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Autonomous Systems

Consider the autonomous system

ẋ = f(x) (1)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn.
Suppose x̄ = 0 ∈ D is an equilibrium point of (1).

Our goal is to characterize and study stability of the equilibrium x̄ = 0 (no loss of
generality).
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Stability

Definition 4.1: The equilibrium point x = 0 of (1) is

stable if, for each ϵ > 0, there is δ = δ(ϵ) > 0 such that

∥x(0)∥ < δ ⇒ ∥x(t)∥ < ϵ,∀t ≥ 0

unstable if not stable

asymptotically stable if it is stable and δ can be chosen such that

∥x(0)∥ < δ ⇒ lim
t→∞

x(t) = 0

The ϵ− δ requirement for stability takes a challenge-answer form.
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Stability

“Stability is a property of the equilibrium, not of the system”

Stability of the equilibrium is equivalent to stability of the system only when there
exists only one equilibrium (e.g., linear systems). In this case stability ≡ global
stability.

The equilibrium point x = 0 of (1) is

attractive if there is δ > 0 such that

∥x(0)∥ < δ ⇒ lim
t→∞

x(t) = 0

Example: Attractive but unstable

asymptotically stable (a.s.) if it is stable and attractive.

globally asymptotically stable (g.a.s.) if a.s. ∀x(0) ∈ Rn.
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Derivative along the trajectory

Definition: Let V : D → R be a continuously differentiable function defined in a
domain D ∈ Rn that contains the origin. The derivative of V along the trajectory
(solution) of (1), denoted by V̇ (x) is given by

V̇ (x) =

n∑
i=1

∂V

∂xi
ẋi

=

n∑
i=1

∂V

∂xi
fi(x)

= [
∂V

∂x1
,
∂V

∂x2
, . . . ,

∂V

∂xn
][f1(x), f2(x), . . . , fn(x)]

T

=
∂V

∂x
f(x)
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Lyapunov Stability Theorem

Theorem 4.1: Let x = 0 be an equilibrium for (1) and D ∈ Rn be a domain
containing x = 0. Let V : D → R be a continuously differentiable function, such
that

V (0) = 0 and V (x) > 0 in D − {0} (2)

V̇ (x) ≤ 0 in D (3)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (4)

then x = 0 is asymptotically stable.
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Lyapunov Stability Theorem

Proof:

Figure: Geometric representation of sets.

Given ϵ > 0, choose r ∈ (0, ϵ] such that

Br = {x ∈ Rn|∥x∥ ≤ r} ⊂ D
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Lyapunov Stability Theorem

Let α = min∥x∥=r V (x). Then, α > 0 by definition (2). Take β ∈ (0, α), and
let

Ωβ = {x ∈ Br|V (x) ≤ β}

Then, Ωβ is in the interior of Br.

Since Ωβ is a compact set, we conclude from Theorem 3.3 that (1) has a
unique solution defined for all t > 0 whenever x(0) ∈ Ωβ .

Any trajectory starting in Ωβ at t = 0 stays in Ωβ for all time. This follows
from (3) since

V̇ (x(t)) ≤ 0 ⇒ V (x(t)) ≤ V (x(0)) ≤ β,∀t ≥ 0

Since V (x) is continuous and V (0) = 0, there is δ > 0 such that

∥x∥ ≤ δ ⇒ V (x) < β

Then,
Bδ ⊂ Ωβ ⊂ Br
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Lyapunov Stability Theorem

This implies that

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br

Therefore,
∥x(0)∥ < δ ⇒ ∥x(t)∥ < r ≤ ϵ, ∀t ≥ 0

which shows that the equilibrium point x = 0 is stable.

Now, assume that (4) holds as well. To show asymptotic stability, we need to
show that x(t) → 0 as t → 0; that is, for every a > 0, there is T > 0 such
that ∥x(t)∥ < a , for all t > T .

By repetition of previous arguments, we know that for every a > 0, we can
choose b > 0 such that Ωb ⊂ Ba. Therefore, it is sufficient to show that
V (x(t)) → 0.
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Lyapunov Stability Theorem

Since V (x(t)) is monotonically decreasing and bounded from below by zero,
we have that

V (x(t)) → c ≥ 0 as t → ∞

To show that c = 0, we use a contradiction argument. Suppose c > 0. By
continuity of V (x),there is d > 0 such that Bd ⊂ Ωc. The limit
V (x(t)) → c > 0 implies that the trajectory x(t) lies outside the ball Bd for
all t ≥ 0. Let −γ = maxd≤∥x∥≤r V̇ (x), which exists because the continuous

function V̇ (x) has a maximum over the compact set {d ≤ ∥x∥ ≤ r}. By (4),
−γ < 0. It follows that

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ ≤ V (x(0))− γt

Since the right-hand side will eventually become negative, the inequality
contradicts the assumption that c > 0.
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Lyapunov Stability Theorem

Lyapunov function candidate

V (0) = 0 and V (x) > 0 in D − {0}

Lyapunov function

V (0) = 0 and V (x) > 0 in D − {0}

V̇ (x) ≤ 0 in D
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Lyapunov Stability Theorem

Lyapunov surface (level surface, level set)

{x|V (x) = c}

Figure: Level surfaces of a Lyapunov function.
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Lyapunov Stability Theorem

Positive definite

V (0) = 0, V (x) > 0,∀x ̸= 0

Positive semidefinite

V (0) = 0, V (x) ≥ 0,∀x ̸= 0

V (x) is negative (semi)definite if −V (x) is positive (semi)definite

Lyapunov Theorem
V pdf + V̇ nsdf → stable
V pdf + V̇ ndf → asymptotically stable
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Lyapunov Stability Theorem

Example 4.4: Consider the pendulum equation with friction

ẋ1 = x2

ẋ2 = −
(g
l

)
sinx1 −

(
k

m

)
x2 ≜ −a sinx1 − bx2

V1(x) = a(1− cos(x1)) + (1/2)x2
2 ⇒ Stable.

V2(x) = a(1− cos(x1)) + (1/2)xTPx ⇒ Asympt. Stable.

Conclusion:

Lyapunov’s stability conditions are only sufficient.

V1(x) good enough to prove a.s. via LaSalle’s theorem.

Backward approach → Variable Gradient Method.
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Region of Attraction

When the origin x = 0 is asymptotically stable, we are often interested in
determining how far from the origin the trajectory can be and still converge to the
origin as t → ∞. This gives rise to the definition of region of attraction (also
called region of asymptotically stability, domain of attraction, or basin).

