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Performance Limitations

Input-Output Controllability [5.1]

“Control” is not only controller design and stability analysis. Three important
questions:

I. How well can the plant be controlled?

II. What control structure should be used?

What variables should we measure, which variables should we manipulate, and
how are these variables best paired together?

III. How might the process be changed to improve control?

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2025 2 / 39



Performance Limitations

Definition

(Input-output) controllability is the ability to achieve acceptable control
performance; that is, to keep the outputs (y) within specified bounds from their
references (r), in spite of unknown but bounded variations, such as disturbances
(d) and plant changes, using available inputs (u) and available measurements (ym
or dm).

Note: controllability is independent of the controller, and is a property of the
plant (or process) alone. It can only be affected by:

changing the apparatus itself, e.g. type, size, etc.

relocating sensors and actuators

adding new equipment to dampen disturbances

adding extra sensors

adding extra actuators
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Performance Limitations

Scaling and performance [5.1.2]:

We assume that the variables and models have been scaled so that for acceptable
performance:

Output y(t) between r − 1 and r + 1 for any disturbance d(t) between −1
and 1 and any reference r(t) between −R and R, using an input u(t) within
−1 to 1.

We interpret this definition from a frequency-by-frequency sinusoidal point of
view. We then have for each frequency:

|e(ω)| ≤ 1, for any disturbance |d(ω)| ≤ 1 and any reference |r(ω)| ≤ R(ω),
using an input |u(ω)| ≤ 1.
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Usually for simplicity:

R(ω) = R ω ≤ ωr

R(ω) = 0 ω > ωr
(5.1)

Because (with r = Rr̃):

e = y − r = Gu+Gdd−Rr̃ (5.2)

we can apply results for disturbances also to references by replacing Gd by −R.
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Performance Limitations

Perfect control & plant inversion [5.2]

y = Gu+Gdd (5.3)

For “perfect control”, i.e. y = r (not realizable) we have feedforward controller:

u = G−1r −G−1Gdd (5.4)

With feedback control u = K(r − y) we have:

u = KSr −KSGdd

or since T = GKS,

u = G−1Tr −G−1TGdd (5.5)

Where feedback is effective (T ≈ I) feedback input in (5.5) is the same as perfect
control input in (5.4) =⇒ High gain feedback generates an inverse of G even
though K may be very simple.
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Performance Limitations

As consequence perfect control cannot be achieved if

G contains RHP-zeros (since then G−1 is unstable)

G contains time delay (since then G−1 contains a prediction)

G has more poles than zeros (since then G−1 is unrealizable)

For feedforward control perfect control cannot be achieved if

G is uncertain (since then G−1 cannot be obtained exactly)

This last restriction may be overcome by high gain feedback, but we know that we
cannot have high gain feedback at all frequencies.

Because of input constraints perfect control cannot be achieved if

|G−1Gd| is large
|G−1R| is large
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Performance Limitations

Constraints on S and T [5.3]

S plus T is one [5.3.1]:

S + T = 1 (5.6)

Ideally, we want S small to obtain the benefits of feedback (small control
error for commands and disturbances) and T small to avoid sensitivity to
noise which is one of the disadvantages of feedback.

Unfortunately, these requirements are not simultaneously possible at any
frequence as is clear from (5.6).

Specifically, (5.6) =⇒ at any frequency either |S(jω)| ≥ 0.5 or |T (jω)| ≥ 0.5
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Performance Limitations

The waterbed effects (sensitivity integrals) [5.3.2]:
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Figure 1: Plot of typical sensitivity, |S|, with upper bound 1/|wP |

Note: |S| has peak greater than 1; we will show that this is unavoidable in
practice. The waterbed formulae say that if we push the sensitivity down at some
frequencies, then it will have to increase at others.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2025 9 / 39



Performance Limitations

Pole excess of two: First waterbed formula:

Idea: When L(s) = has a relative degree of two or more, then for some ω the
distance between L and −1 is less than one: |L+ 1| < 1 ⇒ |S| = |L+ 1|−1 > 1.
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Figure 2: |S| > 1 whenever the Nyquist plot of L is inside the circle
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Performance Limitations

Theorem
Bode Sensitivity Integral.
Suppose that the open-loop transfer function L(s) is rational and has at least two
more poles than zeros (relative degree of two or more).
Suppose also that L(s) has Np RHP-poles at locations pi.
Then for closed-loop stability the sensitivity function must satisfy

∫ ∞

0

ln |S(jω)|dω = π ·
Np∑
i=1

Re(pi) (5.7)

where Re(pi) denotes the real part of pi.

