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Autonomous Systems

Consider the autonomous system

i = f(z) (1)

where f: D — R" is a locally Lipschitz map from a domain D C R™ into R™.
Suppose T = 0 € D is an equilibrium point of (1).

Our goal is to characterize and study stability of the equilibrium Z = 0 (no loss of
generality).
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Definition 4.1: The equilibrium point = 0 of (1) is
@ stable if, for each € > 0, there is § = d(€) > 0 such that

[2(O)| < = [zl <eVt=0

@ unstable if not stable

@ asymptotically stable if it is stable and § can be chosen such that
J#(O)] <6 = Jim a(t) = 0

The € — ¢ requirement for stability takes a challenge-answer form.
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“Stability is a property of the equilibrium, not of the system”

Stability of the equilibrium is equivalent to stability of the system only when there

exists only one equilibrium (e.g., linear systems). In this case stability = global
stability.

The equilibrium point = 0 of (1) is
e attractive if there is § > 0 such that

=) < 8= Jim =(t) =0

Example: Attractive but unstable
e asymptotically stable (a.s.) if it is stable and attractive.
o globally asymptotically stable (g.a.s.) if a.s. Va(0) € R™.
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Derivative along the trajectory

Definition: Let V' : D — R be a continuously differentiable function defined in a
domain D € R™ that contains the origin. The derivative of V' along the trajectory
(solution) of (1), denoted by V() is given by

—~ IV

i=1

- Zaxz

ov oV
[a_xl,a_ma)axn][fl( ) f2(x)aafn(x)]T

ov
= 6_xf(x)
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Lyapunov Stability Theorem

Theorem 4.1: Let z = 0 be an equilibrium for (1) and D € R™ be a domain
containing x = 0. Let V : D — R be a continuously differentiable function, such
that

V(0) =0and V(z) > 0in D — {0} 2)

V(z)<0in D ®3)

Then, z = 0 is stable. Moreover, if

V(z) <0in D — {0} 4)

then z = 0 is asymptotically stable.
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Lyapunov Stability Theorem

Proof:

Figure: Geometric representation of sets.

@ Given € > 0, choose r € (0, €] such that

B, ={zx e R"|||z|| <r}CD
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Lyapunov Stability Theorem

o Let o = minj,—, V(x). Then, a > 0 by definition (2). Take 3 € (0, ), and
let
Qg ={z € B, |V(z) < B}
Then, Qg is in the interior of B,.

@ Since Qg is a compact set, we conclude from Theorem 3.3 that (1) has a
unique solution defined for all ¢ > 0 whenever z(0) € Qg.

@ Any trajectory starting in 2g at ¢ = 0 stays in Qg for all time. This follows
from (3) since

V(a(t) <0 = V(a(t)) < V(2(0) < 8,t > 0
@ Since V(x) is continuous and V(0) = 0, there is § > 0 such that
lz]| <d=V(z)< 8

Then,
Bs C Qg C B,
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Lyapunov Stability Theorem

@ This implies that
z(0) € Bs = x(0) € Q5 = z(t) € Qg = z(t) € B,

Therefore,
Jo()]l < 3= la(t)| <r <e VE=0

which shows that the equilibrium point z = 0 is stable.

@ Now, assume that (4) holds as well. To show asymptotic stability, we need to
show that z(t) — 0 as t — 0; that is, for every a > 0, there is T > 0 such
that ||z(¢)|| < a, forallt > T.

@ By repetition of previous arguments, we know that for every a > 0, we can
choose b > 0 such that Q, C B,. Therefore, it is sufficient to show that
V(z(t)) — 0.
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Lyapunov Stability Theorem

@ Since V(x(t)) is monotonically decreasing and bounded from below by zero,
we have that
V(z(t)) > c>0ast— 0

@ To show that ¢ = 0, we use a contradiction argument. Suppose ¢ > 0. By
continuity of V(z),there is d > 0 such that By C Q.. The limit
V(x(t)) = ¢ > 0 implies that the trajectory z(t) lies outside the ball B, for
all > 0. Let —y = maxg<|jz|<r V (), which exists because the continuous
function V' (z) has a maximum over the compact set {d < ||z|| < r}. By (4),
—7v < 0. It follows that

V(z(t)) = V(2(0)) +/0 V(x(r))dr < V(2(0)) — 4t

Since the right-hand side will eventually become negative, the inequality
contradicts the assumption that ¢ > 0.
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Lyapunov Stability Theorem

@ Lyapunov function candidate

V(0) =0 and V(z) > 0in D — {0}

@ Lyapunov function

V(0)=0and V(z) >0in D — {0}

V(z) <0in D
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Lyapunov Stability Theorem

o Lyapunov surface (level surface, level set)

{z[V(z) = ¢}

C1<Cr<Cy

Figure: Level surfaces of a Lyapunov function.
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Lyapunov Stability Theorem

@ Positive definite

V(0)=0,V(z) >0,Vz #0

o Positive semidefinite

V(0)=0,V(z) >0,Yz #0
V(z) is negative (semi)definite if —V'(x) is positive (semi)definite

@ Lyapunov Theorem
V pdf + V nsdf — stable
V pdf + V ndf — asymptotically stable
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Lyapunov Stability Theorem

Example 4.4: Consider the pendulum equation with friction

3.31 = X2

k
o = — (Q) sinz — <> To 2 —asinzy — bxo
l m

o Vi(x) = a(l —cos(z1)) + (1/2)23 = Stable.

o Va(x) = a(l —cos(zy)) + (1/2)2T Pz = Asympt. Stable.
Conclusion:

@ Lyapunov's stability conditions are only sufficient.

e Vi(z) good enough to prove a.s. via LaSalle’s theorem.

@ Backward approach — Variable Gradient Method.
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Region of Attraction

When the origin = 0 is asymptotically stable, we are often interested in
determining how far from the origin the trajectory can be and still converge to the
origin as t — oo. This gives rise to the definition of region of attraction (also
called region of asymptotically stability, domain of attraction, or basin).