Definition: Let ϕ(t, x) be the solution of (1) that starts at initial state x at time
t = 0. The, the region of attraction is defined as the set of all points x such that
limt→∞ ϕ(t, x) = 0

Question: Under what conditions will the region of attraction be the whole space
Rn? In other words, for any initial state x, under what conditions the trajectory
ϕ(t, x) approaches the origin as t → ∞, no matter how large ∥x∥ is. If an a.s.
equilibrium point at the origin has this property, it is said to be globally
asymptotically stable (g.a.s.).
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Global Lyapunov Stability Theorem

Theorem 4.2: Let x = 0 be an equilibrium for (1). Let V : Rn → R be a
continuously differentiable function, such that

V (0) = 0 and V (x) > 0, ∀x ̸= 0 (5)

∥x∥ → ∞ ⇒ V (x) → ∞ (6)

V̇ (x) < 0, ∀x ̸= 0 (7)

Then, x = 0 is globally asymptotically stable and is the unique equilibrium point.

NOTE: It is not enough to satisfy Theorem 4.1 for D = Rn!!!
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Chetaev’s Instability Theorem

Theorem 4.3: Let x = 0 be an equilibrium for (1). Let V : D → R be a
continuously differentiable function, such that V (0) = 0 and V (x0) > 0 for some
x0 with arbitrarily small ∥x0∥. Define a set

U = {x ∈ Br|V (x) > 0}

where
Br = {x ∈ Rn|∥x∥ ≤ r}.

Suppose that V̇ (x) > 0 in U . Then x = 0 is unstable.

Crucial Condition: V̇ must be positive in the entire set where V > 0.
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Chetaev’s Instability Theorem

Proof:

Figure: Set U for V (x) = 1
2
(x2

1 − x2
2) > 0.
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Chetaev’s Instability Theorem

Proof:

By conditions of the theorem, the point x0 is in the interior of U and
V (x0) = a > 0. The proof of this theorem is based on the fact that the
trajectory x(t) starting at x(0) = x0 must leave the set U . To see this point,
notice that as long as x(t) is inside U , V (x(t)) ≥ a since V̇ (x) > 0 in U .

Let
γ = min{V̇ (x)|x ∈ U and V (x) ≥ a}

which exists since the continuous function V̇ (x) has a minimum over the
compact set {x ∈ U and V (x) ≥ a} = {x ∈ Br and V (x) ≥ a}.
Then, γ > 0 and

V (x(t)) = V (x0) +

∫ t

0

V̇ (x(s))ds ≥ a+

∫ t

0

γds = a+ γt

This inequality shows that x(t) cannot stay forever in U because V (x) is
bounded on U . Now, x(t) cannot leave U through the surface V (x) = 0
since V (x(t)) > a. Hence, it must leave U through the sphere ∥x∥ = r.
Since this can happen for an arbitrarily small ∥x0∥, the origin is unstable.
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Chetaev’s Instability Theorem

Example 4.7: Consider the second order system

ẋ1 = x1 + g1(x)

ẋ2 = −x2 + g2(x)

where g1() and g2() are locally Lipschitz functions that satisfy the inequalities

|g1(x)| ≤ k∥x∥2, |g2(x)| ≤ k∥x∥2

Use the Lyapunov function candidate V (x) = 1
2 (x

2
1 − x2

2) and Chetaev’s theorem
to show that the origin is unstable.
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Invariance Principle

Example 4.4: Consider the pendulum equation with friction

ẋ1 = x2

ẋ2 = −
(g
l

)
sinx1 −

(
k

m

)
x2

We consider the Lyapunov function candidate

V (x) =
(g
l

)
(1− cosx1) +

x2
2

2
⇒ V̇ (x) = −

(
k

m

)
x2
2

The energy Lyapunov function fails to satisfy the asymptotic stability condition of
Theorem 4.1. But can V̇ (x) = 0 be maintained at x ̸= 0?

Idea: If we can find a Lyapunov function in a domain containing the origin whose
derivative along the trajectories of the system is negative semidefinite, and if we
can establish that no trajectory can stay identicaly at points where V̇ (x) = 0
except at the origin, then the origin is asymptotically stable (LaSalle’s Invariance
Principle).
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Invariance Principle

Let x(t) be a solution of the autonomous system ẋ = f(x).

Definition: The point p is a positive limit point of x(t) if exists a sequence {tn}
with tn → ∞ as n → ∞ such that x(t) → p as n → ∞.

Definition: The set of all positive limit points of x(t) is called the positive limit
set of x(t).

Definition: A set M is (positively) invariant w.r.t. ẋ = f(x) if

x(0) ∈ M ⇒ x(t) ∈ M for all t ∈ R (t ∈ R+).

Definition: x(t) approaches M as t → ∞ if for each ϵ > 0 exists T > 0 such that
dist(x(t),M)(= infp∈M ∥x(t)− p∥) < ϵ for all t > T .

x(t) → M as t → ∞ ⇒ limt→∞ dist(x(t),M) = 0
x(t) → M as t → ∞ NOT ⇒ ∃ limt→∞ x(t)
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Invariance Principle

Lemma 4.1: If x(t), solution of ẋ = f(x), is bounded for all t ≥ 0, then it has a
nonempty positive limit set L+ which is compact and invariant. Moreover,

x(t) → L+ as t → ∞
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Invariance Principle

Theorem 4.4 (LaSalle’s Theorem): Let Ω ⊂ D be a compact set that is
positively invariant w.r.t. ẋ = f(x). Let V : D → R be a continuously
differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in
Ω where V̇ (x) = 0. Let M be the largest invariant set in E. Then, every solution
starting in Ω approaches M as t → ∞.

Note: Unlike Lyapunov’s theorem, LaSalle’s theorem does NOT require the
function V (x) to be positive definite.

Note: When we are interested in showing that x(t) → 0 as t → ∞, we need to
establish that the largest invariant set in E is the origin.
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Invariance Principle

Proof:

Let x(t) be a solution of ẋ = f(x) starting in Ω.

Since V̇ (x) ≤ 0 in Ω, V (x(t)) is a decreasing function of t.

Since V (x) is continuous on the compact set Ω, it is bounded from below on
Ω. Therefore, V (x(t)) has a limit a as t → ∞.

Note also that the positive limit set L+ is in Ω because Ω is a closed set. For
any p ∈ L+, there is a sequence tn with tn → ∞ and x(tn) → p as n → ∞.

By continuity of V (x), V (p) = limn→∞ V (x(tn)) = a. Then, V (x) = a on L+.

Since (by Lemma 4.1) L+ is an invariant set, V̇ (x) = 0 on L+. Thus

L+ ⊂ M ⊂ E ⊂ Ω

Since x(t) is hounded, x(t) approaches L+ as t → ∞ (by Lemma 4.1).
Hence, x(t) approaches M as t → ∞.
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Invariance Principle

Corollary 4.1 (4.2): Let x = 0 be an equilibrium point of ẋ = f(x). Let
V : D(Rn) → R be a continuously differentiable (radially unbounded, positive
definite) function on a domain D containing the origin (on Rn), such that
V̇ (x) ≤ 0 in D (in Rn). Let S = {x ∈ D(Rn)|V̇ (x) = 0} and suppose that no
solution can stay identically in S, other than the trivial solution. Then, the origin
is (globally) asymptotically stable.
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Invariance Principle

LaSalle’s theorem:

Relaxes the negative definiteness requirement for V̇ (x) of Lyapunov’s theorem

Does not require V (x) to be positive definite

Gives an estimate of the region of attraction Ω which is not necessarily a
level set of V (x), i.e., Ωc = {x ∈ Rn|V (x) ≤ c}
Applies not only to equilibrium points but also to equilibrium sets
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Invariance Principle

Example:

ẋ = −|x|x+ (1− |x|)xy

ẏ = −1

8
(1− |x|)x2
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Linear Systems and Linearization

The linear time-invariant system
ẋ = Ax

has an equilibrium point at the origin.

if det(A) ̸= 0 the equilibrium point is isolated

if det(A) = 0 the system has an equilibrium subspace
(nontrivial null space of A)

Note: A linear system CANNOT have multiple isolated equilibrium points.

