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What is Feedback Control for?

A feedback controller is designed for:

⋆ Stability
⋆ Performance
− Equilibrium Regulation
− Reference Tracking
− Disturbance Rejection

 CHANGE DYNAMIC BEHAVIOR

First step in this design process: DYNAMIC MODEL

DYNAMIC MODEL =⇒ CONTROL DESIGN TECHNIQUE

CONTROL OBJECTIVE =⇒ CONTROL DESIGN TECHNIQUE
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Model Classification

Spatial Dependence
Lumped parameter system

Ordinary Diff. Eq. (ODE)

Distributed parameter system

Partial Diff. Eq. (PDE)

Linearity Linear Nonlinear

Temporal Representation Continuous-time Discrete-time

Domain Representation Time Frequency

Model Representation Control Technique
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Model Classification: Spatial Dependence

Distributed Parameter Systems
PDE

Lumped Parameter Systems
ODE
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1 Reduction

2 Keep the PDE representation (problem specific)

Control: Interior Boundary

Linearity: Nonlinear/Linear
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Linear/Nonlinear Distributed Parameter Control
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Model Classification: Linearity

Nonlinear (ODE) Systems Linear (ODE) Systems
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Linear Control

Output/State Feedback

Keep the nonlinearities
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Model Classification: Linearity

Nonlinear (ODE) Systems Linear (ODE) Systems
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Linear Control

Output/State Feedback

Estimation: How to estimate states from input/output?

Keep the nonlinearities
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Model Classification: Linearity

Particular type of nonlinearities: Constraints

Anti-windup Techniques

1 A priori

2 A posteriori
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Constraint is considered for control design 

Constraint is NOT considered for control design
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input/output constraints
state constraints

Nonlinear Optimization Techniques
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Model Classification: Temporal Representation

Continuous-time Systems Discrete-time Systems
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Model Classification: Temporal Representation

Continuous-time Systems Discrete-time Systems

System Identification
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Sampled-Data Systems

Sampling Time

System Identification: How to create models from data?
Fault Detection and Isolation: How to detect faults from data?
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Model Classification: Domain Representation

Continuous-time Systems Discrete-time Systems
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Control Objectives: Optimality

Continuous-time Systems Discrete-time Systems
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Control Objectives: Model Uncertainties

How to deal with uncertainties in the model?

1

2 Adaptive Control

Design for a family of plants

Update model (controller) in real time

Robust Control

B Model-based control

A Non-model-based control

PID
Extremum Seeking

Robust & Adaptive Control
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Model Classification

Spatial Dependence
Lumped parameter system

Ordinary Diff. Eq. (ODE)

Distributed parameter system

Partial Diff. Eq. (PDE)

Linearity Linear Nonlinear

Temporal Representation Continuous-time Discrete-time

Domain Representation Time Frequency

Model Representation Control Technique
ME 433

)(tff = ),( xtff =

ME 343
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Model Classification

Spatial Dependence
Lumped parameter system

Ordinary Diff. Eq. (ODE)

Distributed parameter system

Partial Diff. Eq. (PDE)

Linearity Linear Nonlinear

Temporal Representation Continuous-time Discrete-time

Domain Representation Time Frequency

Model Representation Control Technique
ME 433

)(tff = ),( xtff =

ME 343 / ME 387

)(tff =

ME 450: NSC
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Controls Education in the MEM Department

ME 343: CLASSICAL CONTROL FALL

ME 433: MODERN & OPTIMAL CONTROL FALL

ME 387: DIGITAL CONTROL SPRING

ME 450: ADVANCED TOPICS IN CONTROL SPRING

NONLINEAR SYSTEMS AND CONTROL

MULTIVARIABLE ROBUST CONTROL

SYSTEM IDENTIFICATION

CONTROL OF DISTRIBUTED PARAMETER SYSTEMS

ME 389: CONTROLS LAB SPRING

ADAPTIVE CONTROL
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Pendulum Control: Dynamic Model

MECHANICAL SYSTEM: aIF = Newton’s law
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Pendulum Control: Dynamic Model

MECHANICAL SYSTEM: aIF = Newton’s law
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ml
T

l
g

ml
b c+--= qqq !!!

