
Nonlinear Systems and Control
Lecture 6 (Meetings 20-22)

Chapter 12: Feedback Control
Chapter 13: Feedback Linearization

Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics

Lehigh University

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 1 / 39



Approximate Input-State Linearization

We consider the system

ẋ = f(x, u), f(0, 0) = 0

Linearization (approximation):

ẋ = Ax+Bu, A =
∂f

∂x

∣∣∣∣
(0,0)

, B =
∂f

∂u

∣∣∣∣
(0,0)

.

State feedback:
u = Kx

with
P (A+BK) + (A+BK)TP = −Q

Closed-loop ẋ = f(x,Kx) is locally asymptotically stable.

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 2 / 39



(Exact) Input-State Linearization

We consider the system

ẋ = f(x) + g(x)u (1)

y = h(x) (2)

Does there exist a change of coordinates

z = T (x) (3)

and a state feedback control

u = α(x) + β(x)v (4)

that transform the nonlinear system into the linear form

ż = Az +Bv (5)

where (A,B) is controllable?
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Input-State Linearization

Example 1: Pendulum (Single link manipulator)

θ̈ + bθ̇ + a sin(θ) = cT

Control goal: Regulate θ around δ using torque (T ) control.

Example 2:

ẋ1 = a sin(x2)

ẋ2 = −x21 + u
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Input-State Linearization

Definition: A continuously differentiable map with a continuously differentiable
inverse is known as a diffeomorphism.

Note: The coordinate transformation z = T (x) must be a diffeomorphism!

Definition 13.1: A nonlinear system

ẋ = f(x) + g(x)u

where f : D → Rn and g : D → Rn×p are sufficiently smooth on a domain
D ⊂ Rn, is said to be feedback linearizable (or input-state linearizable) if there
exists a diffeomorphism T : D → Rn such that Dz = T (D) contains the origin
and the change of variables z = T (x) transforms the nonlinear system into the
form

ż = Az +Bγ(T−1(z))[u− α(T−1(z))]

with (A,B) controllable and γ(x) nonsingular for all x ∈ D.

NOTE: Take v = α(x) + γ−1(x)v, then ż = Az +Bv.
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Input-State Linearization

Under what conditions is a nonlinear system input-state linearizable?

Let us assume p = 1 and γ(x) = 1/β(x).

ż = AT (x) +B
1

β(x)
(u− α(x)),

1

β(x)
= β(x)−1 ̸= β−1(x)

ż =
∂T

∂x
(f(x) + g(x)u)

Then, for both equations to be identical we need

∂T

∂x
f(x) = AT (x)−B

α(x)

β(x)
,

∂T

∂x
g(x) = B

1

β(x)
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Input-State Linearization

If the linear system has to be controllable, it is necessary and sufficient condition
to express the system in controllable canonical form (chain of integrators)

A = Ac =


0 1 . . . 0

0 1 . . . 0
...

0 1
0 . . . 0 0

 , B = Bc =


0
0
...
0
1

 ,

C = Cc =
[
1 0 0 . . . 0

]
.

NOTE: We need to solve an ODE system to find T (x).
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Input-Output Linearization

Linearizing the state equation does not necessarily linearize the output equation.

Input-Output linearization is more general than Input-State linearization

Example 3:

ẋ1 = a sin(x2)

ẋ2 = −x21 + u

y = x2
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Input-Output Linearization

Lie Derivatives:

Lfh(x) =
∂h

∂x
f(x)

Lie Derivative of h with respect to f , or derivative of h along the trajectories of
the system ẋ = f(x).

LgLfh(x) =
∂(Lfh)

∂x
g(x)

L2
fh(x) = LfLfh(x) =

∂(Lfh)

∂x
f(x)

Lk
fh(x) = LfL

k−1
f h(x) =

∂(Lk−1
f h)

∂x
f(x)

L0
fh(x) = h(x)
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Input-Output Linearization

Definition 13.2: The nonlinear system

ẋ = f(x) + g(x)u

y = h(x)

is said to have relative degree r, 1 ≤ r ≤ n, in a region D0 ⊂ D if

LgL
i−1
f h(x) = 0, i = 1, 2, . . . , r − 1; LgL

r−1
f h(x) ̸= 0

for all x ∈ D0.