For a given initial state x(0), the solution of the system is

x = eAtx(0) (8)
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Linear Systems and Linearization

For all A, there exists a nonsingular transformation matrix P (possibly complex)
that transforms A into its Jordan form J , i.e.

P−1AP = J =

 J1
. . .

Jr

 ,

where Ji is a Jordan block of order mi associated with eigenvalue λi of A, i.e.,

Ji =



λi 1 0 . . . . . . 0
0 λi 1 0 . . . 0
...

. . .
...

...
. . . 0

...
. . . 1

0 . . . . . . . . . 0 λi


mi×mi

Note that a Jordan block of order mi = 1 takes the form Ji = λi.
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Linear Systems and Linearization

Then,

eAt = PeJtP−1 =

r∑
i=1

mi∑
k=1

tk−1e(λit)Rik (9)

where mi is the order of the Jordan block Ji. If an n× n matrix A has a repeated
eigenvalue λi of algebraic multiplicity qi (qi is the multiplicity of λi as a zero of
det(λI −A)), then the Jordan blocks associated with λi have order one if and
only if rank(A− λiI) = n− qi.

The algebraic multiplicity of an eigenvalue λi of A is the number of times λi

appears as a root of det(λI −A)).

The geometric multiplicity of an eigenvalue λi of A is the dimension of the
null space of A− λiI (number of linearly independent eigenvectors).

The algebraic multiplicity and geometric multiplicity of an eigenvalue can
differ. However, the geometric multiplicity can never exceed the algebraic
multiplicity.

If for every eigenvalue of A, the geometric multiplicity equals the algebraic
multiplicity, then A is said to be diagonalizable.
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Linear Systems and Linearization

Theorem 4.5: The equilibrium point x = 0 of ẋ = Ax is

1 stable ⇔ Reλi ≤ 0 and for every eigenvalue with Reλi = 0 and algebraic
multiplicity qi ≥ 2, rank(A− λiI) = n− qi, where n is the dimension of x

2 (globally) asymptotically stable ⇔ Reλi < 0 for all i

Proof:

The origin is stable ⇐⇒ eAt in (9) is a bounded function of t for all t > 0.

If Reλi > 0, e(λit) → ∞ as t → ∞. Therefore, we must restrict the
eigenvalues to be in the closed left-hand complex plane.

However, an eigenvalue on the imaginary axis (Reλi = 0) could give rise to
unbounded terms if the order of an associated Jordan block is higher than
one due to the term tk−1.

Therefore, we must restrict eigenvalues on the imaginary axis to have Jordan
blocks of order one, which is equivalent to the rank condition
rank(A− λiI) = n− qi.

If Reλi < 0, e(λit) → 0 as t → ∞, i.e., e(At) → 0 as t → ∞ (a.s.).

Since x(t) depends linearly on x(0) (see (8)), a.s. of origin is global.
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Linear Systems and Linearization

When all eigenvalues of A satisfy Reλi < 0, A is called a Hurwitz matrix or a
stability matrix. The origin of ẋ = Ax is a.s. if and only if A is Hurwitz.

Lyapunov function candidate

V (x) = xTPx, P > 0, P = PT

with derivative along the trajectories of ẋ = Ax

V̇ (x) = xT (PA+ATP )x = −xTQx

Lyapunov equation

PA+ATP = −Q, Q > 0, Q = QT

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 33 / 91



Linear Systems and Linearization

Theorem 4.6: A matrix A is a stability matrix or Hurwitz matrix, that is,
Re(λi) < 0 for all eigenvalues of A, if and only if for any given positive definite
symmetric matrix Q there exists a positive definite symmetric matrix P that
satisfies the Lyapunov equation. Moreover, if A is a stability matrix or Hurwitz
matrix, the P is the unique solution of the Lyapunov equation.
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Linear Systems and Linearization

Proof:

Sufficiency follows from Theorem 4.1 with the Lyapunov function
V (x) = xTPx,as we have already shown.

To prove necessity, assume that all eigenvalues of A satisfy Re(λi) < 0 and
consider the matrix P , defined by

P =

∫ ∞

0

e(A
T t)Qe(At)dt

The integrand is a sum of terms of the form tk−1e(λit) (see (9)), where
Re(λit) < 0. Therefore, the integral exists. The matrix P is symmetric and
positive definite. The fact that it is positive definite can be shown as follows.
Supposing it is not so, there is a vector x ̸= 0 such that xTPx = 0.However,

xTPx = 0 ⇒
∫ ∞

0

xT e(A
T t)Qe(At)xdt = 0

⇒ e(At)x ≡ 0,∀t ≥ 0 ⇒ x = 0

since e(At) is nonsingular for all t. This contradiction shows that P is positive
definite.
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Linear Systems and Linearization

Now, substituting P in the Lyapunov equation yields

PA+ATP =

∫ ∞

0

e(A
T t)Qe(At)Adt+

∫ ∞

0

AT e(A
T t)Qe(At)dt

=

∫ ∞

0

d

dt
{e(A

T t)Qe(At)}dt = e(A
T t)Qe(At)|∞0 = −Q

which shows that P is indeed a solution of the Lyapunov equation.
To show that it is the unique solution, suppose there is another solution
P ̸= P . Then,

(P − P̄ )A+AT (P − P̄ ) = 0

Premultiplying by e(A
T t) and postmultiplying by e(At), we obtain

0 = e(A
T t)[(P − P̄ )A+AT (P − P̄ )]e(At) =

d

dt
{e(A

T t)(P − P̄ )e(At)}

Hence, e(A
T t)(P − P̄ )e(At) is constant ∀t. In particular, this is true for t = 0

(e(At) = I)

P − P̄ = e(A
T t)(P − P̄ )e(At) → 0 as t → ∞

we can conclude that P = P̄ .
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Linear Systems and Linearization

What if Q = CTC is positive semidefinite? The positive definiteness requirement
on Q can indeed be relaxed.