For a stable plant we must have
∫∞
0

ln |S(jω)|dω = 0. The area of sensitivity
reduction (ln |S| negative) must equal the area of sensitivity increase (ln |S|
positive) ⇒ An increase in the bandwith (S smaller than 1 over a larger
frequency range) must come at the expense of a larger peak in |S|.
The presence of unstable poles usually increases the peak of the sensitivity.
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Performance Limitations

RHP-zeros: Second waterbed formula:
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Figure 3: Additional phase lag contributed by RHP-zero causes |S| > 1
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Performance Limitations
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Figure 4: Effect of increased controller gain on |S| for system with RHP-zero at z = 2,
L(s) = k

s
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Performance Limitations

Theorem

Weighted sensitivity integral. Suppose that L(s) has a single real RHP-zero
z and has Np RHP-poles, pi. Then for closed-loop stability the sensitivity function
must satisfy ∫ ∞

0

ln |S(jω)| · w(z, ω)dω = π · ln
Np∏
i=1

∣∣∣∣pi + z

pi − z

∣∣∣∣ (5.8)

where:

w(z, ω) =
2z

z2 + ω2
=

2

z

1

1 + (ω/z)2
(5.9)
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Performance Limitations
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Figure 5: Plot of weight w(z, ω) for case with real zero at s = z
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Performance Limitations

Weight w(z, ω) “cuts off” contribution of ln|S| at frequencies ω > z. Thus,
for a stable plant:∫ z

0

ln |S(jω)|dω ≈ 0 ( for |S| ≈ 1 at ω > z) (5.10)

The waterbed is finite, and a large peak for |S| is unavoidable when we
reduce |S| at low frequencies (Figure 4).

Note also that when pi → z then pi+z
pi−z → ∞. This is not surprising as such

plants are in practice impossible to stabilize.
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Performance Limitations

Interpolation constraints from internal stability [5.3.3]:

The two sensitivity integrals (waterbed formulas) presented above are interesting
and provide valuable insights but they are less useful for a quantitative analysis of
achievable performance. We are interested in determining lower bounds on S and
T , which are more useful to analyze the effects of RHP zeros and RHP poles. The
basis for these bounds is given by the interpolation constraints:

If p is a RHP-pole of L(s) then

T (p) = 1, S(p) = 0 (5.11)

Similarly, if z is a RHP-zero of L(s) then

T (z) = 0, S(z) = 1 (5.12)
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Performance Limitations

Sensitivity peaks [5.3.4]:

Maximum modulus principle. Suppose f(s) is stable (i.e. f(s) is analytic in the
complex RHP). Then the maximum value of |f(s)| for s in the right-half plane is
attained on the region’s boundary, i.e. somewhere along the jω-axis. Hence, we
have for a stable f(s)

∥f(jω)∥∞ = max
ω

|f(jω)| ≥ |f(s0)| ∀s0 ∈ RHP (5.13)

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2025 18 / 39



Performance Limitations

The results below follow from (5.13) with f(s) = wP (s)S(s), f(s) = wT (s)T (s)
for weighted sensitivity and weighted complementary sensitivity.

Theorem
Weighted sensitivity peak.
Suppose that G(s) has a RHP-zero z and let wP (s) be any stable weight function.
Then for closed-loop stability the weighted sensitivity function must satisfy

∥wPS∥∞ ≥ |wP (z)| (5.14)

If wP (s) = 1, we have ∥S∥∞ ≥ 1, which we know must hold since |S(jω)|
must approach 1 at high frequencies.
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Performance Limitations

Theorem
Weighted complementary sensitivity peak.
Suppose that G(s) has a RHP-pole p and let wT (s) be any stable weight function.
Then for closed-loop stability the weighted complementary sensitivity function
must satisfy

∥wTT∥∞ ≥ |wT (p)| (5.15)

The basis for this result is that if G(s) has a RHP-pole at s = p, then for
internal stability S(p) must have a RHP-zero at s = p and from (5.11) we
have T (p) = 1.