Definition: Let ¢(t,z) be the solution of (1) that starts at initial state x at time
t = 0. The, the region of attraction is defined as the set of all points = such that
limy o0 ¢(t,2) =0

Question: Under what conditions will the region of attraction be the whole space
R™? In other words, for any initial state x, under what conditions the trajectory
¢(t,x) approaches the origin as ¢ — oo, no matter how large ||z is. If an a.s.
equilibrium point at the origin has this property, it is said to be globally
asymptotically stable (g.a.s.).
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Global Lyapunov Stability Theorem

Theorem 4.2: Let z = 0 be an equilibrium for (1). Let V : R — R be a
continuously differentiable function, such that

V(©0)=0and V(z) >0, Vo #0 (5)
|z]| = 00 = V(z) = 0 (6)
V(z) <0, Vo #0 (7)

Then, x = 0 is globally asymptotically stable and is the unique equilibrium point.

NOTE: It is not enough to satisfy Theorem 4.1 for D = R™!ll
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Chetaev's Instability Theorem

Theorem 4.3: Let z = 0 be an equilibrium for (1). Let V: D — R be a
continuously differentiable function, such that V(0) = 0 and V(zg) > 0 for some
xo with arbitrarily small ||zg||. Define a set

U={ze B, |V(z) >0}

where
B, ={z € R"|||z|| <r}.

Suppose that V(z) > 0 in U. Then x = 0 is unstable.

Crucial Condition: V must be positive in the entire set where V > 0.
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Chetaev's Instability Theorem

Proof:

Figure: Set U for V(z) = % (27 — 23) > 0.
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Chetaev's Instability Theorem

Proof:

@ By conditions of the theorem, the point xg is in the interior of U and
V(zg) = a > 0. The proof of this theorem is based on the fact that the
trajectory x(¢) starting at x(0) = x¢ must leave the set U. To see this point,
notice that as long as z(t) is inside U, V(x(t)) > a since V(z) > 0 in U.

o Let

v =min{V(z)|z € U and V(z) > a}

which exists since the continuous function V(m) has a minimum over the
compact set {z € U and V(z) > a} = {z € B, and V(z) > a}.

@ Then, v >0 and

V(z(t)) = V(o) +/O V(x(s))ds > a +/0 vds = a+ vt

@ This inequality shows that x(t) cannot stay forever in U because V() is
bounded on U. Now, z(t) cannot leave U through the surface V(z) =0
since V(z(t)) > a. Hence, it must leave U through the sphere ||z| = 7.
Since this can happen for an arbitrarily small |||, the origin is unstable.
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Chetaev's Instability Theorem

Example 4.7: Consider the second order system
= 1+ g1(x)
Ty = —x2+ga(z)
where ¢1() and g2() are locally Lipschitz functions that satisfy the inequalities

g1(2)| < Kllzll®, lga(2)] < kll2]?

Use the Lyapunov function candidate V(z) = (23 — 23) and Chetaev's theorem

to show that the origin is unstable.
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Invariance Principle

Example 4.4: Consider the pendulum equation with friction

1“1 = X2

. (g) : < k )

To = — |\~ |/Smmx; — — | T2
l m

We consider the Lyapunov function candidate

V(z) = (%) (1 —coszy) + %% =V(z)=— (:1) 3

The energy Lyapunov function fails to satisfy the asymptotic stability condition of
Theorem 4.1. But can V(z) = 0 be maintained at = # 0?

Idea: If we can find a Lyapunov function in a domain containing the origin whose
derivative along the trajectories of the system is negative semidefinite, and if we
can establish that no trajectory can stay identicaly at points where V(x) =0
except at the origin, then the origin is asymptotically stable (LaSalle's Invariance
Principle).
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Invariance Principle

Let z(t) be a solution of the autonomous system & = f(z).

Definition: The point p is a positive limit point of x(t) if exists a sequence {t,}
with ¢,, — 0o as n — oo such that z(¢t) — p as n — oco.

Definition: The set of all positive limit points of x(t) is called the positive limit
set of z(t).

Definition: A set M is (positively) invariant w.r.t. & = f(x) if
z(0)e M = x(t) e M forallt € R (t € Ry).

Definition: z(t) approaches M as t — oo if for each € > 0 exists T' > 0 such that
dist(z(t), M) (= inf,en ||z(t) — p||) < e forall t > T.

z(t) = M as t — 0o = limy_,o dist(z(t), M) =0
x(t) > M as t = oo NOT = Flimy, 00 2(¢)
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Invariance Principle

Lemma 4.1: If x(¢), solution of & = f(x), is bounded for all t > 0, then it has a
nonempty positive limit set L™ which is compact and invariant. Moreover,

2(t) = LT ast — oo
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Invariance Principle

Theorem 4.4 (LaSalle’s Theorem): Let Q C D be a compact set that is
positively invariant w.r.t. & = f(x). Let V : D — R be a continuously
differentiable function such that V(x) < 0in Q. Let F be the set of all points in
Q where V() = 0. Let M be the largest invariant set in E. Then, every solution
starting in {2 approaches M as t — oo.

Note: Unlike Lyapunov’'s theorem, LaSalle’'s theorem does NOT require the
function V(x) to be positive definite.

Note: When we are interested in showing that z(¢) — 0 as ¢ — oo, we need to
establish that the largest invariant set in E is the origin.
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Invariance Principle

Proof:
o Let x(t) be a solution of & = f(x) starting in Q.
@ Since V(x) < 0in Q, V(x(t)) is a decreasing function of t.

@ Since V(x) is continuous on the compact set €2, it is bounded from below on
Q. Therefore, V(x(t)) has a limit a as t — oco.

Note also that the positive limit set L™ is in € because € is a closed set. For
any p € L™, there is a sequence t,, with t,, — oo and z(t,,) — p as n — occ.

By continuity of V(z), V(p) = lim, 00 V(2(ts)) = a. Then, V(z) =aon LT,
Since (by Lemma 4.1) L* is an invariant set, V(z) = 0 on L*. Thus

LTcMcCECHQ

e Since z(t) is hounded, x(t) approaches L™ as t — oo (by Lemma 4.1).
Hence, x(t) approaches M as t — oo.
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Invariance Principle

Corollary 4.1 (4.2): Let z = 0 be an equilibrium point of & = f(x). Let

V : D(R™) — R be a continuously differentiable (radially unbounded, positive
definite) function on a domain D containing the origin (on R™), such that

V(z) <0in D (in R"). Let S = {x € D(R™)|V(z) = 0} and suppose that no
solution can stay identically in .S, other than the trivial solution. Then, the origin
is (globally) asymptotically stable.
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Invariance Principle

LaSalle’s theorem:
o Relaxes the negative definiteness requirement for V' (z) of Lyapunov’s theorem
@ Does not require V(z) to be positive definite

@ Gives an estimate of the region of attraction 2 which is not necessarily a
level set of V(z), i.e., Q. = {x € R"|V(z) < ¢}
Applies not only to equilibrium points but also to equilibrium sets
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Invariance Principle

Example:
&= —lzlr+ (1 - |z])ry
1
. - 21— 2
i = —50-lahe
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Linear Systems and Linearization

The linear time-invariant system
T = Ax
has an equilibrium point at the origin.
o if det(A) # 0 the equilibrium point is isolated

o if det(A) = 0 the system has an equilibrium subspace
(nontrivial null space of A)

Note: A linear system CANNOT have multiple isolated equilibrium points.