Theorem 4.6 (Relaxed Conditions): A matrix A is a stability matrix or Hurwitz
matrix, that is, Re(λ)i < 0 for all eigenvalues of A, if and only if for a given

positive semidefinite symmetric matrix Q = CTC there exists a positive definite
symmetric matrix P that satisfies the Lyapunov equation where the pair (A,C) is
observable. Moreover, if A is stability matrix or Hurwitz matrix, the P is the
unique solution of the Lyapunov equation.
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Linear Systems and Linearization

Theorem 4.7 (Lyapunov’s First Method or Lyapunov’s Indirect Method):
Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(x)

where f : D → Rn is continuously differentiable and D is a neighborhood of the
origin. Let

A =
∂f

∂x
(x)

∣∣∣∣
x=0

1 The origin is asymptotically stable if Reλi < 0 for all i

2 The origin is unstable if Reλi > 0 for some i

Note: If A has eigenvalues on imaginary axis and no eigenvalues with Reλi > 0
we CANNOT make conclusions.

Proof: Long but easy to follow. It uses Theorem 4.1 to prove the first statement
and Theorem 4.3 to prove the second statement.
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Nonautonomous Systems

Consider the nonautonomous system

ẋ = f(t, x) x(t0) = x0 (10)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in x
on [0,∞)×D, and D ⊂ Rn is a domain that contains the origin x = 0. The
origin is an equilibrium point of (10) at t = 0 if

f(t, 0) = 0, ∀t ≥ 0

NOTE: The solution of (10) depends on both t and t0. We need to refine stability
definitions so that they hold uniformly in t0.

NOTE: An equilibrium point at the origin could be a translation of a nonzero
equilibrium point, or more generally, a translation of a nonzero solution
(trajectory) of the system.
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Nonautonomous Systems

Suppose ȳ(τ) is a solution of the system

dy

dτ
= g(τ, y)

defined for all τ ≥ a. The change of variables

x = y − ȳ(τ), t = τ − a

transforms the system into the form

ẋ = g(τ, y)− ˙̄y(τ) = g(t+ a, x+ ȳ(t+ a))− ˙̄y(t+ a) ≜ f(t, x)

Since
˙̄y(t+ a) = g(t+ a, ȳ(t+ a)), ∀t ≥ 0

the origin x = 0 is an equilibrium point of the transformed system at t = 0.
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Nonautonomous Systems

By examining the stability behavior of the origin as an equilibrium point for
the transformed system, we determine the stability behavior of the solution
ȳ(τ) of the original system.

Stability of trajectories ≡ Stability of equilibria of nonautonomous systems

If ȳ(τ) is not constant, the transformed system will be non-autonomous even
when the original system is autonomous, i.e., even when g(τ, y) = g(y).

The stability behavior of solutions in the sense of Lyapunov can be done only
in the context of studying the stability behavior of the equilibria of
non-autonomous systems.
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Stability

While the solutions of autonomous systems depend only on t− t0, the solutions of
nonautonomous systems may depend on both t and t0. We then refine definitions.

Definition 4.4: The equilibrium point x = 0 of (10) is

stable if, for each ϵ > 0, there is δ = δ(ϵ, t0) > 0 such that

∥x(0)∥ < δ ⇒ ∥x(t)∥ < ϵ,∀t ≥ t0 ≥ 0 (11)

uniformly stable (u.s.) if δ is independent of t0

unstable if not stable

attractive if there is a positive constant c = c(t0) such that

x(t) → 0 as t → ∞, for all ∥x(t0)∥ < c

uniformly attractive (u.a.) if c is independent of t0

asymptotically stable (a.s) if stable and attractive

uniformly asymptotically stable (u.a.s) if u.s. and u.a.

globally uniformly asymptotically stable (g.u.a.s) if u.a.s. and c arbitrarily large
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Stability

Definition 4.5: The equilibrium point x = 0 of (10) is exponentially stable if
there exist positive constants c, k, and λ such that

∥x(t)∥ ≤ k∥x(t0)∥e−λ(t−t0), ∀ ∥x(t0)∥ < c (12)

and globally exponentially stable if (12) is satisfied for any initial state x(t0).
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Comparison Functions

The solutions of nonautonomous systems depend on both t and t0. We refine the
stability definitions, so that they hold uniformly in the initial time t0, using special
comparison functions.

Definition 4.2: A continuous function α : [0, a) → [0,∞) is said to belong to
class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if
a = ∞ and α(r) → ∞ as r → ∞.

Definition 4.3: A continuous function β : [0, a)× [0,∞) → [0,∞) is said to
belong to class KL if for each fixed s, the mapping β(r, s) belongs to class K with
respect to r and, for each fixed r, the mapping β(r, s) is decreasing with respect
to s and β(r, s) → 0 as s → ∞.
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Comparison Functions

Examples:

α(r) = rc ∈ K if c > 0

α(r) = rc ∈ K∞ if c > 0

β(r, s) = rce−s ∈ KL if c > 0

NOTE: See more in book (Example 4.16)
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Comparison Functions

The next lemma states properties of class K and class KL functions

Lemma 4.2: Let α1 and α2 be class K functions on [0, a), α3 and α4 be class
K∞ functions, and β be a class KL function. Denote the inverse of αi by α−1

i .
Then,

α−1
1 is defined on [0, α1(a)) and belongs to class K

α−1
3 is defined on [0,∞) and belongs to class K∞

α1 ◦ α2 belongs to class K
α3 ◦ α4 belongs to class K∞

σ(r, s) = α1(β(α2(r), s)) belongs to class KL
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Comparison Functions

The next lemmas show how class K and class KL enter into Lyapunov analysis

Lemma 4.3: Let V : D → R be a continuous positive definite function defined
on a domain D ⊂ Rn that contains the origin. Let Br ⊂ D for some r > 0.
Then, there exist class K functions α1 and α2, defined on [0, r), such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)

for all x ∈ Br. If D = Rn, the functions α1 and α2 will be defined on [0,∞) and
the foregoing inequality will hold for all x ∈ Rn. Moreover, if V (x) is radially
unbounded, then α1 and α2 can be chosen to belong to class K∞.

For a quadratic positive definite function V (x) = xTPx, Lemma 4.3 follows from
the inequality

λmin(P )∥x∥22 ≤ xTPx ≤ λmax(P )∥x∥22
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Comparison Functions

Lemma 4.4: Consider the scalar autonomous differential equation

ẏ = −α(y), y(t0) = y0

where α is a locally Lipschitz class K function defined on [0, a). For all
0 ≤ y0 < a, this equation has a unique solution y(t) defined for all t ≥ t0.
Moreover,

y(t) = σ(y0, t− t0)

where σ is a class KL defined on [0, a)× [0,∞).
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Stability

Lemma 4.5: The equilibrium point x = 0 of (10) is

uniformly stable (u.s.) if and only if there exist a class K function α and a
positive constant c, independent of t0, such that

∥x(t)∥ ≤ α(∥x(t0)∥), ∀ t ≥ t0 ≥ 0, ∀ ∥x(t0)∥ < c (13)

uniformly asymptotically stable (u.a.s) if and only if there exist a class KL
function β and a positive constant c, independent of t0, such that

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀ t ≥ t0 ≥ 0, ∀ ∥x(t0)∥ < c (14)

globally uniformly asymptotically stable (g.u.a.s.) if and only if inequality
(14) is satisfied for any initial state x(t0)
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Stability

Theorem 4.8: Let x = 0 be an equilibrium point for (10) and D ⊂ Rn be a
domain containing the origin. Let V : [0,∞)×D → R be a continuous
differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (15)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ 0 (16)

for all t ≥ 0 and for all x ∈ D, where W1(x) and W2(x) are continuous positive
definite functions on D. Then, x = 0 is uniformly stable (u.s.).
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Stability

Proof:

Figure: Geometric representation of sets.