If wT (s) = 1, we have ∥T∥∞ ≥ 1, and illustrates that some control is indeed
needed to stabilize an unstable plant (since no control, K = 0, makes T = 0).
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Performance Limitations

Theorem
Combined RHP-poles and RHP-zeros.
Suppose that G(s) has Nz RHP-zeros zj , and Np RHP-poles pi. Then for
closed-loop stability the weighted sensitivity function must satisfy for each
RHP-zero zj

∥wPS∥∞ ≥ c1j |wP (zj)|, c1j =

Np∏
i=1

|zj + p̄i|
|zj − pi|

≥ 1 (5.16)

and the weighted complementary sensitivity function must satisfy for each
RHP-pole pi

∥wTT∥∞ ≥ c2i|wT (pi)|, c2i =

Nz∏
j=1

|z̄j + pi|
|zj − pi|

≥ 1 (5.17)

If wP = wT = 1: ∥S∥∞ ≥ maxj c1j , ∥T∥∞ ≥ maxi c2i
=⇒ Large peaks for S and T are unavoidable if a RHP-zero and a RHP-pole
are close to each other.
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Performance Limitations

Integral Square Error (ISE) optimal control [5.4]

Let us consider the “ideal” controllers that minimizes

ISE =

∫ ∞

0

|y(t)− r(t)|2dt (5.18)

The controller is “ideal” in the sense that if may not be realizable in practice
because the cost function includes no penalty on the input u(t). For stable plants
with RHP zeros at zj (real or complex) and a time delay θ, the “ideal” response
y = Tr when r(t) is a unit step is:

T (s) =
∏
i

−s+ zj
s+ z̄j

e−θs (5.19)

where z̄j is the complex conjugate of zj .
Optimal ISE for three simple stable plants are:

1. with a delay θ: ISE = θ

2. with a RHP-zero z: ISE = 2/z

3. with complex RHP-zeros z = x± jy: ISE = 4x/(x2 + y2)
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Performance Limitations

Limitations imposed by time delays [5.5]

Consider a plant G(s) that contains a time delay e−θs (and no RHP zeros). Even
the “ideal” controller cannot remove this delay (we need to wait). From (5.19),
T = e−θs, and

S = 1− T = 1− e−θs (5.20)
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Figure 6: “Ideal” sensitivity function (5.20) for a plant with delay

At low frequency (ωθ < 1), we have 1− e−θs ≈ θs. |S(jω)| in Figure 6 crosses 1
at π

3
1
θ = 1.05/θ. Because here |S| = 1/|L|, we have:

ωc < 1/θ (5.21)
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Performance Limitations

Limitations imposed by RHP-zeros [5.6]
RHP-zeros typically appear when we have competing effects of slow and fast
dynamics:

G(s) =
1

s+ 1
− 2

s+ 10
=

−s+ 8

(s+ 1)(s+ 10)

(a) Inverse response [5.6.1]:
For a stable plant with nz RHP-zeros, it may be proven that the output in
response to a step change in the input will cross zero (its original value) nz times,
that is, we have inverse response behaviour.

(a) High-gain instability [5.6.2]:
From classical root analysis, as the feedback gain increases towards infinity, the
closed-loop poles migrates to the positions of the open-loop RHP zeros ⇒
High-gain instability.
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Performance Limitations

(b) Bandwidth limitation I [5.6.3]:
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Figure 7: “Ideal” sensitivity for plants with RHP-zeros
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Performance Limitations

For a single real RHP-zero the “ideal”, i.e. ISE optimal, sensitivity function is

S = 1− T =
2s

s+ z
(5.22)

From Figure 7(a):

ωB ≈ ωc <
z

2
(5.23)
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Performance Limitations

Bandwidth limitation II [5.6.4]:

Performance requirement:

|S(jω)| < 1/|wP (jω)| ∀ω = ∥wPS∥∞ < 1 (5.24)

However, from (5.14) we have that ∥wPS∥∞ ≥ |wP (z)|, so the weight must
satisfy

|wP (z)| < 1 (5.25)

For performance weight
wP (s) =

s/M + ω∗
B

s+ ω∗
BA

(5.26)

and a real zero at z we get: ω∗
B(1−A) < z

(
1− 1

M

)
For example, A = 0,M = 2: ω∗

B < z
2
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Performance Limitations

Limitations imposed by RHP-poles [5.8]

Specification:

|T (jω)| < 1/|wT (jω)| ∀ω = ∥wTT∥∞ < 1 (5.27)

However, from (5.15) we have that:

∥wTT∥∞ ≥ |wT (p)| (5.28)

so the weight must satisfy

|wT (p)| < 1 (5.29)
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Performance Limitations

For:

wT (s) =
s

ω∗
BT

+
1

MT
(5.30)

we get:

ω∗
BT > p

MT

MT − 1
(5.31)

e.g. MT = 2:
ω∗
BT > 2p (5.32)
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Performance Limitations

Combined RHP-poles and RHP-zeros [5.9]

RHP-zero:

ωc < z/2

RHP-pole:

ωc > 2p

RHP-pole and RHP-zero:
z > 4p for acceptable performance and robustness.