For a given initial state z(0), the solution of the system is

z = ez(0) (8)
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Linear Systems and Linearization

For all A, there exists a nonsingular transformation matrix P (possibly complex)
that transforms A into its Jordan form J, i.e.

J1
PlAP =J = ,
Jr

where J; is a Jordan block of order m; associated with eigenvalue \; of A, i.e.,

F A1 o ... ... 0
o x 1 0 ... 0
Ji =
0
: o1
0 ... ... ... 0 N
= - m; Xm;

Note that a Jordan block of order m; = 1 takes the form J; = \;.

Spring 2024
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Linear Systems and Linearization

Then,

At — peltp—1 _ Z Z tkfle(kit)Rik (9)
i=1 k=1
where m; is the order of the Jordan block J;. If an n x n matrix A has a repeated
eigenvalue \; of algebraic multiplicity ¢; (g; is the multiplicity of \; as a zero of
det(AI — A)), then the Jordan blocks associated with A; have order one if and
only if rank(A — \; 1) =n — ¢;.

@ The algebraic multiplicity of an eigenvalue \; of A is the number of times \;
appears as a root of det(\ — A)).

@ The geometric multiplicity of an eigenvalue \; of A is the dimension of the
null space of A — A\;I (number of linearly independent eigenvectors).

@ The algebraic multiplicity and geometric multiplicity of an eigenvalue can
differ. However, the geometric multiplicity can never exceed the algebraic
multiplicity.

@ If for every eigenvalue of A, the geometric multiplicity equals the algebraic
multiplicity, then A is said to be diagonalizable.
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Linear Systems and Linearization

Theorem 4.5: The equilibrium point z = 0 of & = Az is
@ stable & Re)\; < 0 and for every eigenvalue with Re); = 0 and algebraic
multiplicity ¢; > 2, rank(A — X\;I) = n — ¢;, where n is the dimension of x

Q (globally) asymptotically stable & Re); < 0 for all 4

Proof:
@ The origin is stable <= e“* in (9) is a bounded function of ¢ for all t > 0.

o If Re); > 0, et — 00 as t — co. Therefore, we must restrict the
eigenvalues to be in the closed left-hand complex plane.

@ However, an eigenvalue on the imaginary axis (Re\; = 0) could give rise to
unbounded terms if the order of an associated Jordan block is higher than
one due to the term t*~1.

@ Therefore, we must restrict eigenvalues on the imaginary axis to have Jordan
blocks of order one, which is equivalent to the rank condition
rank(A — \I) =n —g;.

o If Rel; <0, eX) 0 ast — oo, ie., e - 0ast— oo (as.).

@ Since z(t) depends linearly on z(0) (see (8)), a.s. of origin is global.
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Linear Systems and Linearization

When all eigenvalues of A satisfy Re); < 0, A is called a Hurwitz matrix or a
stability matrix. The origin of £ = Ax is a.s. if and only if A is Hurwitz.

Lyapunov function candidate
V(z)=2TPz, P>0, P=PT
with derivative along the trajectories of £ = Ax
V(z)=2T(PA+ ATP)z = —27Qu
Lyapunov equation

PA+ATP=—-Q, Q>0 Q=07
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Linear Systems and Linearization

Theorem 4.6: A matrix A is a stability matrix or Hurwitz matrix, that is,
Re(A;) < 0 for all eigenvalues of A, if and only if for any given positive definite
symmetric matrix () there exists a positive definite symmetric matrix P that
satisfies the Lyapunov equation. Moreover, if A is a stability matrix or Hurwitz
matrix, the P is the unique solution of the Lyapunov equation.
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Linear Systems and Linearization

Proof:
@ Sufficiency follows from Theorem 4.1 with the Lyapunov function
V(x) = 27 Px,as we have already shown.

@ To prove necessity, assume that all eigenvalues of A satisfy Re();) < 0 and
consider the matrix P, defined by

P = /OO e(ATt)Qe(At)dt
0

o The integrand is a sum of terms of the form t*~1e(Xi®) (see (9)), where
Re(\;t) < 0. Therefore, the integral exists. The matrix P is symmetric and
positive definite. The fact that it is positive definite can be shown as follows.
Supposing it is not so, there is a vector = # 0 such that 7 Pz = 0.However,

tTPr=0 = / xTe(ATt)Qe(At)xdt =0
0

= e(At)xEO,VtEO:xzo
since e(A?)

definite.

is nonsingular for all t. This contradiction shows that P is positive
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Linear Systems and Linearization

@ Now, substituting P in the Lyapunov equation yields

PA+ATP = / - A Qe(A) Adt + / - AT (AT Qe(A) gt
0 0
©d .
_ /0 DT Qe a1 = ATOQEM i = —Q

which shows that P is indeed a solution of the Lyapunov equation.

@ To show that it is the unique solution, suppose there is another solution
P # P. Then,

(P-P)A+AT(P-P)=0
Premultiplying by 4" ®) and postmultiplying by €A%, we obtain
0=eAD[(P—P)A+ AT(P — P)le) = %{e(ATt)(P — P)eA}
Hence, e(ATt)(P — P)elY) is constant Vt. In particular, this is true for ¢t = 0
(€' 1)

P-P=eA"(P-P)e 5 0ast— oo
we can conclude that P = P.
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Linear Systems and Linearization

What if Q = CTC is positive semidefinite? The positive definiteness requirement
on @ can indeed be relaxed.

