one of the controllers: ∥ · ∥ = ∥ · ∥2)

v =

{
−η(t, x) w

∥w∥2
if η(t, x)∥w∥2 ≥ ϵ

−η2(t, x)wϵ if η(t, x)∥w∥2 < ϵ

We already showed that V̇ < 0 for η(t, x)∥w∥2 ≥ ϵ. We need now to check V̇ for
η(t, x)∥w∥2 < ϵ:

V̇ ≤ −α3(∥x∥) + wT v + wT δ ≤ −α3(∥x∥) + wT [−η2w
ϵ
+ δ]

≤ −α3(∥x∥)−
η2

ϵ
∥w∥2 + ρ∥w∥+ k0∥w∥∥v∥

= −α3(∥x∥)−
η2

ϵ
∥w∥2 + ρ∥w∥+ k0

η2

ϵ
∥w∥2

≤ −α3(∥x∥) + (1− k0)

(
−η

2

ϵ
∥w∥2 + η∥w∥

)
where we have used ∥δ∥ ≤ ρ+ k0∥v∥ and η ≥ ρ/(1− k0) ⇐⇒ ρ ≤ (1− k0)η.
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Lyapunov Redesign

The term −η2

ϵ ∥w∥
2 + η∥w∥ attains a maximum value ϵ/4 at η∥w∥ = ϵ/2. Then,

V̇ ≤ −α3(∥x∥) +
ϵ(1− k0)

4

whenever η(t, x)∥w∥2 < ϵ. On the other hand, when η(t, x)∥w∥2 ≥ ϵ we have

V̇ ≤ −α3(∥x∥) ≤ −α3(∥x∥) +
ϵ(1− k0)

4

Then, this inequality is satisfied irrespective of the value of η(t, x)∥w∥2. Choosing
ϵ < 2α3(α

−1
2 (α1(r)))/(1− k0), setting µ = α−1

3 (ϵ(1− k0)/2) < α−1
2 (α1(r)), and

taking r > 0 such that Br ⊂ D. Then,

V̇ ≤ −1

2
α3(∥x∥2), ∀µ ≤ ∥x∥2 < r

In general, continuous Lyapunov redesign does NOT stabilize origin as its
discontinuous counterpart does
However, it guarantees boundedness of the solution
Stabilizes origin if uncertainty vanishes at origin and if

α3(∥x∥2) ≥ ϕ2(x), η(t, x) ≥ η0 > 0, ρ(t, x) ≤ ρ1ϕ(x)

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 42 / 45



Lyapunov Redesign

Nonlinear Damping: Let us consider again the system:

ẋ = f(t, x) +G(t, x) [u+ δ(t, x, u)] , x ∈ Rn, u ∈ Rp.

but with δ(t, x, u) = Γ(t, x)δ0(t, x, u), where δ0 is a uniformly bounded uncertain
term. The function Γ(t, x) is known.

Suppose we designed a control law u = ψ(t, x) such that the origin of the nominal
closed loop system

ẋ = f(t, x) +G(t, x)ψ(t, x)

is uniformly asymptotically stable.

GOAL: Design v s.t. overall control u = ψ(t, x) + v stabilizes the actual system
in the presence of the uncertainty.
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Lyapunov Redesign

Suppose further that we know a Lyapunov function V (t, x) that satisfies

α1(∥x∥) ≤ V (t, x) ≤ α2(∥x∥)

∂V

∂t
+
∂V

∂x
[f(t, x) +G(t, x)ψ(t, x)] ≤ −α3(∥x∥)

for all t ≥ 0 and for all x ∈ D, where α1, α2 and α3 are class K∞ functions.

If upper bound of δ0 is known → stabilization as before (Lyapunov redesign).

If upper bound of δ0 is NOT known → nonlinear damping guarantees
boundedness if

v = −kw∥Γ(t, x)∥22, k > 0

Note that

V̇ =
∂V

∂t
+
∂V

∂x
[f +Gψ] +

∂V

∂x
G [v + Γδ0] ≤ −α3(∥x∥) + wT (v + Γδ0)

where wT = ∂V
∂xG.
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Lyapunov Redesign

Taking v = −kw∥Γ(t, x)∥2, we obtain (∥ · ∥ = ∥ · ∥2)

V̇ ≤ −α3(∥x∥)− k∥w∥2∥Γ(t, x)∥2 + ∥w∥∥Γ∥k0

where k0 is an unknown upper bound on ∥δ0∥.

The term −k∥w∥2∥Γ(t, x)∥2 + ∥w∥∥Γ∥k0 attains a maximum value k20/4k at
∥w∥∥Γ∥ = k0/2k. Therefore

V̇ ≤ −α3(∥x∥) +
k20
4k

Then, the solution of the closed-loop system is uniformly bounded.
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