

Nonlinear Systems and Control

Mathematical Review & Contraction Mapping

Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics
Lehigh University

Mathematical Review

Euclidian Space

Set of n dimensional vectors

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

where x_i are real numbers. Denoted by \mathcal{R}^n .

$$x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}, \quad \alpha x = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix}, \quad x^T y = \sum_{i=1}^n x_i y_i$$

Mathematical Review

Norms in \mathcal{R}^n

The norm $\|x\|$ is a real-valued function with the properties

- ① $\|x\| \geq 0 \quad \forall x \in \mathcal{R}^n$, with $\|x\| = 0 \iff x = 0$
- ② $\|x + y\| \leq \|x\| + \|y\| \quad \forall x, y \in \mathcal{R}^n$
- ③ $\|\alpha x\| = \alpha \|x\| \quad \forall |\alpha| \in \mathcal{R}, x \in \mathcal{R}^n$

The p -norm is defined as

$$\begin{aligned}\|x\|_p &= \left(|x_1|^p + \dots + |x_n|^p \right)^{\frac{1}{p}} \\ \|x\|_\infty &= \max_i |x_i|\end{aligned}$$

All p -norms are equivalent in the sense that

$$c_1 \|x\|_\alpha \leq \|x\|_\beta \leq c_2 \|x\|_\alpha \quad \forall x \in \mathcal{R}^n$$

For $p = 1, 2, \infty$, check c_1 and c_2 in Appendix A.

Mathematical Review

- In this course we will use notation $|x|_p$.
- Most of the time $|x|_2 \triangleq |x|$.
- We reserve $\|x\|_p$ for \mathcal{L}_p norms on function spaces.

Hölder Inequality

$$|x^T y| \leq |x|_p |y|_q, \quad \frac{1}{p} + \frac{1}{q} = 1$$

For $p = q = 2$, we get Cauchy-Schwartz inequality.

Mathematical Review

Consider now a matrix $A_{m \times n}$ and the linear mapping $y = Ax$. The induced p -norm of the matrix A is given by

$$|A|_p = \sup_{x \neq 0} \frac{|Ax|_p}{|x|_p} = \max_{|x|_p=1} |Ax|_p$$

Then,

$$|A|_1 = \max_j \sum_{i=1}^m |a_{ij}| \quad \text{columns}$$

$$|A|_\infty = \max_i \sum_{j=1}^n |a_{ij}| \quad \text{rows}$$

$$|A|_2 = \sqrt{\lambda_{\max}(A^T A)} \quad \text{maximum eigenvalue}$$

Converge of Sequences

A sequence $x_0, x_1, \dots \in \mathcal{R}^n$, which is denoted $\{x_k\}$, converges to x if

$$|x_k - x| \rightarrow 0 \text{ as } k \rightarrow \infty$$

i.e., a sequence $x_0, x_1, \dots \in \mathcal{R}^n$, which is denoted $\{x_k\}$, converges to x if

$$\forall \epsilon > 0, \quad \exists N \quad s.t. \quad |x_k - x| < \epsilon \quad \forall k \geq N$$

Mathematical Review

- x is an *accumulation point* of sequence $\{x_k\}$ if exists a subsequence of $\{x_k\}$ that converges to x , i.e., if exists infinite subset \mathcal{K} of the nonnegative integers such that $\{x_k\}_{k \in \mathcal{K}} \rightarrow x$.
- A bounded sequence has at least one accumulation point in \mathcal{R}^n (Bolzano-Weierstrass Theorem).
- A sequence of real numbers $\{r_k\}$ is said to be increasing (monotonically increasing or nondecreasing) if $r_k \leq r_{k+1}$. If $r_k < r_{k+1}$, it is said to be strictly increasing. Decreasing (monotonically decreasing or non increasing) and strictly decreasing sequences are defined similar with $r_k \geq r_{k+1}$.
- If a sequence is monotonic and bounded, then it has a limit. Decreasing + bounded from below or increasing + bounded from above \rightarrow converges to real number.

