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Nonlinear Models

In this course we will deal with nonlinear dynamical systems that are model by a
set of coupled first-order ordinary differential equations (ODE),

Sil‘l = fl(t,xl,...,xn,ul,...,up)
jl‘g = fg(t,xl,...,xn,ul,...,up)
o (1)
Tn = falt,z1,.. Tp, U1, ., Up)
where z1,...,x, denote the n states, u;,...,u, denote the p inputs, ¢ denotes

time and Z; denotes the time derivative of the state z;.
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Nonlinear Models

After defining

1 uy fl(taxau)

To U9 fa(t,z,u)
‘r - ) u = b f(t7 x? u) = 7

Tn Up fult,z,u)

we can rewrite the state equation (1) as

= f(t,x,u) 2)
which may be associated with the output equation

y = h(t,z,u) 3)

where y denotes the g-dimensional output.
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Nonlinear Models

@ Nonlinear Control: Design control law

u=(tx)
for
&= f(t,z,u)
@ Nonlinear Analysis: We study the dynamics of the unforced system
i= f(t.2)

where u has been either forced to zero or replaced by the control law (¢, x).

& = f(t,z) nonautonomous or time-varying
&= f(z)  autonomous or time-invariant
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Nonlinear Models

A point x = z* in the state space is said to be an equilibrium point if it has the
property that whenever the state of the system starts at =*, it will remain at z*
for all future time. For the autonomous system

i=f(z) (4)

the equilibrium points are the real roots of the equation

0= f(z) (5)

Equilibrium points can be isolated or there can be a continuum of points.
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Nonlinear Phenomena

How nonlinear systems are different from our well-known linear systems?

Multiple isolated equilibria

Finite escape time

Limit cycles

Chaos

Subharmonic, harmonic or almost periodic oscillations

Multiple modes of behavior
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Nonlinear Phenomena

Multiple isolated equilibria: For linear time-invariant (LTI) systems
&= Ax

the equilibria are given by the null space of A, A/(A). A linear system can have
only one isolated equilibrium point (A is full rank). A nonlinear system can have
more than one isolated equilibrium point.

Examples: . 3
- r=-—-T+x

The points « = 0 (stable) and # = £1 (unstable) are isolated equilibrium points.

i=x—2°

The points = 0 (unstable) and = +1 (stable) are isolated equilibrium points.
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Nonlinear Phenomena

The solution of

is given by

x(t)
°

0 2 4 6 8 10
t

Figure: Multiple equilibria
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Nonlinear Phenomena

Finite escape time: For linear time-invariant (LTI) unstable systems

T = Ax

the state goes to infinity as time approaches infinity. For nonlinear systems, the

state can go to infinity in finite time.

Examples: .
_— r=x
with solution
x(t) = zoel
i =a>
with solution
o
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Nonlinear Phenomena

Zo

— et T ; —
Note that z(t) = zge’ goes to infinity when ¢t — oo, while z(t) = Jiem goes

to infinity when ¢ — ﬁ

x(t)
°
x(t)

°
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Figure: Linear system (left) with solution z(t) = xoe’ vs. Nonlinear system (right) with

Zo

solution l’(t) = ﬁ
—2a2
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Nonlinear Phenomena

Limit Cycles: For linear time-invariant (LTI) system to oscillate, it must have a
pair of eigenvalues on the imaginary axis, which is a nonrobust condition that is
almost impossible to maintain in the presence of perturbations. Even if we do, the
amplitude of the oscillation will depend on the initial state.

@ In real life, stable oscillators must be produced by nonlinear systems.

@ There are nonlinear systems that can go into an oscillation of a fixed
amplitude and frequency, irrespective of the initial state.

This type of oscillation is known as a limit cycle (isolated periodic orbit).
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Nonlinear Phenomena

Examples:
Linear: £ +2 =0 Nonlinear: & + (z2 — )i +x =0

2 5
15 4
3
;
2
05 1
¢ o %o
05 -1
-2
E
3
15 "
2 5
% 45 1 s o 05 1 15 2 % 8

x1

Figure: Linear system (left) vs. Nonlinear system (right)

For the limit cycle (right figure), the damping is positive for large = and negative
for small . This is a version of the well-known Van der Pol equation.
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Nonlinear Phenomena

Lemma 2.1: (Poincaré-Bendixson Criterion) Consider the system

&= f(x) (6)

and let M be a closed bounded subset of the plane such that

@ M contains no equilibrium points, or contains only one equilibrium point such
that the Jacobian matrix [0f/0x] at this point has eigenvalues with positive
real parts. (Hence, the equilibrium point is unstable focus or unstable node.)

o Every trajectory, starting in M stays in M for all future time.

Then, M contains a periodic orbit of (6). The lemma guarantees existence but
not uniqueness.

Figure: Redefinition of M to exclude unstable node or focus
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Nonlinear Phenomena

As a tool for investigating whether trajectories are trapped inside a set M, let us
consider a simple closed curve defined by the equation V(z) = ¢, where V() is
continuously differentiable. The vector field f(z) at a point x on the curve points
inward if the inner product of f(z) and the gradient vector VV (z) is negative, i.e.

v ov

flx) - VV(z) = —(z)fi(x) + .
T2

o () fa() < 0. ™

Let us consider the following cases:

@ For a set of the form M = {z : V(x) < ¢} for some ¢ > 0, trajectories are
trapped inside M if f(z)- VV(z) < 0 on the boundary V(z) = c.

@ For a set of the form M = {z : W(z) > ¢1 and V(z) < ¢} for some ¢; > 0
and ¢z > 0 (annular region), trajectories are trapped inside M if
f(z) - VV(z) <0 on the boundary V(z) = ¢p and f(z) - VIW(x) > 0 on the
boundary W(z) = ¢;.
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Nonlinear Phenomena

VA
VI(X,,X,)
/ grad V
; ! dt
1 / grad V
y ERR PN
aX <« A
dt grad V
X

If the derivative % = 9V f(x) along a phase trajectory is everywhere negative,

then the trajectory tends to the origin (inward).

V= ‘fi‘t/ will be negative as long as the angle ¢ between grad V = %‘; and
i =49 = f(z) is higher than 90°.
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Example: Harmonic oscillator — & +x =0

i‘l = X9

j?g = —I

Figure: Limit cycle
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Example:

1 = T1+ T2 —xl(xf +x§)

Ty = —2x1+T9— 1‘2(37% + x%)

Figure: Limit cycle
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