Theorem 4.6 (Relaxed Conditions): A matrix A is a stability matrix or Hurwitz
matrix, that is, Re(\); < 0 for all eigenvalues of A, if and only if for a given
positive semidefinite symmetric matrix Q = C7C there exists a positive definite
symmetric matrix P that satisfies the Lyapunov equation where the pair (A, C) is
observable. Moreover, if A is stability matrix or Hurwitz matrix, the P is the
unique solution of the Lyapunov equation.
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Linear Systems and Linearization

Theorem 4.7 (Lyapunov’s First Method or Lyapunov’s Indirect Method):
Let x = 0 be an equilibrium point for the nonlinear system

i = f(x)

where f: D — R"™ is continuously differentiable and D is a neighborhood of the
origin. Let
of
A= =
ox (z) 2=0
@ The origin is asymptotically stable if Re)\; < 0 for all 4
@ The origin is unstable if ReA; > 0 for some 4

Note: If A has eigenvalues on imaginary axis and no eigenvalues with Re); > 0
we CANNOT make conclusions.

Proof: Long but easy to follow. It uses Theorem 4.1 to prove the first statement
and Theorem 4.3 to prove the second statement.
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Nonautonomous Systems

Consider the nonautonomous system

= f{t,x)  x(lo) =0 (10)

where f :[0,00) x D — R™ is piecewise continuous in t and locally Lipschitz in x
on [0,00) x D, and D C R™ is a domain that contains the origin x = 0. The
origin is an equilibrium point of (10) at ¢t = 0 if

f(t,0)=0, Vt>0

NOTE: The solution of (10) depends on both ¢ and ;. We need to refine stability
definitions so that they hold uniformly in ;.

NOTE: An equilibrium point at the origin could be a translation of a nonzero
equilibrium point, or more generally, a translation of a nonzero solution
(trajectory) of the system.
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Nonautonomous Systems

Suppose g(7) is a solution of the system

dy
= 9(1,y)

defined for all 7 > a. The change of variables
x=y—g(r), t=7T—a
transforms the system into the form
& =g(r,y) — (1) = g(t +a,x + y(t +a)) — y(t +a) = f(t,2)

Since
Gt +a)=g(t+a,g(t+a), Yt>0

the origin x = 0 is an equilibrium point of the transformed system at ¢ = 0.
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Nonautonomous Systems

@ By examining the stability behavior of the origin as an equilibrium point for
the transformed system, we determine the stability behavior of the solution
y(7) of the original system.

Stability of trajectories = Stability of equilibria of nonautonomous systems

e If §(7) is not constant, the transformed system will be non-autonomous even
when the original system is autonomous, i.e., even when g(7,y) = g(y).

@ The stability behavior of solutions in the sense of Lyapunov can be done only

in the context of studying the stability behavior of the equilibria of
non-autonomous systems.
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While the solutions of autonomous systems depend only on ¢ — tg, the solutions of
nonautonomous systems may depend on both ¢ and ¢y3. We then refine definitions.

Definition 4.4: The equilibrium point = = 0 of (10) is
o stable if, for each € > 0, there is § = (e, t9) > 0 such that
lz(0)]| < d = ||lz(t)|| < e, VE>to >0 (11)

@ uniformly stable (u.s.) if 0 is independent of ¢
@ unstable if not stable
@ attractive if there is a positive constant ¢ = ¢(tg) such that

x(t) = 0 as t — oo, for all ||z(t)]| < c

uniformly attractive (u.a.) if ¢ is independent of ¢y
asymptotically stable (a.s) if stable and attractive
uniformly asymptotically stable (u.a.s) if u.s. and u.a.

globally uniformly asymptotically stable (g.u.a.s) if u.a.s. and c arbitrarily large
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Definition 4.5: The equilibrium point = = 0 of (10) is exponentially stable if
there exist positive constants ¢, k£, and X such that

lz() < Kllz(to)lle =), ¥ Ja(to)]l < ¢ (12)

and globally exponentially stable if (12) is satisfied for any initial state z(to).
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Comparison Functions

The solutions of nonautonomous systems depend on both ¢ and ty3. We refine the
stability definitions, so that they hold uniformly in the initial time tg, using special
comparison functions.

Definition 4.2: A continuous function « : [0,a) — [0, c0) is said to belong to

class K if it is strictly increasing and «(0) = 0. It is said to belong to class Ko if
a =00 and a(r) = oo as r — 0.

Definition 4.3: A continuous function 5 : [0,a) x [0,00) — [0, 00) is said to
belong to class ICL if for each fixed s, the mapping 5(r, s) belongs to class K with
respect to r and, for each fixed r, the mapping S(r, s) is decreasing with respect
to s and 3(r,s) — 0 as s — oo.
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Comparison Functions

Examples:
o a(r)=rceKifc>0
0 a(r)=r* ey ifc>0
e B(r,s)=re*eKLifec>0

NOTE: See more in book (Example 4.16)
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Comparison Functions

The next lemma states properties of class K and class L functions

Lemma 4.2: Let a; and as be class K functions on [0,a), a3 and a4 be class
Ko functions, and 3 be a class KL function. Denote the inverse of «; by ai_l.
Then,

o ;' is defined on [0, (a)) and belongs to class K
az ' is defined on [0,00) and belongs to class Ko,
a1 o ay belongs to class £

a3 o ay belongs to class Ko

o(r,s) = a1 (B(az(r),s)) belongs to class KL
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Comparison Functions

The next lemmas show how class K and class KL enter into Lyapunov analysis

Lemma 4.3: Let V: D — R be a continuous positive definite function defined
on a domain D C R™ that contains the origin. Let B, C D for some r > 0.
Then, there exist class IC functions a7 and aq, defined on [0,7), such that

ar(flzl]) < V(z) < ao(ll2]))

for all x € B,.. If D = R", the functions a; and as will be defined on [0, 00) and
the foregoing inequality will hold for all z € R™. Moreover, if V(x) is radially
unbounded, then a; and as can be chosen to belong to class K.