Sets

- Set $S \subset \mathcal{R}^n$ is *open* if $\forall x \in S, \exists N(x, \epsilon) = \{z \in \mathcal{R}^n | |z - x| < \epsilon\}$ such that $N \subset S$, where $N(x, \epsilon)$ is an ϵ -neighborhood of x .
- Set $S \subset \mathcal{R}^n$ is *closed* if its complement in \mathcal{R}^n is open. Equivalently, S is closed if and only if every convergent $\{x_k\}$ with elements in S converges to a point $x \in S$.
- Set S is *bounded* if exists $r > 0$ such that $|x| < r \ \forall x \in S$.
- Set S is *compact* if it is closed and bounded.
- Point p is *boundary point* of S if every neighborhood of p contains at least one point $\in S$ and one point $\notin S$.
- Set S is *convex* if $\forall x, y \in S, \forall \theta \in (0, 1), \theta x + (1 - \theta)y \in S$.

Mathematical Review

Notation:

- δS denotes the boundary of S (set of boundary points)
- $S - \delta S$ denotes the interior of S
- And open set \equiv interior ($\delta S = \emptyset$)
- $\bar{S} = S \cup \delta S$ denotes the closure of S
- A closed set \equiv closure

Additional Definitions:

- An open set S is *connected* if every pair of points in S can be joined by an arc lying in S .
- A set S is called a *region* if it is the union of an open connected set with some, none, or all boundary points.
- If none of the boundary points are included, the region is called an *open region* or *domain*.

Continuity

- Notation: $f : S_1 \rightarrow S_2$ - Function mapping S_1 into S_2 .
- $f : \mathcal{R}^n \rightarrow \mathcal{R}^m$ is *continuous* (\mathcal{C}^0) at a point x if $f(x_k) \rightarrow f(x)$ whenever $x_k \rightarrow x$. Equivalently, if

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad s.t. \quad |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$$

We say that f is *uniformly continuous* on S if δ depends on ϵ and not on x .

- $f : \mathcal{R} \rightarrow \mathcal{R}^n$ is *piecewise continuous* on interval $J \subset \mathcal{R}$ if for every bounded subinterval $J_0 \subset J$, f is continuous $\forall x \in J_0$, except, possibly at a finite number of points x_0 where f may be discontinuous. Moreover, $\lim_{h \rightarrow 0} f(x_0 + h)$ and $\lim_{h \rightarrow 0} f(x_0 - h)$ exist. Function has finite jump at x_0 .

Differentiability

- Scalar $f : \mathcal{R} \rightarrow \mathcal{R}$ is *differentiable* at x if

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

exists.

- $f : \mathcal{R}^n \rightarrow \mathcal{R}^m$ is *continuously differentiable* at x (\mathcal{C}^1) if $\partial f_i / \partial x_j$ exists and are continuous at x .

Mathematical Review

- For a function $f : \mathcal{R}^n \rightarrow \mathcal{R}$,

$$\begin{aligned}\frac{\partial f}{\partial x} &= \left[\begin{array}{cccc} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{array} \right] \\ \nabla f(x) &= \left(\frac{\partial f}{\partial x} \right)^T = \frac{\partial^T f}{\partial x} \quad \text{Gradient}\end{aligned}$$

- For a function $f : \mathcal{R}^n \rightarrow \mathcal{R}^m$,

$$\frac{\partial f}{\partial x} = \left[\begin{array}{ccc} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{array} \right] \quad \text{Jacobian}$$

Mean Value Theorem

Let $f : \mathcal{R}^n \rightarrow \mathcal{R}$ be continuously differentiable on $S \subset \mathcal{R}^n$. Let $x, y \in S$ be such that the line segment

$$L(x, y) = \{z | z = \theta x + (1 - \theta)y, \quad 0 < \theta < 1\}$$

is in S . Then, $\exists z \in L(x, y)$ such that

$$f(y) - f(x) = \frac{\partial f}{\partial x} \bigg|_{x=z} (y - x)$$

“The difference of the function can be represented as a linear function.”

Example: $f(x) = x^2 \in \mathcal{C}^1$

Mathematical Review

Implicit Function Theorem

Assume $f(x, y) : \mathcal{R}^n \times \mathcal{R}^m \rightarrow \mathcal{R}^n$ is continuously differentiable (\mathcal{C}^1) on S . Let $f(x_0, y_0) = 0$ and $\frac{\partial f}{\partial x}(x_0, y_0)$ be non-singular at a point $(x_0, y_0) \in S$. Then, exists neighborhoods U of x_0 and V of y_0 such that for each $y \in V$, the equation $f(x, y) = 0$ has a unique solution $x \in U$, expressed as $x = g(y)$, $g \in \mathcal{C}^1$ (continuously differentiable).