The derivative of V along the trajectories of ẋ = f(x, t) is given by

∂V

∂t
+

∂V

∂x
f(t, x) ≤ 0

Choose r > 0 and c > 0 such that Br ⊂ D and c < min∥x∥=r W1(x). Then,
{x ∈ Br|W1(x) ≤ c} is in the interior of Br.
Define a time-dependent set Ωt,c by

Ωt,c = {x ∈ Br|V (t, x) ≤ c}
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Stability

Figure: Geometric representation of sets.

The set Ωt,c contains {x ∈ Br|W2(x) ≤ c} since W2(x) ≤ c ⇒ V (t, x) ≤ c.
And Ωt,c is a subset of {x ∈ Br|W1(x) ≤ c} since V (t, x) ≤ c ⇒ W1(x) ≤ c}.
Thus,

{x ∈ Br|W2(x) ≤ c} ⊂ Ωt,c ⊂ {x ∈ Br|W1(x) ≤ c} ⊂ Br ⊂ D ∀t ≥ 0

The setup of nested sets in the figure is similar to that used in the proof of
Theorem 4.1 except that surface V (t, x) = c is now dependent on t, and that
is why it is surrounded by time-independent surfaces W1(x) = c, W2(x) = c.
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Stability

Figure: Geometric representation of sets.

Since V̇ (t, x) ≤ 0 on D, for any t0 > 0 and any x0 ∈ Ωt0,c the solution
starting at (t0, x0) stays in Ωt,c for all t > t0.

Therefore, any solution starting in {x ∈ Br|W2(x) ≤ c} stays in Ωt,c, and
consequently in {x ∈ Br|W1(x) ≤ c}. Hence, the solution is bounded and
defined for all t > t0.
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Stability

Moreover, since V̇ (t, x) ≤ 0,

V (t, x(t)) ≤ V (t0, x(t0)), ∀t ≥ t0

By Lemma 4.3, there exist class K functions α1 and α2, defined on [0, r] s.t.

α1(∥x∥) ≤ W1(x) ≤ V (t, x) ≤ W2(x) ≤ α2(∥x∥)

Combining the preceding two inequalities, we see that

∥x(t)∥ ≤ α−1
1 (V (t, x(t))) ≤ α−1

1 (V (t0, x(t0))) ≤ α−1
1 (α2(∥x(t0)∥))

Since α−1
1 ◦ α2 is a class K (by Lemma 4.2), the inequality

∥x(t)∥ ≤ α−1
1 (α2(∥x(t0)∥)) shows that the origin is uniformly stable

(according to inequality (13) in Lemma 4.5).
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Stability

Theorem 4.9: Let x = 0 be an equilibrium point for (10) and D ⊂ Rn be a
domain containing the origin. Let V : [0,∞)×D → R be a continuous
differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (17)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x) (18)

for all t ≥ 0 and for all x ∈ D, where W1(x), W2(x) and W3(x) are continuous
positive definite functions on D. Then, x = 0 is uniformly asymptotically stable
(u.a.s.).
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Stability

Theorem 4.9 (cont’): Moreover, if r and c are chosen such that
Br = {∥x∥ ≤ r} ⊂ D and c < min∥x∥=r W1(x), then every trajectory starting in
{x ∈ Br|W2(x) ≤ c} satisfies

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀ t ≥ t0 ≥ 0

for some class KL function β. Finally, if D = Rn and W1(x) is radially
unbounded, then x = 0 is globally uniformly asymptotically stable (g.u.a.s).
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Stability

Proof: Continuation of proof of Theorem 4.8.

Figure: Geometric representation of sets.

We know that trajectories starting in {x ∈ Br|W2(x) ≤ c} stays in
{x ∈ Br|W1(x) ≤ c} for all t ≥ t0.

By Lemma 4.3, there exist class K functions α3 defined on [0, r] s.t.

V̇ (t, x) =
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x) ≤ −α3(∥x∥)
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Stability

Recall that by Lemma 4.3, there exist class K functions α1, α2, defined on
[0, r] s.t.

α1(∥x∥) ≤ W1(x) ≤ V (t, x) ≤ W2(x) ≤ α2(∥x∥)
Using the inequality

V ≤ α2(∥x∥) ⇐⇒ α−1
2 (V ) ≤ ∥x∥ ⇐⇒ α3(α

−1
2 (V )) ≤ α3(∥x∥)

we see that V satisfies the differential inequality

V̇ ≤ −α3(α
−1
2 (V )) ≜ −α(V )

where α ≜ α3 ◦ α−1
2 is a class K function defined on [0, r] (see Lemma 4.2).

Assume without loss of generality that α is locally Lipschitz. Let y(t) satisfy
the autonomous first-order differential equation

ẏ ≤ −α(y), y(t0) = V (t0, x(t0)) ≥ 0

By (the comparison) Lemma 3.4,

V (t, x(t)) ≤ y(t), ∀t ≥ t0
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Stability

By Lemma 4.4, there exists a class KL function σ(r, s) defined on
[0, r]× [0,∞) such that y(t) = σ(y0, t− t0). Therefore,

V (t, x(t)) ≤ σ(V (t0, x(t0)), t− t0), ∀V (t0, x(t0)) ∈ [0, c]

Therefore, any solution starting in {x ∈ Br|W2(x) ≤ c} satisfies the
inequality

∥x(t)∥ ≤ α−1
1 (V (t, x(t))) ≤ α−1

1 (σ(V (t0, x(t0)), t− t0))

≤ α−1
1 (σ(α2(∥x(t0)∥)), t− t0)) ≜ β(∥x(t0)∥, t− t0)

Lemma 4.2 shows that β ≜ α−1
1 ◦ σ ◦ α2 is a class KL function. Thus,

inequality (14) in Lemma 4.5 is satisfied, which implies that x = 0 is
uniformly asymptotically stable (u.a.s).

if D = Rn, the functions α1, α2, and α3 are defined on [0,∞). Hence, α and
β are independent of c. As W1(x) is radially unbounded, c can be chosen
arbitrarily large to include any initial state in {W2(x) ≤ c}. Thus, (14) holds
for any initial state, showing that the origin globally uniformly asymptotically
stable (g.u.a.s).
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Stability

Theorem 4.10: Let x = 0 be an equilibrium point for (10) and D ⊂ Rn be a
domain containing the origin. Let V : [0,∞)×D → R be a continuous
differentiable function such that

k1∥x∥a ≤ V (t, x) ≤ k2∥x∥a (19)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −k3∥x∥a (20)

for all t ≥ 0 and for all x ∈ D, where k1, k2 and k3 are positive constants. Then,
x = 0 is exponentially stable (e.s.). Moreover, if the assumptions hold globally,
then x = 0 is globally exponentially stable (e.s.).