For a quadratic positive definite function V(z) = 27 Px, Lemma 4.3 follows from
the inequality

)\mm(P)”ng < =T Pz < Amaz(P)Hng
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Comparison Functions

Lemma 4.4: Consider the scalar autonomous differential equation
y=—ay), ylto)=1yo

where « is a locally Lipschitz class K function defined on [0, a). For all
0 < yp < a, this equation has a unique solution y(t) defined for all ¢ > t.
Moreover,

y(t) = o(yo,t — to)

where ¢ is a class KL defined on [0,a) x [0, c0).
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Lemma 4.5: The equilibrium point 2 = 0 of (10) is
@ uniformly stable (u.s.) if and only if there exist a class K function « and a
positive constant ¢, independent of ¢y, such that

[z(t)]| < e(llzto)l]), VT = to =0, V[|lz(to)]| < c (13)

e uniformly asymptotically stable (u.a.s) if and only if there exist a class KL
function 3 and a positive constant ¢, independent of ¢y, such that

l@I < B(lz(to)ll,t —to), VE = t0 > 0,V [|z(to)|| < ¢ (14)

@ globally uniformly asymptotically stable (g.u.a.s.) if and only if inequality
(14) is satisfied for any initial state z(to)
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Theorem 4.8: Let z = 0 be an equilibrium point for (10) and D C R™ be a
domain containing the origin. Let V : [0,00) x D — R be a continuous
differentiable function such that

Wi(z) < V(t,z) < Wa(x) (15)
ov. oV

for all t > 0 and for all x € D, where Wy (x) and Wa(x) are continuous positive
definite functions on D. Then, x = 0 is uniformly stable (u.s.).
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Proof: _-D

\{W2 <c}

~
Ve
Figure: Geometric representation of sets.

@ The derivative of V' along the trajectories of & = f(x,t) is given by
ov oV
o " ow
@ Choose 7 > 0 and ¢ > 0 such that B, C D and ¢ < minj,—, Wi(x). Then,
{z € B,|Wi(z) < c} is in the interior of B,.
@ Define a time-dependent set € ;. by

Qe={zx € B |V(t,z) <c}

ft,z) <0
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Figure: Geometric representation of sets.

@ The set €2 . contains {x € B,|W)(z) < ¢} since Wa(z) < c=V(t,z) <ec.
And € . is a subset of {x € B,|W1(z) < ¢} since V(t,z) < c= Wi(x) < c}.
@ Thus,

{z € By|Wy(z) <c} C Qe C{xeB|Wi(z) <c}CB.-CD Vt>0

@ The setup of nested sets in the figure is similar to that used in the proof of
Theorem 4.1 except that surface V(¢,x) = ¢ is now dependent on ¢, and that
is why it is surrounded by time-independent surfaces Wi (x) = ¢, Wa(x) = c.
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“W, <)

v
Figure: Geometric representation of sets.

@ Since V(t,x) <0on D, for any tyg > 0 and any zg € (), . the solution
starting at (to,zo) stays in . for all ¢ > t.

@ Therefore, any solution starting in {z € B,|Wa(x) < ¢} stays in {,, and
consequently in {z € B,|[Wi(z) < c}. Hence, the solution is bounded and
defined for all ¢ > tq.
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@ Moreover, since V(t,z) < 0,
V(t,z(t)) < V(tg, z(tg)), Yt >t
@ By Lemma 4.3, there exist class K functions «; and «s, defined on [0, 7] s.t.
ar([lz]) < Wi(z) < V(t,2) < Wa(z) < ool
@ Combining the preceding two inequalities, we see that
lz@)ll < a7 (V¢ 2(t))) < o (V(to, 2(t))) < a7 ' (az(l|z(to))

e Since a; ' oy is a class K (by Lemma 4.2), the inequality
|2(t)|] < ey (aa(]|z(to)]])) shows that the origin is uniformly stable
(according to inequality (13) in Lemma 4.5).
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Theorem 4.9: Let z = 0 be an equilibrium point for (10) and D C R™ be a
domain containing the origin. Let V : [0,00) x D — R be a continuous
differentiable function such that

Wi(z) < V(t,z) < Wa(z) (17)
837‘; + (Z%j (t,z) < —Ws(z) (18)

for all t > 0 and for all x € D, where Wy (x), Wa(z) and W3(z) are continuous
positive definite functions on D. Then, x = 0 is uniformly asymptotically stable

(u.a.s.).
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Theorem 4.9 (cont’): Moreover, if r and c are chosen such that

B, = {||z]| <7} C€ D and ¢ < minj, =, Wi(x), then every trajectory starting in
{z € B;|Wa(x) < ¢} satisfies

lz(®)[l < B([|z(to)|l,t —to), Yt>to >0

for some class ICL function 3. Finally, if D = R™ and W1 (z) is radially
unbounded, then x = 0 is globally uniformly asymptotically stable (g.u.a.s).
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Proof: Continuation of proof of Theorem 4.8.

Figure: Geometric representation of sets.

o We know that trajectories starting in {z € B,|Wa(z) < ¢} stays in
{z € By|Wi(z) < ¢} forall t > tp.
@ By Lemma 4.3, there exist class K functions «g defined on [0, 7] s.t.

. ov. oV

Vito) = S + St w) < —Wa(a) < —ag(Ja])
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@ Recall that by Lemma 4.3, there exist class K functions a1, as, defined on
[0,7] s.t.
ar([z]]) < Wi(z) S V(t,z) < Wa(z) < ao(||z]])

Using the inequality
V<a(e]) = ax'(V) < 2] == as(az'(V)) < as(|2])
we see that V satisfies the differential inequality
V < —as(ay (V) = —a(V)

where a £ a3 0a; ! is a class K function defined on [0, 7] (see Lemma 4.2).

o Assume without loss of generality that « is locally Lipschitz. Let y(¢) satisfy
the autonomous first-order differential equation

< —aly),  y(to) =V(to,z(to)) = 0
By (the comparison) Lemma 3.4,

V(t,z(t)) <y(t), Yt > to
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@ By Lemma 4.4, there exists a class KL function o(r, s) defined on
[0, 7] x [0,00) such that y(t) = o(yo,t — to). Therefore,

V(t,x(t)) < o(V(to,z(to)),t —to), YV (to,z(to)) € [0,¢]

@ Therefore, any solution starting in {z € B,|Wa(x) < ¢} satisfies the
inequality

lz@®)l < oy (V(ta(t) < oy oVt 2(t)), t — to))
< oy Ho(aa(lz(to)l)), t = to)) £ Bl (to)l, t — to)

o Lemma 4.2 shows that § £ a; ' oo oay is a class KL function. Thus,
inequality (14) in Lemma 4.5 is satisfied, which implies that = 0 is
uniformly asymptotically stable (u.a.s).