Mathematical Review

Gronwall(-Bellman) Inequality

Let

- $\lambda : [a, b] \rightarrow \mathcal{R}$ be continuous
- $\mu : [a, b] \rightarrow \mathcal{R}$ be continuous and nonnegative

If a continuous function $y : [a, b] \rightarrow \mathcal{R}$ satisfies

$$y(t) \leq \lambda(t) + \int_a^t \mu(s)y(s)ds$$

for $a \leq t \leq b$, then on the same interval

- ① $y(t) \leq \lambda(t) + \int_a^t \lambda(s)\mu(s)e^{\int_s^t \mu(\tau)d\tau}ds$
- ② If $\lambda(t) \equiv \lambda$ (constant), $y(t) \leq \lambda e^{\int_a^t \mu(\tau)d\tau}$
- ③ If, in addition, $\mu(t) \equiv \mu \geq 0$ (constant), $y(t) \leq \lambda e^{\mu(t-a)}$

Mathematical Review

Proof: Let

- $z(t) = \int_a^t \mu(s)y(s)ds$
- $v(t) = z(t) + \lambda(t) - y(t) \geq 0 \iff y(t) \leq \lambda(t) + z(t)$

Then,

$$\dot{z} = \mu(t)y(t) = \mu(t)z(t) + \mu(t)\lambda(t) - \mu(t)v(t)$$

This is a scalar linear state equation with the state transition function

$$\phi(t, s) = e^{\int_s^t \mu(\tau)d\tau}$$

Since $z(a) \equiv 0$ (see definition of $z(t)$ above), we have

$$z(t) = \int_a^t \phi(t, s)[\mu(s)\lambda(s) - \mu(s)v(s)]ds$$

The term $\int_a^t \phi(t, s)\mu(s)v(s)$ is nonnegative ($\Rightarrow -\int_a^t \phi(t, s)\mu(s)v(s) \leq 0$).
Therefore,

$$z(t) \leq \int_a^t \phi(t, s)\mu(s)\lambda(s)ds$$

Mathematical Review

We can write

$$z(t) \leq \int_a^t e^{\int_s^t \mu(\tau)d\tau} \mu(s)\lambda(s)ds$$

Since $y(t) \leq \lambda(t) + z(t)$, this completes the proof for case 1, i.e.

$$y(t) \leq \lambda(t) + \int_a^t e^{\int_s^t \mu(\tau)d\tau} \mu(s)\lambda(s)ds$$

In the special case when $\lambda(t) \equiv \lambda$, we have

$$\begin{aligned} \int_a^t e^{\int_s^t \mu(\tau)d\tau} \mu(s)\lambda(s)ds &= \lambda \int_a^t e^{\int_s^t \mu(\tau)d\tau} \mu(s)ds &= -\lambda \int_a^t \frac{d}{ds} \left\{ e^{\int_s^t \mu(\tau)d\tau} \right\} ds \\ &= -\lambda e^{\int_s^t \mu(\tau)d\tau} \Big|_{s=a}^{s=t} \\ &= -\lambda + \lambda e^{\int_a^t \mu(\tau)d\tau} \end{aligned}$$

This proves Case 2, i.e.

$$y(t) \leq \lambda - \lambda + \lambda e^{\int_a^t \mu(\tau)d\tau} = \lambda e^{\int_a^t \mu(\tau)d\tau}$$

The proof of Case 3 (both λ and μ constants) follows by integration.

Contraction Mapping

Fixed Point

Consider a mapping $T(\cdot)$, i.e. an equation of the form $x = T(x)$. A point x^* is said to be a *fixed point* of T if

$$x^* = T(x^*)$$

since T leaves x^* invariant. A classical idea for finding a fixed point is the successive approximation method (also known as Picard iteration):

$$x_{k+1} = T(x_k)$$

The contraction mapping theorem gives sufficient conditions under which there is a fixed point x^* of $x = T(x)$ and the sequence $\{x_k\}$ defined above (successive approximation method) converges to x^* . This theorem holds not only when T is a mapping between *Euclidian* spaces but also when T is a mapping between *Banach* spaces $\subset \mathcal{R}^n$. It is useful to consider the contraction mapping theorem in this more general setting. Therefore, *Banach* spaces need to be introduced first.

Contraction Mapping

Linear Vector Space

Assume $x, y \in \mathcal{X}$ (linear vector space) and $\alpha, \beta \in \mathcal{R}$.