Relative degree = # of integrators between input and output
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Input-Output Linearization

Example 4:

ẋ1 = x2

ẋ2 = ϕ(x) + u

y = x1

Example 5:

ẋ1 = x1

ẋ2 = x2 + u

y = x1
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Input-Output Linearization

Theorem 13.1: Consider the nonlinear system

ẋ = f(x) + g(x)u (6)

y = h(x) (7)

and suppose it has relative degree r ≤ n in D. If r = n, then for every x0 ∈ D, a
neighborhood N of x0 exists such that the map

T (x) =


h(x)
Lfh(x)

...
Ln−1
f h(x)


restricted to N , is a diffeomorphism on N .
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Input-Output Linearization

If r < n, then, for every x0 ∈ D, a neighborhood N of x0 and smooth functions
ϕ(x), . . . , ϕn−r(x) exist such that ∂ϕi

∂x g(x) = 0, for 1 ≤ i ≤ n− r, for all x ∈ N
and the map

T (x) =



ϕ1(x)
...

ϕn−r(x)
−−−
h(x)
Lfh(x)

...
Lr−1
f h(x)


=

 ϕ(x)
−−−
ψ(x)

 =

 η
−−−
ξ

 (8)

restricted to N is a diffeomorphism on N .
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Input-Output Linearization

The change of variables (8) transforms (6)-(7) into the Normal Form

η̇ = f0(η, ξ)

ξ̇ = Acξ +Bcγ(x)[u− α(x)]

y = Ccξ

where ξ ∈ Rr, η ∈ Rn−r, (Ac, Bc, Cc) is a controllable canonical form
representation of a chain of r integrators,

f0(η, ξ) =
∂ϕ

∂x
f(x)

∣∣∣∣
x=T−1(z)

γ(x) = LgL
r−1
f h(x) and α(x) = −

Lr
fh(x)

LgL
r−1
f h(x)

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 14 / 39



Input-Output Linearization

The Normal Form decomposes the system into an external part ξ and an internal
part η. The external part is linearized by the state feedback control

u = α(x) + β(x)v

The internal dynamics is described by (6). Setting ξ = 0 in that equation results in

η̇ = f0(η, 0) (9)

which is called the zero dynamics. The system is said to be minimum phase if (9)
is asymptotically stable.

Why zero dynamics? This name matches nicely with the fact that for a linear
system, (9) is given by η̇ = A0η, where the eigenvalues of A0 are the zeros of the
transfer function H(s) = C(sI −A)−1B (D = 0 for strictly proper systems).
This is why a linear systems is referred to as minimum phase when all the zeros
are “stable” (negative real part).
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Input-Output Linearization

Example 6: Linear system

H(s) =
bms

m + bm−1s
m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

Definition: The relative degree r of a linear system whose transfer function is
H(s) is the difference between the degree of the numerator polynomial and the
degree of the denominator polinomial, i.e., is the difference between the number
of poles and zeros of the system, r = n−m.

Lemma: The relative degree of the SISO linear system H(s), with state space
representation A,B,C,D, is r if and only if

CAiB = 0, i = 0, 1, . . . , r − 2, CAr−1B ̸= 0
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Input-Output Linearization

Example 7:

ẋ1 = x2

ẋ2 = ϕ(x) + u

y = x2
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Input-State Linearization

Consider the nonlinear system

ẋ = f(x) + g(x)u

There is NO prespecified output.

Question: Can we find an output w.r.t. which the system has relative degree n
and can be completely linearized?

ξ̇ = Acξ +Bcγ(x)[u− α(x)], ξ = T (x) =


h(x)
Lfh(x)

...
Ln−1
f h(x)


where T (x) is a diffeomorphism.
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Input-State Linearization

Vector Field: Mapping f : D → Rn, f = f(x)

Lie Bracket:

adfg(x) = [f, g](x) =
∂g

∂x
f(x)− ∂f

∂x
g(x) Vector Field

ad0fg(x) = g(x)

adkfg(x) = [f, adk−1
f g](x)

Distribution:

∆(x) = span{f1(x), f2(x), . . . , fk(x)}, fi’s are vector fields

At any x ∈ D, ∆(x) is a subset of Rn. ∆(x): Collection of linear spaces
associated with the different x’s.
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Input-State Linearization