e if D = R", the functions a1, aa, and a3 are defined on [0, 00). Hence, o and
B are independent of ¢. As Wi (x) is radially unbounded, ¢ can be chosen
arbitrarily large to include any initial state in {Wa(z) < c¢}. Thus, (14) holds
for any initial state, showing that the origin globally uniformly asymptotically
stable (g.u.a.s).
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Theorem 4.10: Let 2 = 0 be an equilibrium point for (10) and D C R" be a
domain containing the origin. Let V : [0,00) x D — R be a continuous
differentiable function such that

Billel® < V(t2) < Falla]® (19)
ov oV

- 2 < a

o S 1) < ke (20)

for all £ > 0 and for all z € D, where k1, ko and k3 are positive constants. Then,
x = 0 is exponentially stable (e.s.). Moreover, if the assumptions hold globally,
then & = 0 is globally exponentially stable (e.s.).
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Proof:

Figure: Geometric representation of sets.

o From the figure, it can be seen that trajectories starting in {ko||z||* < ¢}, for
sufficiently small ¢, remain bounded for all ¢ > t,.

@ The conditions of the theorem show that V satisfies the differential inequality
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@ By the comparison Lemma 3.4,

V(t,z(t)) < V(to, x(to))e~ka/k2)t=to)

@ Hence,
o) < [V [Vt atge et e
= k = ke
_ - 1/a 1/a
ka||z(to) || e~ ha/k2)(t—to) ko — (ks /k2) (t—to)
< I I 3/k2 0
< | - 2) 7 etole

Thus, the origin is exponentially stable.

@ If all the assumptions hold globally, ¢ can be chosen arbitrarily large and the
previous inequality holds for all z(ty) € R™.
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ms and Linearization

The stability behavior of the origin as an equilibrium point for the linear time
varying (LTV) system
T =A(t)x (21)

can be characterized in terms of the state transition matrix of the system. The
solution of (21) is given by

x(t) = ®(t,t0)z(to)

where ®(t,1g) is the state transition matrix.
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ms and Linearization

Theorem 4.11: The equilibrium point = = 0 of (21) is (globaly) uniformly
asymptotically stable if and only if the state transition matrix satisfies the
inequality

[®(t, to)|| < ke 00 Wt >, >0

for some positive constants k and \.
Note: Impractical. It needs to compute ®(¢,0)!

For linear systems with isolated equilibrium, stability results are automatically
globally. Moreover,

asymptotical stability <= exponential stability
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LTV Systems and Linearization

For LTV systems, uniform asymptotic stability cannot be characterized by the
location of the eigenvalues of the matrix A as it is done for LTI systems.

Example 4.22: Consider a second-order linear system with

A(t) = —1+41.5cos?t 1 —1.5sintcost
"~ | —=1—1.5sintcost —1+1.5sint

For each t, the eigenvalues of A(t) are given by —0.25 + 0.251/7j. Thus, the
eigenvalues are independent of ¢ and lie in the open left-half plane. Yet, the origin
is unstable. It can be verified that

0.5t —t o
e cost e ‘'sint
®(t,0) = { —e%%gint e~ tcost }

which shows that there are initial states x(0), arbitrarily close to the origin, for
which the solution is unbounded and escapes to infinity.
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LTV Systems and Linearization

Theorem 4.12: Let x = 0 be the exponentially stable equilibrium point of (21).
Suppose A(t) is continuous and bounded. Let Q(t) be a continuous, bounded,
positive definite, symmetric matrix. Then, there is a continuously differentiable,
bounded, positive definite, symmetric matrix P(t) that satisfies

—P(t) = P(t)A(t) + AT () P(t) + Q(t)

Hence,
V(t,x) =zT P(t)x

is a Lyapunov function for the system that satisfies the conditions of Theorem
4.10.

Note: It plays the role of Theorem 4.6 for LTV systems.
Proof: Take -
P(t) = / T (1,)Q(T)®(r, t)dr
t

as gramian.
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LTV Systems and Linearization

Theorem 4.13: Let = = 0 be and equilibrium point for the nonlinear system

where f :[0,00) x D — R™ is continuously differentiable,
D = {z € R"|||z||2 < r} and the Jacobian matrix [0f/0x] is bounded and
Lipschitz on D, uniformly in ¢. Let

ity = 2Lt )

ox 20

Then, the origin is an exponentially stable equilibrium point for the nonlinear
system if it is an exponentially stable equilibrium point for the linear system

= A(t)x

Note: It plays the role of Theorem 4.7 for LTV systems.

Proof: Apply Theorem 4.12.
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Converse Theorems

Lyapunov Theorems:

V exists = =0u.asores. (22)
Converse Lyapunov Theorems:

V exists <=z =0 u.as ores. (23)

Note: They just guarantee existence of Lyapunov function V' but do NOT tell us
how to obtain that Lyapunov function!
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Converse Theorems

The idea of constructing a converse Lyapunov function is not new. It has been
done for linear systems in the proof of Theorem 4.12. A careful reading of that
proof shows that linearity of the system does not play a crucial role in the proof,
except for showing that V (¢, ) is quadratic in 2. This observation leads to the
first of our two converse theorems, whose proof is a simple extension of the proof
of Theorem 4.12.

Theorem 4.14: Let x = 0 be an equilibrium point for the nonlinear system
i = f(t x) (24)

where f :[0,00) x D — R"™ is continuously differentiable,

D = {z € R"|||z|]| < r}, and the Jacobian matrix [0f/0z] is bounded on D,
uniformly in t. Let k, A, and ¢ be positive constants with ro < r/k. Let

Dy = {x € R"|||z|| < ro}. Assume that the trajectories of the system satisfy

lz(Oll < Kllz(to)lle "), ¥ |la(to)]| € Do, Vit >to >0 (25)

Note: This is the definition of exponential stability!
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Converse Theorems

Then, there is a function V : [0,00) x Dy — R that satisfies the inequalities

allel? < V(t,2) < ol (26)
v v ,
T L7 < _
W ft2) < el 27)
ov
52| < catet (28)

for some positive constants ¢y, ¢a, ¢3, and ¢4. Moreover, if r = oo and the origin
is globally exponentially stable, then V (¢, z) is defined and satisfies the
aforementioned inequalities on R™. Furthermore, if the system is autonomous, V'
can be chosen independent of t.
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Converse Theorems

In Theorem 4.13, it was shown that if the linearization of a nonlinear system
about the origin has an exponentially stable equilibrium, then the origin is an
exponentially stable equilibrium for the nonlinear system. It is possible to use
Theorem 4.14 to prove that exponential stability of the linearization is a necessary
and sufficient condition for exponential stability of the origin.