- $x + y \in \mathcal{X}$
- $x + y = y + x$
- $(x + y) + z = x + (y + z)$
- \exists zero vector $0 \in \mathcal{X}$ such that $x + 0 = x \ \forall x \in \mathcal{X}$
- $\alpha x \in \mathcal{X}$
- $0 \cdot x = 0, 1 \cdot x = x$
- $(\alpha\beta)x = \alpha(\beta x)$
- $\alpha(x + y) = \alpha x + \alpha y$
- $(\alpha + \beta)x = \alpha x + \beta x$

Contraction Mapping

Normed Linear Vector Space

A linear space \mathcal{X} is normed if for each $x \in \mathcal{X}$, there is a real-valued norm $\|x\|$ that satisfies

- $\|x\| > 0 \quad \forall x \in \mathcal{X} - \{0\}, \|0\| = 0.$
- $\|x + y\| \leq \|x\| + \|y\| \quad \forall x, y \in \mathcal{X}.$
- $\|\alpha x\| = |\alpha| \|x\| \quad \forall x \in \mathcal{X}, \alpha \in \mathbb{R}.$

Convergence

A sequence $\{x_k\} \in \mathcal{X}$, a normed linear space, converges to $x \in \mathcal{X}$ if $\|x_k - x\| \rightarrow 0$ as $k \rightarrow \infty$.

Closed Set

A set $S \subset \mathcal{X}$ is closed if and only if every convergent sequence with elements in S has its limit in S .

Contraction Mapping

Cauchy Sequence

A sequence $\{x_k\} \in \mathcal{X}$, a normed linear space, is said to be a *Cauchy sequence* if

$$\|x_k - x_m\| \rightarrow 0 \text{ as } k, m \rightarrow \infty.$$

Every convergent sequence is Cauchy, but not vice versa.

Complete Set

A normed linear space \mathcal{X} is complete if every Cauchy sequence in \mathcal{X} converges to a vector in \mathcal{X} .

Banach Space

A **complete normed linear space** is a *Banach* space.

Contraction Mapping

Example (B.1): Continuous functions $f : [a, b] \rightarrow \mathcal{R}^n$, denoted by $\mathcal{C}[a, b]$, with norm

$$\|x\|_C = \max_{t \in [a, b]} \|x(t)\|$$

where the right-hand norm is any p -norm in \mathcal{R}^n . To prove that $\mathcal{C}[a, b]$ is a Banach space, we need to prove

- ① $\mathcal{C}[a, b]$ is a linear space.
- ② $\mathcal{C}[a, b]$ together with $\|x\|_C$ is a normed linear space.
- ③ $\mathcal{C}[a, b]$ together with $\|x\|_C$ is a complete normed linear space
 - Every Cauchy sequence in $\mathcal{C}[a, b]$ converges to a vector in $\mathcal{C}[a, b]$

Proof:

- ① With the sum defined as $(x + y)(t) = x(t) + y(t)$, the scalar multiplication as $(\alpha x)(t) = \alpha x(t)$, and the zero vector as the function that is identically zero on $[a, b]$, $\mathcal{C}[a, b]$ is a linear space over \mathcal{R} .
- ② It is easy to show that the defined norm satisfies the three properties that are needed to conclude that $\mathcal{C}[a, b]$ is a normed linear space.

Contraction Mapping

③ This is the tricky part ...

- *Pointwise convergence:* Suppose that $\{x_k\}$ is a Cauchy sequence in $\mathcal{C}[a, b]$. For each fixed $t \in [a, b]$,

$$\|x_k(t) - x_m(t)\| \leq \|x_k - x_m\|_C \rightarrow 0 \quad \text{as } k, m \rightarrow \infty$$

So $\{x_k(t)\}$ is a Cauchy sequence in \mathcal{R}^n . But \mathcal{R}^n with any p -norm is complete because convergence implies componentwise convergence and \mathcal{R} is complete. Therefore, there is a real vector $x(t)$ to which the sequence converges: $x_k(t) \rightarrow x(t)$. This proves pointwise convergence.

- *Uniform convergence in $t \in [a, b]$:* Given $\epsilon > 0$, choose N such that $\|x_k - x_m\|_C < \epsilon/2$ for $k, m > N$. Then, for $k > N$

$$\|x_k(t) - x(t)\| \leq \|x_k(t) - x_m(t)\| + \|x_m(t) - x(t)\| \leq \|x_k - x_m\|_C + \|x_m(t) - x(t)\|$$

By choosing m sufficiently large (which may depend on t), each term on the right-hand side can be made smaller than $\epsilon/2$; so $\|x_k(t) - x(t)\| < \epsilon$ for $k > N$. Hence, $\{x_k(t)\}$ converges to $x(t)$, uniformly in $t \in [a, b]$.