Involutivity: A distribution ∆(x) is involutive if

g1, g2 ∈ ∆ ⇒ [g1, g2] ∈ ∆

Theorem 13.2: The system

ẋ = f(x) + g(x)u

is feedback linearizable if and only if there is a domain D0 ⊂ D such that

the matrix G(x) = [g(x), adfg(x), . . . , ad
n−1
f g(x)] has rank n for all x ∈ D0,

where n is the order of the system (controllability condition);

the distribution D = span{g(x), adfg(x), . . . , adn−2
f g(x)} is involutive in D0.
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Input-State Linearization

Example 8:

ẋ1 = a sin(x2)

ẋ2 = −x21 + u
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Feedback Linearization

Consider a partially feedback linearizable system of the form

η̇ = f0(η, ξ)

ξ̇ = Acξ +Bcγ(x)[u− α(x)]

where

z =

[
η
ξ

]
= T (x) =

[
T1(x)
T2(x)

]
T (x) is a diffeomorphism on a domain D ⊂ Rn, Dz = T (D) contains the origin,
(A,B) is controllable, γ(x) is nonsingular for all x ∈ D, f0(0, 0) = 0, and
f0(η, ξ), α(x), and γ(x) are continuously differentiable.
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Feedback Linearization

The state feedback control

u = α(x) + β(x)v

v = −Kξ,

where K is designed such that (A−BK) is Hurwitz, reduces the system to the
“triangular” form

η̇ = f0(η, ξ) (10)

ξ̇ = (Ac −BcK)ξ (11)

Lemma 13.1: The origin of (10)-(11) is asymptotically stable if the origin of
η̇ = f0(η, 0) is asymptotically stable.
Lemma 13.2: The origin of (10)-(11) is globally asymptotically stable if the
system η̇ = f0(η, ξ) is input-to-state stable.
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Control Problems

Given the model → control theory body

Given the goal → control problem formulation

− Stabilization
− Tracking
− Disturbance rejection or attenuation

Uncertainties → Robust Control or Adaptive Control

Conflicting requirements (trade-off) → Optimal Control
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Control Problems

State Feedback Stabilization Problem: Given the system

ẋ = f(t, x, u)

we design a “static” feedback control law

u = γ(t, x)

such that the origin x = 0 is a u.a.s. equilibrium point of the closed loop system

ẋ = f(t, x, γ(t, x))

This control law is called “static” feedback because it is a memoryless function of x.

Linear Systems: Pole Placement.
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Control Problems

We can design a “dynamic” feedback control law

u = γ(t, x, z)

where z is the solution of a dynamical system driven by x, i.e.,

ż = g(t, x, z)

such that the origin x = 0, z = 0 is a u.a.s. equilibrium point of the closed loop
system.

Example: Integral Control.
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Control Problems

Output Feedback Stabilization Problem: Given the system

ẋ = f(t, x, u)

y = h(t, x, u)

we design a “static” output feedback control law

u = γ(t, y)

or a “dynamic” output feedback control law

ż = g(t, y, z), u = γ(t, y, z)

such that the origin x = 0 (or x = 0, z = 0) is a u.a.s. equilibrium point of the
closed loop system.

Linear Systems: Observers.
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Control Problems

Stabilization:

local stability

regional stability

semiglobal stability

global stability

Example 9 (Example 12.1):
ẋ = x2 + u
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Control Problems

Tracking Problem in the Presence of Disturbances: Given the system

ẋ = f(t, x, u, w)

y = h(t, x, u, w)

ym = hm(t, x, u, w)

where x is the state, u is the control, w is a disturbance input, y is the controlled
output, and ym is the measured output. We design a control law to make

e(t) = y(t)− r(t) ≈ 0, ∀t ≥ t0

or more realistically,
e(t) → 0 as t→ ∞
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Control Problems

When exogenous signal w is generated by known model, asymptotic output
tracking and disturbance rejection can be achieved by including such model
in the feedback controller (internal model principle).

In the case of constant exogenous signals, asymptotic output tracking and
disturbance rejection can be achieved by including “integral action” in the
controller.

For a general time-varying signal w, the goal is just disturbance attenuation.

