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Nonlinear Models

In this course we will deal with nonlinear dynamical systems that are model by a
set of coupled first-order ordinary differential equations (ODE),

ẋ1 = f1(t, x1, . . . , xn, u1, . . . , up)
ẋ2 = f2(t, x1, . . . , xn, u1, . . . , up)
... =

...
ẋn = fn(t, x1, . . . , xn, u1, . . . , up)

(1)

where x1, . . . , xn denote the n states, u1, . . . , up denote the p inputs, t denotes
time and ẋi denotes the time derivative of the state xi.
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Nonlinear Models

After defining

x =


x1

x2

...
xn

 , u =


u1

u2

...
up

 , f(t, x, u) =


f1(t, x, u)
f2(t, x, u)

...
fn(t, x, u)


we can rewrite the state equation (1) as

ẋ = f(t, x, u) (2)

which may be associated with the output equation

y = h(t, x, u) (3)

where y denotes the q-dimensional output.
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Nonlinear Models

Nonlinear Control: Design control law

u = γ(t, x)

for
ẋ = f(t, x, u)

Nonlinear Analysis: We study the dynamics of the unforced system

ẋ = f(t, x)

where u has been either forced to zero or replaced by the control law γ(t, x).

ẋ = f(t, x) nonautonomous or time-varying
ẋ = f(x) autonomous or time-invariant
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Nonlinear Models

A point x = x∗ in the state space is said to be an equilibrium point if it has the
property that whenever the state of the system starts at x∗, it will remain at x∗

for all future time. For the autonomous system

ẋ = f(x) (4)

the equilibrium points are the real roots of the equation

0 = f(x) (5)

Equilibrium points can be isolated or there can be a continuum of points.
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Nonlinear Phenomena

How nonlinear systems are different from our well-known linear systems?

Multiple isolated equilibria

Finite escape time

Limit cycles

Chaos

Subharmonic, harmonic or almost periodic oscillations

Multiple modes of behavior
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Nonlinear Phenomena

Multiple isolated equilibria: For linear time-invariant (LTI) systems

ẋ = Ax

the equilibria are given by the null space of A, N (A). A linear system can have
only one isolated equilibrium point (A is full rank). A nonlinear system can have
more than one isolated equilibrium point.
Examples:

ẋ = −x+ x3

The points x = 0 (stable) and x = ±1 (unstable) are isolated equilibrium points.

ẋ = x− x3

The points x = 0 (unstable) and x = ±1 (stable) are isolated equilibrium points.
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Nonlinear Phenomena

The solution of
ẋ = x− x3

is given by

x(t) =
x0

x2
0(1− e−2t) + e−2t
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Figure: Multiple equilibria
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Nonlinear Phenomena

Finite escape time: For linear time-invariant (LTI) unstable systems

ẋ = Ax

the state goes to infinity as time approaches infinity. For nonlinear systems, the
state can go to infinity in finite time.
Examples:

ẋ = x

with solution
x(t) = x0e

t

ẋ = x3

with solution
x(t) =

x0√
1− 2x2

0t
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Nonlinear Phenomena

Note that x(t) = x0e
t goes to infinity when t → ∞, while x(t) = x0√

1−2x2
0t

goes

to infinity when t → 1
2x2

0
.
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Figure: Linear system (left) with solution x(t) = x0e
t vs. Nonlinear system (right) with

solution x(t) = x0√
1−2x2

0t
.
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Nonlinear Phenomena

Limit Cycles: For linear time-invariant (LTI) system to oscillate, it must have a
pair of eigenvalues on the imaginary axis, which is a nonrobust condition that is
almost impossible to maintain in the presence of perturbations. Even if we do, the
amplitude of the oscillation will depend on the initial state.

In real life, stable oscillators must be produced by nonlinear systems.

There are nonlinear systems that can go into an oscillation of a fixed
amplitude and frequency, irrespective of the initial state.

This type of oscillation is known as a limit cycle (isolated periodic orbit).
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Nonlinear Phenomena

Examples:

Linear: ẍ+ x = 0 Nonlinear: ẍ+ (x2 − 1)ẋ+ x = 0
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Figure: Linear system (left) vs. Nonlinear system (right)

For the limit cycle (right figure), the damping is positive for large x and negative
for small x. This is a version of the well-known Van der Pol equation.
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Nonlinear Phenomena

Lemma 2.1: (Poincaré-Bendixson Criterion) Consider the system

ẋ = f(x) (6)

and let M be a closed bounded subset of the plane such that

M contains no equilibrium points, or contains only one equilibrium point such
that the Jacobian matrix [∂f/∂x] at this point has eigenvalues with positive
real parts. (Hence, the equilibrium point is unstable focus or unstable node.)

Every trajectory, starting in M stays in M for all future time.

Then, M contains a periodic orbit of (6). The lemma guarantees existence but
not uniqueness.

Figure: Redefinition of M to exclude unstable node or focus
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Nonlinear Phenomena

As a tool for investigating whether trajectories are trapped inside a set M , let us
consider a simple closed curve defined by the equation V (x) = c, where V (x) is
continuously differentiable. The vector field f(x) at a point x on the curve points
inward if the inner product of f(x) and the gradient vector ∇V (x) is negative, i.e.

f(x) · ∇V (x) =
∂V

∂x1
(x)f1(x) +

∂V

∂x2
(x)f2(x) < 0. (7)

Let us consider the following cases:

For a set of the form M = {x : V (x) ≤ c} for some c > 0, trajectories are
trapped inside M if f(x) · ∇V (x) ≤ 0 on the boundary V (x) = c.

For a set of the form M = {x : W (x) ≥ c1 and V (x) ≤ c2} for some c1 > 0
and c2 > 0 (annular region), trajectories are trapped inside M if
f(x) · ∇V (x) ≤ 0 on the boundary V (x) = c2 and f(x) · ∇W (x) ≥ 0 on the
boundary W (x) = c1.
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Nonlinear Phenomena

If the derivative dV
dt = ∂V

∂x f(x) along a phase trajectory is everywhere negative,
then the trajectory tends to the origin (inward).

V̇ ≡ dV
dt will be negative as long as the angle ϕ between grad V ≡ ∂V

∂x and

ẋ ≡ dx
dt = f(x) is higher than 90◦.

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 15 / 17



Nonlinear Phenomena

Example: Harmonic oscillator – ẍ+ x = 0

ẋ1 = x2

ẋ2 = −x1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

Figure: Limit cycle
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Nonlinear Phenomena

Example:

ẋ1 = x1 + x2 − x1(x
2
1 + x2

2)

ẋ2 = −2x1 + x2 − x2(x
2
1 + x2

2)
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Figure: Limit cycle
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