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 60 / 91



Stability

Proof:

Figure: Geometric representation of sets.

From the figure, it can be seen that trajectories starting in {k2∥x∥a ≤ c}, for
sufficiently small c, remain bounded for all t ≥ t0.

The conditions of the theorem show that V satisfies the differential inequality

V̇ ≤ −k3
k2

V
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Stability

By the comparison Lemma 3.4,

V (t, x(t)) ≤ V (t0, x(t0))e
−(k3/k2)(t−t0)

Hence,

∥x(t)∥ ≤
[
V (t, x(t))

k1

]1/a
≤

[
V (t0, x(t0))e

−(k3/k2)(t−t0)

k1

]1/a
≤

[
k2∥x(t0)∥ae−(k3/k2)(t−t0)

k1

]1/a
=

(
k2
k1

)1/a

∥x(t0)∥e−(k3/k2)(t−t0)

Thus, the origin is exponentially stable.

If all the assumptions hold globally, c can be chosen arbitrarily large and the
previous inequality holds for all x(t0) ∈ Rn.
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LTV Systems and Linearization

The stability behavior of the origin as an equilibrium point for the linear time
varying (LTV) system

ẋ = A(t)x (21)

can be characterized in terms of the state transition matrix of the system. The
solution of (21) is given by

x(t) = Φ(t, t0)x(t0)

where Φ(t, t0) is the state transition matrix.
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LTV Systems and Linearization

Theorem 4.11: The equilibrium point x = 0 of (21) is (globaly) uniformly
asymptotically stable if and only if the state transition matrix satisfies the
inequality

∥Φ(t, t0)∥ ≤ ke−λ(t−t0), ∀t ≥ t0 ≥ 0

for some positive constants k and λ.

Note: Impractical. It needs to compute Φ(t, t0)!

For linear systems with isolated equilibrium, stability results are automatically
globally. Moreover,

asymptotical stability ⇐⇒ exponential stability
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LTV Systems and Linearization

For LTV systems, uniform asymptotic stability cannot be characterized by the
location of the eigenvalues of the matrix A as it is done for LTI systems.

Example 4.22: Consider a second-order linear system with

A(t) =

[
−1 + 1.5 cos2 t 1− 1.5 sin t cos t

−1− 1.5 sin t cos t −1 + 1.5 sin2 t

]
For each t, the eigenvalues of A(t) are given by −0.25± 0.25

√
7j. Thus, the

eigenvalues are independent of t and lie in the open left-half plane. Yet, the origin
is unstable. It can be verified that

Φ(t, o) =

[
e0.5t cos t e−t sin t
−e0.5t sin t e−t cos t

]
which shows that there are initial states x(0), arbitrarily close to the origin, for
which the solution is unbounded and escapes to infinity.

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 65 / 91



LTV Systems and Linearization

Theorem 4.12: Let x = 0 be the exponentially stable equilibrium point of (21).
Suppose A(t) is continuous and bounded. Let Q(t) be a continuous, bounded,
positive definite, symmetric matrix. Then, there is a continuously differentiable,
bounded, positive definite, symmetric matrix P (t) that satisfies

−Ṗ (t) = P (t)A(t) +AT (t)P (t) +Q(t)

Hence,
V (t, x) = xTP (t)x

is a Lyapunov function for the system that satisfies the conditions of Theorem
4.10.

Note: It plays the role of Theorem 4.6 for LTV systems.

Proof: Take

P (t) =

∫ ∞

t

ΦT (τ, t)Q(τ)Φ(τ, t)dτ

as gramian.
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LTV Systems and Linearization

Theorem 4.13: Let x = 0 be and equilibrium point for the nonlinear system

ẋ = f(t, x)

where f : [0,∞)×D → Rn is continuously differentiable,
D = {x ∈ Rn|∥x∥2 < r} and the Jacobian matrix [∂f/∂x] is bounded and
Lipschitz on D, uniformly in t. Let

A(t) =
∂f

∂x
(t, x)

∣∣∣∣
x=0

Then, the origin is an exponentially stable equilibrium point for the nonlinear
system if it is an exponentially stable equilibrium point for the linear system

ẋ = A(t)x

Note: It plays the role of Theorem 4.7 for LTV systems.

Proof: Apply Theorem 4.12.
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Converse Theorems

Lyapunov Theorems:

V exists ⇒ x = 0 u.a.s or e.s. (22)

Converse Lyapunov Theorems:

V exists ⇐ x = 0 u.a.s or e.s. (23)

Note: They just guarantee existence of Lyapunov function V but do NOT tell us
how to obtain that Lyapunov function!
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Converse Theorems

The idea of constructing a converse Lyapunov function is not new. It has been
done for linear systems in the proof of Theorem 4.12. A careful reading of that
proof shows that linearity of the system does not play a crucial role in the proof,
except for showing that V (t, x) is quadratic in x. This observation leads to the
first of our two converse theorems, whose proof is a simple extension of the proof
of Theorem 4.12.

Theorem 4.14: Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(t, x) (24)

where f : [0,∞)×D → Rn is continuously differentiable,
D = {x ∈ Rn|∥x∥ < r}, and the Jacobian matrix [∂f/∂x] is bounded on D,
uniformly in t. Let k, λ, and r0 be positive constants with r0 < r/k. Let
D0 = {x ∈ Rn|∥x∥ < r0}. Assume that the trajectories of the system satisfy

∥x(t)∥ ≤ k∥x(t0)∥e−λ(t−t0), ∀ ∥x(t0)∥ ∈ D0, ∀t ≥ t0 ≥ 0 (25)

Note: This is the definition of exponential stability!
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Converse Theorems

Then, there is a function V : [0,∞)×D0 → R that satisfies the inequalities

c1∥x∥2 ≤ V (t, x) ≤ c2∥x∥2 (26)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −c3∥x∥2 (27)∥∥∥∥∂V∂x
∥∥∥∥ ≤ c4∥x∥ (28)

for some positive constants c1, c2, c3, and c4. Moreover, if r = ∞ and the origin
is globally exponentially stable, then V (t, x) is defined and satisfies the
aforementioned inequalities on Rn. Furthermore, if the system is autonomous, V
can be chosen independent of t.
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Converse Theorems

In Theorem 4.13, it was shown that if the linearization of a nonlinear system
about the origin has an exponentially stable equilibrium, then the origin is an
exponentially stable equilibrium for the nonlinear system. It is possible to use
Theorem 4.14 to prove that exponential stability of the linearization is a necessary
and sufficient condition for exponential stability of the origin.