Theorem 4.15: Let = 0 be an equilibrium point for the nonlinear system
i = f(tx) (29)

where f:[0,00) x D — R"™ is continuously differentiable,
D = {z € R"|||z||2 < r}, and the Jacobian matrix [0f/0z] is bounded and
Lipschitz on D, uniformly in ¢. Let

of
At) = = (¢, 30
0= 5,00 (30)
Then, x = 0 is an exponentially stable equilibrium point for the nonlinear system
if and only if it is an exponentially stable equilibrium point for the linear system

&= A(t)z (31)
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Converse Theorems

Corollary 4.3: Let £ = 0 be an equilibrium point for the nonlinear system

&= f(x) (32)

where f(z) is continuously differentiable in some neighborhood of the origin. Let
of
A= =

oz |,_, (33)

Then, z = 0 is an exponentially stable equilibrium point for the nonlinear system
if and only if A is Hurwitz.

Example 4.23: Consider the first-order system & = —23. It was shown that the
orign is asymptotically stable, but linearization about the origin results in the
linear system & = 0 whose A matrix is not Hurwitz. Using Corolary 4.3, we
conclude that the origin is not exponentially stable.
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Converse Theorems

The following converse Lyapunov theorem extend Theorem 4.15 but its proof is
more involved. Theorem 4.16 applies to the more general case of uniformly
asymptotically stable equilibria.

Theorem 4.16: Let = = 0 be an equilibrium point for the nonlinear system
&= f(tx) (34)

where f:[0,00) x D — R"™ is continuously differentiable,

D = {z € R"|||z|| < r}, and the Jacobian matrix [0f/Ox] is bounded on D,
uniformly in ¢. Let 8 be a class KL function and ry a positive constant such that
B(rg,0) <. Let Dy = {x € R™|||z|| < ro}. Assume that the trajectories of the
system satisfy

(@) < Bllz(to)ll, t —to), VI = to =0, V|lz(to)]| < ¢ (35)

Note: This is the definition of uniform asymptotic stability!
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Converse Theorems

Then, there is a function V : [0,00) x Dy — R that satisfies the inequalities

ar(llz]) < V(t.2) < an(|al) (36)
D O ft,2) < —as(la) (37)
H H < au(ll2l) (38)

for some positive constants a1, as, ag, and ay are class K functions defined on
[0,70]. If the system is autonomous, V' can be chosen independent of ¢.
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Lyapunov analysis can be used to show boundedness of the solution of the state
equation, even when there is no equilibrium point at the origin.

Example: & = —x + dsin(t), x(tp) =a, a > I >0

The solution of this linear scalar differential equation is given by
t
z(t) = e 1) 4 5/ e ") sinrdr,
to
which satisfies the bound (|sin7| < 1)

¢
lz(t)] < e tPlg4§ | e dr
to

= e (g 4§ {1 - e*(t*to)]
= e () (g—§)+6
< a Vi>ty, a—6>0

In this case the solution is said to be uniformly bounded and a is called the bound.
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This a conservative bound as the time progresses because it does not take into
account the exponentially decaying term. If we pick b s.t. § < b < a we can show
that

lz(t)] <b Vt>t0+1n<z__g), a—90>0,b—6>0

Note that
t > to+ln<a_5>
b—20
a—90
(+ — <
(t to) =~ 1n<b—(5>
_s\ ¢t
—(t—to) < a
‘ = <b—6)

(a — 5)e*(t*t°)
(a—8)e 1) 45

INIA
>

In this case the solution is said to be uniformly ultimately bounded and b is called
the ultimate bound.
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Showing that the solution of & = —z + Jdsin(t), z(to) = a, a > ¢ > 0 has the
uniform boundedness and uniform ultimate boundedness properties can be done
via Lyapunov analysis without using the explicit solution. Take V(z) = 2%/2, we
calculate the derivate along the trajectories as

V =xi = -2 4+ zdsint < —z% 4 0|z

@ RHS is not negative definite because the term ¢|z| dominates near the origin

o However, V is negative definite outside the set {|z| < &}

e With ¢ > §%/2, solutions starting in the set {V(z) < ¢} will remain therein
for all future time since V is negative on the boundary V = ¢. Note that the
set {V(x) < ¢} is equivalent to the set {|z| < v/2c}, which includes the set
{]z| < 6}. Hence, the solutions are uniformly bounded.

@ Moreover, if we pick € s.t. (52/2 < € < c, then V will be negative in the set
{e < V(z) < ¢}, which implies that in this set V' will decrease monotonically
until the solution enters the set {V(z) < €}. From that time on, the solution
cannot leave the set {V(z) < ¢} V is negative on the boundary V = e.
Thus, we conclude that the solution is uniformly ultimately bounded with the
ultimate bound || < v/2¢, wich tends to |z| < § as € — §2/2.
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Definition 4.6: The solutions of & = f(¢, ) are

o uniformly bounded if there exists a positive constant ¢, independent of ¢ty > 0,
and for every a € (0,c¢), there is 5 = (a) > 0, independent of ¢y such that

z(to)|| < a = [lz(t)]| < B,V > tg

e uniformly ultimately bounded with ultimate bound b if there exists a positive
constants b and ¢, independent of ty > 0, and for every a € (0, ¢), there is
T =T(a,b) > 0, independent of ¢y such that

(o)l <a= [z <b,Vt >t +T

@ globally uniformly bounded (or ultimately bounded) if previous conditions
hold for any arbitrarily large a.
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The following Lyapunov-like theorem gives sufficient conditions for
uniform/ultimate boundedness.

Theorem 4.18: Let D C R™ be a domain that contains the origin and
V :]0,00) x D — R be a continuous differentiable function such that

ay ([Jz])) < V(E,2) < o ([|=]])

av. oV

L f(t < — >

ot + 8.’17f(,x)_ WS(‘I)’ V||l’||_‘LL>0
for all t > 0 and = € D, where ay, ay are class K functions and Ws5(z) is a
continuous positive definite function. Take » > 0 such that B,, C D and suppose

that u < g *(aq(r)).
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Then, there exists a class JCL function 8 and for every initial state x(ty),
satisfying [|z(t)|| < a5 *(ay1(r)), there is T > 0 (dependent on x(ty) and y) such
that the solution of & = f(¢, ) satisfies

z(®)[] < Bl (to)|l,t — to), Vip <t <to+T (39)

[z(t)]| <o M(aa(p),  Vio>to+T (40)

Moreover, if D = R"™ and «; belongs to class K., then the inequalities above
hold for any initial state x(¢g), with no restriction on how large p is.

