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Behavior of Second Order Systems

Consider the following linear system
&= Az (1)
The solution of (1) for an initial condition z is given by
x(t) = Mexp(J,t)M
where J,. is the real Jordan form of A and M is a real nonsingular matrix such that

J.=M"tAM
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Behavior of Second Order Systems

There are three possible Jordan forms for a 2 x 2 A matrix:
o Different real eigenvalues
@ Equal real eigenvalues

@ Complex conjugate eigenvalues

A0 Ak a —f

0 )\2 0 A ﬁ «
In addition, we need to consider the case where at least one of the eigenvalues is
zero.
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Behavior of Second Order Systems

Different real eigenvalues: \; # )y (non-zero)
In this case,
M = [ v V2 ]

where v; and vy are the real eigenvectors of A associated with A\; and Ag,
respectively.

The change of coordinate z = M 'z transforms the system into two decoupled
first-order differential equations, i.e.,

2= Mz, 2o = Aoz

with solution

220 A2/A

)\1t e —
ETEZE

z1 (t) = Z10€ ", Zg(t) = 2206)‘2t = 29 =
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Behavior of Second Order Systems

Stable Node: )\, A5 <0
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Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Unstable Node: A, A2 >0
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Figure: Original coordinates.
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Behavior of Second Order Systems

Saddle Point: \; >0, A2 <0
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Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Complex conjugate eigenvalues: \; ; = o £ jf3
In this case,
M = [ v V2 ]

where v; and vy are the real eigenvectors of A associated with A\; and Ag,
respectively.
The change of coordinate z = M 'z transforms the system into the form

1 = azy — Bz, 29 = Bz1 + azo

Defining the change of coordinates

2
r=/2% + 22, 6 =tan~! <2—2>
1
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Behavior of Second Order Systems

we can write the dynamic equations in polar coordinates as
r = ar, 0=0

with solution
r(t) = roe™, 0(t) = 0y + St
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Behavior of Second Order Systems

Stable Focus: oo < 0
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Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Unstable Focus: o > 0

Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems
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Figure: Modal (left) and original (right) coordinates.
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Behavior of Second Order Systems

Equal real eigenvalues: \; = Ay = )\ (non-zero)
In this case,
M = [ v V2 ]

where v; and vy are the real eigenvectors of A associated with A\; and Ag,
respectively.
The change of coordinate z = M 'z transforms the system into the form

Z1 = Az1 + kzo, 29 = Azo

with solution

21 (t) = (210 + kZQot)BAt, Zz(t) = Z206>\t = 21 = 292 |:Z_ + —1In (ﬁ)]
2
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Behavior of Second Order Systems

Case1l: k=0

Figure: (a) A <0, (b) A > 0.
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Behavior of Second Order Systems

Case 2: k=1
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Figure: (a) A <0, (b) A > 0.
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Behavior of Second Order Systems

One or both zero eigenvalue: \; =0, 2 Z0or A\ = A2 =0
In this case A has a non-trivial null space.
When )\1 =0 and )\2 7é 0,

M = [ v V2 ]

where v1 and vy are the real eigenvectors of A associated with Ay and Ao,
respectively. Note that v; spans the null space of A.
The change of coordinate z = M 'z transforms the system into the form

21 = 0, 22 = )\222

with solution Aot

21 (t) = 210, 23(t) = za0e
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Behavior of Second Order Systems

When A\; = X2 =0,
M:[’Ul U2]

where v; and vy are the real eigenvectors of A associated with A and Ag,
respectively.
The change of coordinate z = M !z transforms the system into the form

2122’2, 2’2:0

with solution z1(t) = 210 + 220t, 22(t) = 220
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Behavior of Second Order Systems

Case 1: \; =0and Ay #0

(a)

Figure: (a) A1 =0, A2 <0, (b) A1 =0, A2 > 0.
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Behavior of Second Order Systems

Case 2: When A\{ = Xy =0
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Figure: A1 = A2 = 0.
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Qualitative Behavior Near Equilibria

Given the nonlinear system

o = fi(w, )
Ty = fo(wr,22) @)

let us assume p = (p1,p2) is an equilibrium point of (2), i.e.,

f1(p1,p2) = f2(p1,p2) =0

Let us know expand the right-hand side of (2) around the equilibrium point p, i.e.,

&= f(p)+ %(;) B (x—p)+HO.T.
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Qualitative Behavior Near Equilibria

where @)
_ | T o 1(x
x_[mz]’ f(x)—{h(x)}
and
of (z) 3f;($) 8f;(ﬂﬂ)
B . = ale(l‘) 8f2%$)
=p T T x=p

is the Jacobian evaluated at the equilibrium point p. Since we are interested in the
behavior near p, we define

of(x)

ox

T=p

and we obtain
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Qualitative Behavior Near Equilibria

y~ Ay
which represents the Jacobi linearization.
Q: Is the system'’s linearization a good approximation of its local behavior?

A: Yes, but provided the linearization has no eigenvalue on the imaginary axis, i.e.,
provided the equilibrium is hyperbolic.

Therefore, as long as f1(x) and fa(x) have continuous first partial derivatives, we
can conclude that

stable/unstable node stable/unstable node
stable/unstable focus | remains | stable/unstable focus
saddle point saddle point
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Qualitative Behavior Near Equilibria

Example: hyperbolic case - Pendulum with friction

. b . g .
0 = —WG — TSID(Q)
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Qualitative Behavior Near Equilibria
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Figure: Pendulum: Saddle + Stable Focus.
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Qualitative Behavior Near Equilibria

Example: non-hyperbolic case

—y — py (¢ + x3)
x1 — pag (2} + a3)

T
T

Prof. Eugenio Schuster ME 450 - Nonlinear Systems and Control Spring 2024



Qualitative Behavior Near Equilibria
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Figure: Stable/Unstable Focus.
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