Theorem 4.15: Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(t, x) (29)

where f : [0,∞)×D → Rn is continuously differentiable,
D = {x ∈ Rn|∥x∥2 < r}, and the Jacobian matrix [∂f/∂x] is bounded and
Lipschitz on D, uniformly in t. Let

A(t) =
∂f

∂x
(t, x)

∣∣∣∣
x=0

(30)

Then, x = 0 is an exponentially stable equilibrium point for the nonlinear system
if and only if it is an exponentially stable equilibrium point for the linear system

ẋ = A(t)x (31)
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Converse Theorems

Corollary 4.3: Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(x) (32)

where f(x) is continuously differentiable in some neighborhood of the origin. Let

A =
∂f

∂x

∣∣∣∣
x=0

(33)

Then, x = 0 is an exponentially stable equilibrium point for the nonlinear system
if and only if A is Hurwitz.

Example 4.23: Consider the first-order system ẋ = −x3. It was shown that the
orign is asymptotically stable, but linearization about the origin results in the
linear system ẋ = 0 whose A matrix is not Hurwitz. Using Corolary 4.3, we
conclude that the origin is not exponentially stable.
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Converse Theorems

The following converse Lyapunov theorem extend Theorem 4.15 but its proof is
more involved. Theorem 4.16 applies to the more general case of uniformly
asymptotically stable equilibria.

Theorem 4.16: Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(t, x) (34)

where f : [0,∞)×D → Rn is continuously differentiable,
D = {x ∈ Rn|∥x∥ < r}, and the Jacobian matrix [∂f/∂x] is bounded on D,
uniformly in t. Let β be a class KL function and r0 a positive constant such that
β(r0, 0) < r. Let D0 = {x ∈ Rn|∥x∥ < r0}. Assume that the trajectories of the
system satisfy

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀ t ≥ t0 ≥ 0, ∀ ∥x(t0)∥ < c (35)

Note: This is the definition of uniform asymptotic stability!
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Converse Theorems

Then, there is a function V : [0,∞)×D0 → R that satisfies the inequalities

α1(∥x∥) ≤ V (t, x) ≤ α2(∥x∥) (36)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −α3(∥x∥) (37)∥∥∥∥∂V∂x
∥∥∥∥ ≤ α4(∥x∥) (38)

for some positive constants α1, α2, α3, and α4 are class K functions defined on
[0, r0]. If the system is autonomous, V can be chosen independent of t.
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Boundedness

Lyapunov analysis can be used to show boundedness of the solution of the state
equation, even when there is no equilibrium point at the origin.

Example: ẋ = −x+ δ sin(t), x(t0) = a, a > δ > 0

The solution of this linear scalar differential equation is given by

x(t) = e−(t−t0)a+ δ

∫ t

t0

e−(t−τ) sin τdτ,

which satisfies the bound (| sin τ | ≤ 1)

|x(t)| ≤ e−(t−t0)a+ δ

∫ t

t0

e−(t−τ)dτ

= e−(t−t0)a+ δ
[
1− e−(t−t0)

]
= e−(t−t0)(a− δ) + δ

≤ a ∀t ≥ t0, a− δ > 0

In this case the solution is said to be uniformly bounded and a is called the bound.
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Boundedness

This a conservative bound as the time progresses because it does not take into
account the exponentially decaying term. If we pick b s.t. δ < b < a we can show
that

|x(t)| ≤ b ∀t ≥ t0 + ln

(
a− δ

b− δ

)
, a− δ > 0, b− δ > 0

Note that

t ≥ t0 + ln

(
a− δ

b− δ

)
−(t− t0) ≤ − ln

(
a− δ

b− δ

)
e−(t−t0) ≤

(
a− δ

b− δ

)−1

(a− δ)e−(t−t0) ≤ b− δ

(a− δ)e−(t−t0) + δ ≤ b

In this case the solution is said to be uniformly ultimately bounded and b is called
the ultimate bound.
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Boundedness

Showing that the solution of ẋ = −x+ δ sin(t), x(t0) = a, a > δ > 0 has the
uniform boundedness and uniform ultimate boundedness properties can be done
via Lyapunov analysis without using the explicit solution. Take V (x) = x2/2, we
calculate the derivate along the trajectories as

V̇ = xẋ = −x2 + xδ sin t ≤ −x2 + δ|x|
RHS is not negative definite because the term δ|x| dominates near the origin

However, V̇ is negative definite outside the set {|x| ≤ δ}
With c > δ2/2, solutions starting in the set {V (x) ≤ c} will remain therein
for all future time since V̇ is negative on the boundary V = c. Note that the
set {V (x) ≤ c} is equivalent to the set {|x| ≤

√
2c}, which includes the set

{|x| ≤ δ}. Hence, the solutions are uniformly bounded.

Moreover, if we pick ϵ s.t. δ2/2 < ϵ < c, then V̇ will be negative in the set
{ϵ ≤ V (x) ≤ c}, which implies that in this set V will decrease monotonically
until the solution enters the set {V (x) ≤ ϵ}. From that time on, the solution
cannot leave the set {V (x) ≤ ϵ} V̇ is negative on the boundary V = ϵ.
Thus, we conclude that the solution is uniformly ultimately bounded with the
ultimate bound |x| ≤

√
2ϵ, wich tends to |x| ≤ δ as ϵ → δ2/2.
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Boundedness

Definition 4.6: The solutions of ẋ = f(t, x) are

uniformly bounded if there exists a positive constant c, independent of t0 ≥ 0,
and for every a ∈ (0, c), there is β = β(a) > 0, independent of t0 such that

∥x(t0)∥ ≤ a ⇒ ∥x(t)∥ ≤ β,∀t ≥ t0

uniformly ultimately bounded with ultimate bound b if there exists a positive
constants b and c, independent of t0 ≥ 0, and for every a ∈ (0, c), there is
T = T (a, b) ≥ 0, independent of t0 such that

∥x(t0)∥ ≤ a ⇒ ∥x(t)∥ ≤ b,∀t ≥ t0 + T

globally uniformly bounded (or ultimately bounded) if previous conditions
hold for any arbitrarily large a.
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Boundedness

The following Lyapunov-like theorem gives sufficient conditions for
uniform/ultimate boundedness.

Theorem 4.18: Let D ⊂ Rn be a domain that contains the origin and
V : [0,∞)×D → R be a continuous differentiable function such that

α1 (∥x∥) ≤ V (t, x) ≤ α2 (∥x∥)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x), ∀ ∥x∥ ≥ µ > 0

for all t ≥ 0 and x ∈ D, where α1, α2 are class K functions and W3(x) is a
continuous positive definite function. Take r > 0 such that Br ⊂ D and suppose
that µ < α−1

2 (α1(r)).
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Boundedness

Then, there exists a class KL function β and for every initial state x(t0),
satisfying ∥x(t0)∥ ≤ α−1

2 (α1(r)), there is T ≥ 0 (dependent on x(t0) and µ) such
that the solution of ẋ = f(t, x) satisfies

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀t0 ≤ t ≤ t0 + T (39)

∥x(t)∥ ≤ α−1(α2(µ)), ∀t0 ≥ t0 + T (40)

Moreover, if D = Rn and α1 belongs to class K∞, then the inequalities above
hold for any initial state x(t0), with no restriction on how large µ is.