Sensitivity peaks.
From Theorem 6 for a plant with a single real RHP-pole p and a single real
RHP-zero z, we always have:

∥S∥∞ ≥ c, ∥T∥∞ ≥ c, c =
|z + p|
|z − p|

(5.33)
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Performance Limitations

Example
Balancing a rod. The objective is to keep the rod upright by movement of the cart,
based on observing the rod either at its far end (output y1) or the cart position (output
y2).
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l [m] = length of rod

m [kg] = mass of rod

M [kg] = mass of hand

g ≈ 10 m/s2 = acceleration due to gravity.
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Performance Limitations

The linearized transfer functions for the two cases are

G1(s) =
−g

s2 (Mls2 − (M +m)g)
; G2(s) =

ls2 − g

s2 (Mls2 − (M +m)g)

Poles: p = 0, 0,±
√

(M+m)g
Ml . For output y1(G1(s)) stabilization requires

minimum bandwidth (5.32). For output y2(G2(s)) zero at z =
√

g
l

For light rod m << M , pole ≈ zero → “impossible” to stabilize

For heavy rod (m large) difficult to stabilize because p > z

Example: m/M = 0.1 ⇒ ∥S∥∞ ≥ 42 ; ∥T∥∞ ≥ 42 ⇒ poor control
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Performance Limitations

Non-causal controllers [5.7]

Perfect control can be achieved for a plant with a time delay or RHP-zero if we
use a non-causal controller, i.e. a controller which uses information about the
future (relevant for servo problems, e.g. in robotics and for batch processing.)

G(s) =
−s+ z

s+ z
; z > 0 r(t) =

{
0 t < 0
1 t ≥ 0

(5.34)

Stable non-causal controller generates the input

u(t) =

{
2ezt t < 0
1 t ≥ 0

(See (Figure 8))
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Figure 8: Feedforward control of plant with RHP-zero
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Performance Limitations

Limitations imposed by input constraints [5.11]

For perfect control (e = 0), the required input is

u = G−1r −G−1Gdd (5.35)

Disturbance rejection. r = 0, |d(ω)| = 1; |u(ω)| < 1 ⇒

|G−1(jω)Gd(jω)| < 1 ⇐⇒ |G| > |Gd| ∀ω (5.36)

Command tracking. d = 0, |r(ω)| = R∀ω < ωr |u(ω)| < 1 ⇒

|G−1(jω)R| < 1 ⇐⇒ |G| > R ∀ω ≤ ωr (5.37)

For acceptable control (namely |e(jω)| < 1) we need:

|G| > |Gd| − 1 at frequencies where |Gd| > 1 (5.38)

|G| > |R| − 1 < 1 ∀ω ≤ ωr (5.39)
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Summary: Controllability analysis with feedback control [5.14]

Figure 9: Feedback control system
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y = G(s)u+Gd(s)d; ym = Gm(s)y (5.40)

Gm(0) = 1 (perfect steady-state measurement);
d, u, y and r are assumed to be scaled;
ωc = gain crossover frequency (frequency where |L(jω)| crosses 1 from above);
ωd = frequency where |Gd(jωd)| first crosses 1 from above.
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The following rules apply:

Rule 1. Speed of response to reject disturbances. We require ωc > ωd.
More specifically, |S(jω)| ≤ |1/Gd(jω)| ∀ω.

Rule 2. Speed of response to track reference changes. We require
|S(jω)| ≤ 1/R up to the frequency ωr where tracking is required.

Rule 3. Input constraints arising from disturbances. For acceptable
control (|e| < 1) we require |G(jω)| > |Gd(jω)| − 1 at frequencies
where |Gd(jω)| > 1.

Rule 4. Input constraints arising from setpoints. We require
|G(jω)| > R− 1 up to the frequency ωr where tracking is required.
(See (5.39)).
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Rule 5. Time delay θ in G(s)Gm(s). We approximately require ωc < 1/θ.
(See (5.21)).

Rule 6. Tight control at low frequencies with a RHP-zero z in
G(s)Gm(s). For a real RHP-zero we require ωc < z/2. (See
(5.23)).

Rule 7. Phase lag constraint. We require in most practical cases (e.g.
with PID control): ωc < ωu. Here the ultimate frequency ωu is
where ∠GGm(jωu) = −180◦.

Rule 8. Real open-loop unstable pole in G(s) at s = p. We need high
feedback gains to stabilize the system and require ωc > 2p.
In addition, for unstable plants we need |G| > |Gd| up to the
frequency p (which may be larger than ωd where |Gd| = 1|).
Otherwise, the input may saturate when there are disturbances,
and the plant cannot be stabilized.
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