Control laws for the tracking problem are classified similarly to the
stabilization problem

− State vs. output feedback
− Static vs. dynamic feedback
− Local, regional, semiglobal, or global tracking
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Stabilization via Linearization

We consider the system
ẋ = f(x, u)

Linearization (approximation):

ẋ = Ax+Bu, A =
∂f

∂x

∣∣∣∣
(0,0)

, B =
∂f

∂u

∣∣∣∣
(0,0)

.

State feedback:
u = −Kx

with Lyapunov function V (x) = xTPx, P = PT > 0, and

P (A−BK) + (A−BK)TP = −Q, Q = QT > 0

Closed-loop ẋ = f(x,−Kx) is locally asymptotically stable.
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Integral Control

Given the system

ẋ = f(x, u, w)

y = h(x,w)

ym = hm(x,w)

where x is the state, u is the control, w is a disturbance input, y is the controlled
output, and ym is the measured output. Let r be a constant reference and set
v = [rT wT ]T .

We want to desing a controller to make y(t) → r as t→ ∞. We assume that y is
measured, i.e., y is a subset of ym. The regulation is achieve by stabilizing the
system at an equilibrium y = r.
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Integral Control

Therefore, for each v we assume there is (xss, uss) s.t.

0 = f(xss, uss, w)

r = h(xss, w)

where xss is the desired equilibrium point and uss is the steady-state control
needed to maintain the equilibrium. We integrate the regulation error e = y − r
(internal model),

σ̇ = e

Therefore, once we introduce integral action, the augmented system takes the
following form:

ẋ = f(x, u, w)

σ̇ = h(x,w)− r
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Integral Control

Stabilizing-controller structure depends on measured signal.

Figure: Integral control.
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Integral Control

In the case of state feedback, i.e., ym = x, the controller takes the form
u = γ(x, σ, e), where γ is designed such that there is a unique σss that satisfies
uss = γ(xss, σss, 0).

The closed loop system is in this case

ẋ = f(x, γ(x, σ, h(x,w)− r), w)

σ̇ = h(x,w)− r

y = h(x,w)

where the point (xss, uss) is an asymptotically stable equilibrium. At this
equilibrium point, y ≡ r, regardless of the value of w.

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 35 / 39



Integral Control via Linearization

We propose
u = −K1x−K2σ −K3e

which results in the closed loop system

ẋ = f(x,−K1x−K2σ −K3(h(x,w)− r), w)

σ̇ = h(x,w)− r

The equilibrium point (xss, uss) satisfies

0 = f(xss,−K1xss −K2σss, w)

0 = h(xss, w)− r

uss = −K1xss −K2σss
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Integral Control via Linearization

Linearization around (xss, uss) yields

ξ̇δ = (A− BK)ξδ

where

ξδ =

[
x− xss
σ − σss

]
,A =

[
A 0
C 0

]
,B =

[
B
0

]
,K =

[
K1 K2

]

A =
∂f

∂x
(x, u, w)

∣∣∣∣
x=xss,u=uss

,

B =
∂f

∂u
(x, u, w)

∣∣∣∣
x=xss,u=uss

,

C =
∂h

∂x
(x,w)

∣∣∣∣
x=xss

,

and K is designed such that A− BK is Hurwitz for all v.
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Integral Control via Linearization

Example: Pendulum system

θ̈ = −a sin(θ)− bθ̇ + cT

where a = g/l > 0, b = k/m ≥ 0, c = 1/ml2 > 0, θ is the angle between rod and
vertical axis, and T is the torque applied to the pendulum. Goal: regulate θ to δ.

Figure: Simulation results under nominal (solid) and perturbed (dashed) parameters.
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Gain Scheduling

1 Linearize the nonlinear model around a family of equilibria, parameterized by
scheduling variable

2 Using linearization design a parameterized family of linear controllers to
achieve specified local performance

3 Construct gain-scheduled controller such that

For each cte value of exogenous variable, c.l. system under gain-scheduled
controller and c.l. system under fixed-gain controller have same equilibrium
Linearization of c.l. system under gain-scheduled controller is equivalent to
linearization of the c.l. system under fixed-gain controller

4 Check the nonlocal performance of the gain-schedule controller by simulating
the nonlinear closed-loop model
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