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Behavior of Second Order Systems

Consider the following linear system

ẋ = Ax (1)

The solution of (1) for an initial condition x0 is given by

x(t) = M exp(Jrt)M
−1x0

where Jr is the real Jordan form of A and M is a real nonsingular matrix such that

Jr = M−1AM

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024 2 / 26



Behavior of Second Order Systems

There are three possible Jordan forms for a 2× 2 A matrix:

Different real eigenvalues

Equal real eigenvalues

Complex conjugate eigenvalues[
λ1 0
0 λ2

] [
λ k
0 λ

] [
α −β
β α

]
In addition, we need to consider the case where at least one of the eigenvalues is
zero.
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Behavior of Second Order Systems

Different real eigenvalues: λ1 ̸= λ2 (non-zero)
In this case,

M = [ v1 v2 ]

where v1 and v2 are the real eigenvectors of A associated with λ1 and λ2,
respectively.
The change of coordinate z = M−1x transforms the system into two decoupled
first-order differential equations, i.e.,

ż1 = λ1z1, ż2 = λ2z2

with solution

z1(t) = z10e
λ1t, z2(t) = z20e

λ2t ⇒ z2 =
z20

(z10)λ2/λ1
z
λ2/λ1

1
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Behavior of Second Order Systems

Stable Node: λ1, λ2 < 0

Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Unstable Node: λ1, λ2 > 0

Figure: Original coordinates.
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Behavior of Second Order Systems

Saddle Point: λ1 > 0, λ2 < 0

Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Complex conjugate eigenvalues: λ1,2 = α± jβ
In this case,

M = [ v1 v2 ]

where v1 and v2 are the real eigenvectors of A associated with λ1 and λ2,
respectively.
The change of coordinate z = M−1x transforms the system into the form

ż1 = αz1 − βz2, ż2 = βz1 + αz2

Defining the change of coordinates

r =
√
z21 + z22 , θ = tan−1

(
z2
z1

)
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Behavior of Second Order Systems

we can write the dynamic equations in polar coordinates as

ṙ = αr, θ̇ = β

with solution
r(t) = r0e

αt, θ(t) = θ0 + βt
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Behavior of Second Order Systems

Stable Focus: α < 0

Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Unstable Focus: α > 0

Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Center: α = 0

Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Equal real eigenvalues: λ1 = λ2 = λ (non-zero)
In this case,

M = [ v1 v2 ]

where v1 and v2 are the real eigenvectors of A associated with λ1 and λ2,
respectively.
The change of coordinate z = M−1x transforms the system into the form

ż1 = λz1 + kz2, ż2 = λz2

with solution

z1(t) = (z10 + kz20t)e
λt, z2(t) = z20e

λt ⇒ z1 = z2

[
z10
z20

+
k

λ
ln

(
z2
z20

)]
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Behavior of Second Order Systems

Case 1: k = 0

Figure: (a) λ < 0, (b) λ > 0.
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Behavior of Second Order Systems

Case 2: k = 1

Figure: (a) λ < 0, (b) λ > 0.
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Behavior of Second Order Systems

One or both zero eigenvalue: λ1 = 0, λ2 ̸= 0 or λ1 = λ2 = 0
In this case A has a non-trivial null space.
When λ1 = 0 and λ2 ̸= 0,

M = [ v1 v2 ]

where v1 and v2 are the real eigenvectors of A associated with λ1 and λ2,
respectively. Note that v1 spans the null space of A.
The change of coordinate z = M−1x transforms the system into the form

ż1 = 0, ż2 = λ2z2

with solution z1(t) = z10, z2(t) = z20e
λ2t
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Behavior of Second Order Systems

When λ1 = λ2 = 0,
M = [ v1 v2 ]

where v1 and v2 are the real eigenvectors of A associated with λ1 and λ2,
respectively.
The change of coordinate z = M−1x transforms the system into the form

ż1 = z2, ż2 = 0

with solution z1(t) = z10 + z20t, z2(t) = z20
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Behavior of Second Order Systems

Case 1: λ1 = 0 and λ2 ̸= 0

Figure: (a) λ1 = 0, λ2 < 0, (b) λ1 = 0, λ2 > 0.
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Behavior of Second Order Systems

Case 2: When λ1 = λ2 = 0

Figure: λ1 = λ2 = 0.
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Qualitative Behavior Near Equilibria

Given the nonlinear system

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

(2)

let us assume p = (p1, p2) is an equilibrium point of (2), i.e.,

f1(p1, p2) = f2(p1, p2) = 0

Let us know expand the right-hand side of (2) around the equilibrium point p, i.e.,

ẋ = f(p) +
∂f(x)

∂x

∣∣∣∣
x=p

(x− p) +H.O.T.
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Qualitative Behavior Near Equilibria

where

x =

[
x1

x2

]
, f(x) =

[
f1(x)
f2(x)

]
and

∂f(x)

∂x

∣∣∣∣
x=p

=

[
∂f1(x)

x1

∂f1(x)
x2

∂f2(x)
x1

∂f2(x)
x2

]
x=p

is the Jacobian evaluated at the equilibrium point p. Since we are interested in the
behavior near p, we define

A ≡ ∂f(x)

∂x

∣∣∣∣
x=p

, y = x− p

and we obtain
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Qualitative Behavior Near Equilibria

ẏ ≈ Ay

which represents the Jacobi linearization.

Q: Is the system’s linearization a good approximation of its local behavior?
A: Yes, but provided the linearization has no eigenvalue on the imaginary axis, i.e.,
provided the equilibrium is hyperbolic.

Therefore, as long as f1(x) and f2(x) have continuous first partial derivatives, we
can conclude that

stable/unstable node stable/unstable node
stable/unstable focus remains stable/unstable focus
saddle point saddle point
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Qualitative Behavior Near Equilibria

Example: hyperbolic case - Pendulum with friction

θ̈ = − b

ml2
θ̇ − g

l
sin(θ)
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Qualitative Behavior Near Equilibria
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Figure: Pendulum: Saddle + Stable Focus.
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Qualitative Behavior Near Equilibria

Example: non-hyperbolic case

ẋ1 = −x2 − µx1(x
2
1 + x2

2)
ẋ2 = x1 − µx2(x

2
1 + x2

2)
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Qualitative Behavior Near Equilibria
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Figure: Stable/Unstable Focus.
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