Proof: The statement of this theorem reduces to that of Theorem 4.9 when
w=0.
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Input-To-State Stability

Consider the system
z = f(t,x,u) (41)

where f:[0,00) x R"™ x R™ — R" is piecewise continuous in ¢ and locally
Lipschitz in x and u. The input u(t) is a piecewise continuous function of t.
Suppose the unforced system

T = f(tvxa 0) (42)

has a globally uniformly asymptotically stable equilibrium at the origin x = 0.

What can we say about the behavior of the system (41) in the presence of
a bounded input u(t)?
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Input-To-State Stability

Example: & = Ax + Bu The solution is given by

¢
z(t) = e_A(t_tO)m(to) —|—/ e_A(t_T)Bu(T)dT7

to

Using the bound ||e~A(t=%)|| < ke=*(*=%0) to compute

()]l

IN

t
kef)\(tftg)”x(to)”+/ k.efk(th)HBHHU(T)HdT
to

k
< ke a(to) + My e} sup ue))

toSTSt

B
. kefA<tfto>||x<to>||+M sup [fu()|
A to<r<t

This estimate shows that the zero-input response decays to zero exponentially
fast, while the zero-state response is bounded for every bounded input. In fact,
the estimate shows more than a bounded-inputed-bounded-state property, it shows
that bound on the zero-state response is proportional to the bound of the input.
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Input-To-State Stability

For a general nonlinear system, it should NOT be surprising that these properties
may not hold even when the origin of the unforced system (zero-input response) is
globally uniformly asymptotically stable.

Example: i = —3z + (1 + 222)u

This system has a globally exponentially stable origin when u = 0. Yet, when
x(0) = 2 and u(t) = 1, the solution is given by

3—e¢t
=35

which is unbounded, and it even has finite escape time!
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Input-To-State Stability

Suppose we have a Lyapunov function V (¢, z) for the unforced system (42) and
let us calculate V in presence of u. Due to the boundedness of u, it is possible in
some cases to show that V is negative outside a ball of radius 1, where 1 depends
on sup |lu||. This is expected when f(¢,z,u) is Lipschitz, i.e.,

1f (2 u) = f(E,2,0)|| < Lull

Showing that Vis negative outside a ball of radius u enables us to apply Theorem
4.18, which states that ||z(t)| is bounded by a class L function over [to,to + T
(39) and by a class K function over [tg + T, c0) (40). Consequently,

lz@®)]l < Bllz(to)ll,t — to) + ™ (az(w))
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Input-To-State Stability

Definition 4.7: The system (41) is said to be input-to-state stable (ISS) if there
exist a class KL function 8 and a class K function « such that for any initial state
x(tp) and any bounded input u(t), the solution x(t) exists for all t > to and
satisfies

@) < B(lx(to)ll, t —to) +~ ( sup Iu(T)H) (43)

tOSTSt

Note: The origin of the unforced system (42) is globally uniformly asymptotically
stable.
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Input-To-State Stability

The following Lyapunov-like theorem gives a sufficient condition for ISS.

Theorem 4.19: Let V' : [0,00) X R™ — R be a continuous differentiable function
such that
ay ([zl]) < V(t,2) < as (|lz]])

O OV pta) < ~Waw), el = pllul) > 0
for all (¢t,2,u) € [0,00) x R™ X R™, where aj, as are class K, functions, p is a
class KC function, and W5(z) is a continuous positive definite functions on R™.
Then, the system (41) is input-to-state stable with v = a;* o a o p.
The function V is called an ISS Lyapunov function.

Proof: Direct application of Theorem 4.18 with p = p(||ul]).
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Input-To-State Stability

The following lemma is a direct consequence of the Converse Lyapunov theorem
for g.e.s. (Theorem 4.14)

Lemma 4.6: Suppose f(t,x,u) is continuosly differentiable and globally Lipschitz
in (z,u), uniformly in ¢. If the unforced system (42) has a globally exponentially
stable equilibrium point at the origin = = 0, then the system (41) is ISS.
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Input-To-State Stability

Theorem: Converse also holds for Theorem 4.19!

Theorem: For the system
= f(z,u)
the following properties are equivalent
@ the system is ISS,

@ there exists a smooth ISS-Lyapunov function (i.e., satisfies conditions of
Theorem 4.19)
@ there exists a smooth positive definite radially unbounded function V' and

class K, functions p; and py such that the following dissipativity inequality
is satisfied
ov

55 62) < —pr(llzll) + p2 (Jlull) (44)
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Input-To-State Stability

Young's Inequality is key to apply this theorem
€eP 1 1 1
ely < —lzlP + — |yl Ve>0,V-+-=1
p €lq P q

Example (4.25): © = —2° +u

Example (4.26): & = —x — 223 + (1 + 2%)u?
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Input-To-State Stability

An interesting application of input-to-state stability arises in the stability analysis
of the cascade system

fbl = fl(ta xlaxQ) (45)
5.82 = fg(t, .132) (46)
where f1 : [0,00) x R™ x R"™ — R™ and f5 :[0,00) x R™ — R" are piecewise

continuous in t and locally Lipschitz in x = [z¥ 2217, Suppose

i1 = f1(t,21,0), d2 = fa(t, 72)
have both g.u.a.s. equilibria at their respective origins.

Under what condition will the origin = = 0 of the cascade system possess
the same property?

Lemma 4.7: Under the stated assumptions, if the system (45), with x2 as input,
is input-to-state stable and the origin of (46) is globally uniformly asymptotically
stable, then the origin of the cascade system (45)-(46) is globally uniformly
asymptotically stable.
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Input-To-State Stability

Suppose that in the system

1 = fi(t,x1,22,u) (47)
Ty = fo(t,z2,u) (48)

the x1-system is ISS with respect to z5 and u, and the x5-system is ISS with
respect to u. Then, the cascade system (47)-(48) is ISS with respect to w.
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