Which are the equilibrium points when Tc=0?

At equilibrium: pqqqq ,0sin00 =Þ-=Þ==
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Open loop simulations: pend_par.m, pendol01.mdl

Stable

Unstable
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Pendulum Control: Linearization Around θ = 0

What happens around q=0?

By Taylor Expansion:

sin y( ) = y+ h.o.t.⇒ sin y( ) ≈ y

θ = y⇒ !!y = − b
ml2
!y− g

l
sin y( )+ Tc

ml2
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Pendulum Control: Laplace Transform

Linear
system

Differential
equation

Classical
techniques
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Pendulum Control: Transfer Function Around θ = 0

u ≡ Tc ⇒ !!y = − b
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Pendulum Control: Solution of the ODE

What is the solutions y(t)?Tc = 0⇒ !!y+
b
ml2
!y+ g

l
y = 0

y(t) =C1e
λ1t +C2e

λ2t

real(l1,l2)<0 Þ STABLE SYSTEM

We use feedback control for PERFORMANCE
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Characteristic Equation

The dynamics of the system is given by the roots of the denominator 
(poles) of the trasfer function

G(s) = 1 ml2

s2 + b
ml2

s+ g
l
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Pendulum Control: Linearization Around θ = π

What happens around q=p?

By Taylor Expansion:

sin y( ) = y+ h.o.t.⇒ sin y( ) ≈ y

θ = π + y⇒ !!y = − b
ml2
!y− g

l
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Pendulum Control: Laplace Transform
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system
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Pendulum Control: Transfer Function Around θ = π

u ≡ Tc ⇒ !!y = −
b
ml2
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Pendulum Control: Solution of the ODE

What is the solutions y(t)?Tc = 0⇒ !!y+
b
ml2
!y− g
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Characteristic Equation

The dynamics of the system is given by the roots of the 
denominator (poles) of the trasfer function

G(s) = 1 ml2

s2 + b
ml2

s− g
l

real(l1,l2)>0 Þ INSTABILITY

We use feedback control for STABILIZATION
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Very Important Conclusion

STABILITY IS A PROPERTY OF THE EQUILIBRIUM
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Pendulum Control: Design via Transfer Function
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Pendulum Control: Design via Transfer Function
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Closed loop simulations: pid_design.m
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Pendulum Control: Design via Transfer Function
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CLASSICAL CONTROL (ME 343)
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Pendulum Control: Design via State Space Model

!!y = − b
ml2
!y+ g

l
y+ Tc

ml2

eig(A) = λ : λI − A = 0{ }= λ :λ 2 + b
ml2

λ −
g
l
= 0

"
#
$

%
&
'

Reduce to first order equations:

BuAxu
ml

x
ml
b

l
gxTu

x
x

x c +=
ú
ú
û

ù

ê
ê
ë

é
+

ú
ú
û

ù

ê
ê
ë

é
-=Þºú

û

ù
ê
ë

é
º

222

1 1
010

, !

x1 = y
x2 = !y

    ⇒
!x1 = x2

!x2 = −
b
ml2

x2 +
g
l
x1 +

Tc
ml2

State Variable
Representation

Characteristic Equation
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Pendulum Control: Design via State Space Model
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We choose K1 and K2 to make real(eig(A-BK))<0

MODERN CONTROL (ME 433)
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Closed loop simulations: pend_par.m, statevar_control_lin.m
pendcllin01.mdl
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Pendulum Control: Nonlinear State Feedback
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Closed loop simulations: pend_par.m, statevar_control_nolin.m
pendclnolin01.mdl

NONLINEAR CONTROL (ME 350/450)
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