Contraction Mapping

We finally need to prove that: i- $x(t)$ is continuous, ii- $\{x_k\}$ converges to x in the norm of $\mathcal{C}[a, b]$.

- *Continuity:* Consider

$$\|x(t + \delta) - x(t)\| \leq \|x(t + \delta) - x_k(t + \delta)\| + \|x_k(t + \delta) - x_k(t)\| + \|x_k(t) - x(t)\|$$

Since $\{x_k(t)\}$ converges uniformly to $x(t)$, given any $\epsilon > 0$, we can choose k large enough to make both the first and third terms on the right-hand side less than $\epsilon/3$. Because $x_k(t)$ is continuous, we can choose δ small enough to make the second term less than $\epsilon/3$. Therefore, $x(t)$ is continuous.

- *Convergence of $\{x_k\}$ to x in the norm of $\mathcal{C}[a, b]$:* Direct consequence of the uniform convergence.

Contraction Mapping

Contraction Mapping Theorem

Let S be a closed subset of a Banach space \mathcal{X} and let T be a mapping that maps S into S . Suppose that

$$\|T(x) - T(y)\| \leq \rho \|x - y\| \quad \forall x, y \in S, 0 \leq \rho < 1.$$

We say in this case that T is a contraction over S . Then,

- there exist a unique vector $x^* \in S$ satisfying $x^* = T(x^*)$.
- the point x^* can be obtained by the method of successive approximation, starting from any arbitrary initial vector in S .

Contraction Mapping

Proof: Select an arbitrary $x_1 \in S$ and define the sequence $\{x_k\}$ by the formula $x_{k+1} = T(x_k)$ (successive approximation). Since T maps S into S , $x_k \in S$ for all $k \geq 1$.

① The first step is to prove that $\{x_k\}$ is Cauchy. We have

$$\begin{aligned}\|x_{k+1} - x_k\| &= \|T(x_k) - T(x_{k-1})\| \\ &\leq \rho \|x_k - x_{k-1}\| \leq \rho^2 \|x_{k-1} - x_{k-2}\| \leq \cdots \leq \rho^{k-1} \|x_2 - x_1\|\end{aligned}$$

It follows that

$$\begin{aligned}\|x_{k+r} - x_k\| &\leq \|x_{k+r} - x_{k+r-1}\| + \|x_{k+r-1} - x_{k+r-2}\| + \cdots + \|x_{k+1} - x_k\| \\ &\leq [\rho^{k+r-2} + \rho^{k+r-3} + \cdots + \rho^{k-1}] \|x_2 - x_1\| \\ &\leq \rho^{k-1} \sum_{i=0}^{r-1} \rho^i \|x_2 - x_1\| \\ &\leq \rho^{k-1} \sum_{i=0}^{\infty} \rho^i \|x_2 - x_1\| = \frac{\rho^{k-1}}{1-\rho} \|x_2 - x_1\|\end{aligned}$$

The right-hand side tends to zero as $k \rightarrow \infty$. Thus, the sequence is Cauchy.

Contraction Mapping

- ② The second step is to prove that $\{x_k\} \rightarrow x^* \in \mathcal{X}$ as $k \rightarrow \infty$. This arises from the fact that \mathcal{X} is a Banach space. Moreover, since S is closed, $x^* \in S$.
- ③ The third step is to show that x^* satisfies $x^* = T(x^*)$. For any $x_k = T(x_{k-1})$, we have

$$\begin{aligned}\|x^* - T(x^*)\| &\leq \|x^* - x_k\| + \|x_k - T(x^*)\| = \|x^* - x_k\| + \|T(x_{k-1}) - T(x^*)\| \\ &\leq \|x^* - x_k\| + \rho \|x_{k-1} - x^*\|\end{aligned}$$

By choosing k large enough, the right-hand side of the inequality can be made arbitrarily small. Thus, $\|x^* - T(x^*)\| = 0$; that is, $x^* = T(x^*)$.

- ④ The last step is to show that x^* is the unique fixed point of T in S . Suppose that both x^* and y^* are fixed points. Then,

$$\|x^* - y^*\| = \|T(x^*) - T(y^*)\| \leq \rho \|x^* - y^*\|$$

Since $\rho < 1$, we have $x^* = y^*$.