Proof: The statement of this theorem reduces to that of Theorem 4.9 when
µ = 0.
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Input-To-State Stability

Consider the system
ẋ = f(t, x, u) (41)

where f : [0,∞)×Rn ×Rm → Rn is piecewise continuous in t and locally
Lipschitz in x and u. The input u(t) is a piecewise continuous function of t.
Suppose the unforced system

ẋ = f(t, x, 0) (42)

has a globally uniformly asymptotically stable equilibrium at the origin x = 0.

What can we say about the behavior of the system (41) in the presence of
a bounded input u(t)?
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Input-To-State Stability

Example: ẋ = Ax+Bu The solution is given by

x(t) = e−A(t−t0)x(t0) +

∫ t

t0

e−A(t−τ)Bu(τ)dτ,

Using the bound ∥e−A(t−t0)∥ ≤ ke−λ(t−t0) to compute

∥x(t)∥ ≤ ke−λ(t−t0)∥x(t0)∥+
∫ t

t0

ke−λ(t−τ)∥B∥∥u(τ)∥dτ

≤ ke−λ(t−t0)∥x(t0)∥+
k∥B∥
λ

|1− e−λ(t−t0)| sup
t0≤τ≤t

∥u(τ)∥

≤ ke−λ(t−t0)∥x(t0)∥+
k∥B∥
λ

sup
t0≤τ≤t

∥u(τ)∥

This estimate shows that the zero-input response decays to zero exponentially
fast, while the zero-state response is bounded for every bounded input. In fact,
the estimate shows more than a bounded-inputed-bounded-state property, it shows
that bound on the zero-state response is proportional to the bound of the input.
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Input-To-State Stability

For a general nonlinear system, it should NOT be surprising that these properties
may not hold even when the origin of the unforced system (zero-input response) is
globally uniformly asymptotically stable.

Example: ẋ = −3x+ (1 + 2x2)u

This system has a globally exponentially stable origin when u ≡ 0. Yet, when
x(0) = 2 and u(t) = 1, the solution is given by

x(t) =
3− et

3− 2et
,

which is unbounded, and it even has finite escape time!
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Input-To-State Stability

Suppose we have a Lyapunov function V (t, x) for the unforced system (42) and
let us calculate V̇ in presence of u. Due to the boundedness of u, it is possible in
some cases to show that V̇ is negative outside a ball of radius µ, where µ depends
on sup ∥u∥. This is expected when f(t, x, u) is Lipschitz, i.e.,

∥f(t, x, u)− f(t, x, 0)∥ ≤ L∥u∥

Showing that V̇ is negative outside a ball of radius µ enables us to apply Theorem
4.18, which states that ∥x(t)∥ is bounded by a class KL function over [t0, t0 + T ]
(39) and by a class K function over [t0 + T,∞) (40). Consequently,

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0) + α−1(α2(µ))
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Input-To-State Stability

Definition 4.7: The system (41) is said to be input-to-state stable (ISS) if there
exist a class KL function β and a class K function γ such that for any initial state
x(t0) and any bounded input u(t), the solution x(t) exists for all t ≥ t0 and
satisfies

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0) + γ

(
sup

t0≤τ≤t
∥u(τ)∥

)
(43)

Note: The origin of the unforced system (42) is globally uniformly asymptotically
stable.
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Input-To-State Stability

The following Lyapunov-like theorem gives a sufficient condition for ISS.

Theorem 4.19: Let V : [0,∞)×Rn → R be a continuous differentiable function
such that

α1 (∥x∥) ≤ V (t, x) ≤ α2 (∥x∥)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x), ∀ ∥x∥ ≥ ρ(∥u∥) > 0

for all (t, x, u) ∈ [0,∞)×Rn ×Rm, where α1, α2 are class K∞ functions, ρ is a
class K function, and W3(x) is a continuous positive definite functions on Rn.
Then, the system (41) is input-to-state stable with γ = α−1

1 ◦ α2 ◦ ρ.
The function V is called an ISS Lyapunov function.

Proof: Direct application of Theorem 4.18 with µ = ρ(∥u∥).
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Input-To-State Stability

The following lemma is a direct consequence of the Converse Lyapunov theorem
for g.e.s. (Theorem 4.14)

Lemma 4.6: Suppose f(t, x, u) is continuosly differentiable and globally Lipschitz
in (x, u), uniformly in t. If the unforced system (42) has a globally exponentially
stable equilibrium point at the origin x = 0, then the system (41) is ISS.
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Input-To-State Stability

Theorem: Converse also holds for Theorem 4.19!

Theorem: For the system
ẋ = f(x, u)

the following properties are equivalent

the system is ISS,

there exists a smooth ISS-Lyapunov function (i.e., satisfies conditions of
Theorem 4.19)

there exists a smooth positive definite radially unbounded function V and
class K∞ functions ρ1 and ρ2 such that the following dissipativity inequality
is satisfied

∂V

∂x
f(t, x) ≤ −ρ1 (∥x∥) + ρ2 (∥u∥) (44)
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Input-To-State Stability

Young’s Inequality is key to apply this theorem

xT y ≤ ϵp

p
∥x∥p + 1

ϵqq
∥y∥q, ∀ ϵ > 0,∀ 1

p
+

1

q
= 1

Example (4.25): ẋ = −x3 + u

Example (4.26): ẋ = −x− 2x3 + (1 + x2)u2
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Input-To-State Stability

An interesting application of input-to-state stability arises in the stability analysis
of the cascade system

ẋ1 = f1(t, x1, x2) (45)

ẋ2 = f2(t, x2) (46)

where f1 : [0,∞)×Rn1 ×Rn2 → Rn1 and f2 : [0,∞)×Rn2 → Rn2 are piecewise
continuous in t and locally Lipschitz in x = [xT

1 xT
2 ]

T . Suppose

ẋ1 = f1(t, x1, 0), ẋ2 = f2(t, x2)

have both g.u.a.s. equilibria at their respective origins.

Under what condition will the origin x = 0 of the cascade system possess
the same property?

Lemma 4.7: Under the stated assumptions, if the system (45), with x2 as input,
is input-to-state stable and the origin of (46) is globally uniformly asymptotically
stable, then the origin of the cascade system (45)-(46) is globally uniformly
asymptotically stable.
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Input-To-State Stability

Suppose that in the system

ẋ1 = f1(t, x1, x2, u) (47)

ẋ2 = f2(t, x2, u) (48)

the x1-system is ISS with respect to x2 and u, and the x2-system is ISS with
respect to u. Then, the cascade system (47)-(48) is ISS with respect to u.
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