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Performance Limitations

Input-Output Controllability [5.1]

“Control” is not only controller design and stability analysis. Three important
questions:

I. How well can the plant be controlled?

Il. What control structure should be used?

What variables should we measure, which variables should we manipulate, and
how are these variables best paired together?

I1l. How might the process be changed to improve control?
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Definition

(Input-output) controllability is the ability to achieve acceptable control
performance; that is, to keep the outputs (y) within specified bounds from their
references (), in spite of unknown but bounded variations, such as disturbances
(d) and plant changes, using available inputs (v) and available measurements (y;,
or dp,)-

Note: controllability is independent of the controller, and is a property of the
plant (or process) alone. It can only be affected by:

changing the apparatus itself, e.g. type, size, etc.
relocating sensors and actuators

adding new equipment to dampen disturbances
adding extra sensors

adding extra actuators
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Scaling and performance [5.1.2]:

We assume that the variables and models have been scaled so that for acceptable
performance:

@ Output y(t) between r — 1 and r + 1 for any disturbance d(t) between —1
and 1 and any reference r(t) between —R and R, using an input u(t) within
—1to 1.

We interpret this definition from a frequency-by-frequency sinusoidal point of
view. We then have for each frequency:
@ |e(w)] <1, for any disturbance |d(w)| < 1 and any reference |r(w)| < R(w),
using an input |u(w)| < 1.
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Usually for simplicity:

R(w)=R w < wy
R(w)=0 w > Wy (5.1)
Because (with r = RF):
e=y—r=Gu+Gqd— Rr (5.2)

we can apply results for disturbances also to references by replacing G4 by —R.
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Perfect control & plant inversion [5.2]

y=Gu+Gqd (5.3)
For “perfect control”, i.e. y = (not realizable) we have feedforward controller:
u=G'r -G 'Gyd (5.4)
With feedback control u = K (r — y) we have:
u=KSr— KSGqd
or since T'=GKS,
u=G 'Tr -G 'TG.d (5.5)

Where feedback is effective (T = I) feedback input in (5.5) is the same as perfect
control input in (5.4) = High gain feedback generates an inverse of G even
though K may be very simple.
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As consequence perfect control cannot be achieved if
e G contains RHP-zeros (since then G~! is unstable)
@ G contains time delay (since then G~! contains a prediction)
@ G has more poles than zeros (since then G~! is unrealizable)

For feedforward control perfect control cannot be achieved if

1

e G is uncertain (since then G~! cannot be obtained exactly)

This last restriction may be overcome by high gain feedback, but we know that we
cannot have high gain feedback at all frequencies.

Because of input constraints perfect control cannot be achieved if
o |G71Gy| is large
e |G71R| is large
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Constraints on S and T [5.3]

S plus T is one [5.3.1]:
S+T=1 (5.6)

o Ideally, we want S small to obtain the benefits of feedback (small control
error for commands and disturbances) and T' small to avoid sensitivity to
noise which is one of the disadvantages of feedback.

@ Unfortunately, these requirements are not simultaneously possible at any
frequence as is clear from (5.6).

@ Specifically, (5.6) = at any frequency either |S(jw)| > 0.5 or |T'(jw)| > 0.5

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2025



Performance Limitations

The waterbed effects (sensitivity integrals) [5.3.2]:
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Figure 1: Plot of typical sensitivity, |.S|, with upper bound 1/|wp|

Note: |S| has peak greater than 1; we will show that this is unavoidable in
practice. The waterbed formulae say that if we push the sensitivity down at some

frequencies, then it will have to increase at others.
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Performance Limitations

Pole excess of two: First waterbed formula:

Idea: When L(s) = has a relative degree of two or more, then for some w the
distance between L and —1 is less than one: |[L+ 1| <1=|S|=|L+ 17! >1.

A Im

L(s) = 55

L(jw)

Figure 2: |S| > 1 whenever the Nyquist plot of L is inside the circle
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Bode Sensitivity Integral.

Suppose that the open-loop transfer function L(s) is rational and has at least two
more poles than zeros (relative degree of two or more).

Suppose also that L(s) has N, RHP-poles at locations p;.

Then for closed-loop stability the sensitivity function must satisfy

N,

/OOO In|S(je)dw = 7~ 3 " Re(p) (5.7)

i=1

where Re(p;) denotes the real part of p;.

e For a stable plant we must have [~ In |S(jw)|dw = 0. The area of sensitivity
reduction (In |S| negative) must equal the area of sensitivity increase (In |S]|
positive) = An increase in the bandwith (S smaller than 1 over a larger
frequency range) must come at the expense of a larger peak in |S].

@ The presence of unstable poles usually increases the peak of the sensitivity.
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RHP-zeros: Second waterbed formula:

Lm(s) = ler1 15
L(s) =735 20

Figure 3: Additional phase lag contributed by RHP-zero causes |S| > 1
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Figure 4: Effect of increased controller gain on |S| for system with RHP-zero at z = 2,
L(s)=%22=s
+s
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Weighted sensitivity integral.  Suppose that L(s) has a single real RHP-zero

z and has N, RHP-poles, p;. Then for closed-loop stability the sensitivity function
must satisfy

oo NP
. Di + 2
In|S(jw)| - w(z,w)dw = 7 - In —_ 5.8
| misge) -z 11— (58)
where: 5 9 1
z
w(z,w) = 24+w? 21+ (w/2)? (5:9)

v
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Figure 5: Plot of weight w(z,w) for case with real zero at s = 2z
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o Weight w(z,w) “cuts off" contribution of In|S| at frequencies w > z. Thus,
for a stable plant:

/ In|S(jw)ldw~0 (for|S|~1atw > z) (5.10)
0

@ The waterbed is finite, and a large peak for |S| is unavoidable when we
reduce |S| at low frequencies (Figure 4).

@ Note also that when p; — z then Z“rz — 00. This is not surprising as such
plants are in practice impossible to stabilize.
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Interpolation constraints from internal stability [5.3.3]:

The two sensitivity integrals (waterbed formulas) presented above are interesting
and provide valuable insights but they are less useful for a quantitative analysis of
achievable performance. We are interested in determining lower bounds on S and
T, which are more useful to analyze the effects of RHP zeros and RHP poles. The
basis for these bounds is given by the interpolation constraints:

o If pis a RHP-pole of L(s) then

T(p)=1, Sk =0 (5.11)

T(z)=0, S(z)=1 (5.12)
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Sensitivity peaks [5.3.4]:

Maximum modulus principle. Suppose f(s) is stable (i.e. f(s) is analytic in the
complex RHP). Then the maximum value of | f(s)| for s in the right-half plane is
attained on the region’s boundary, i.e. somewhere along the jw-axis. Hence, we
have for a stable f(s)

1FGw)llee = max[f(jw)| = [f(s0)| Vso € RHP (5.13)
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The results below follow from (5.13) with f(s) = wp(s)S(s), f(s) = wr(s)T(s)
for weighted sensitivity and weighted complementary sensitivity.

Weighted sensitivity peak.
Suppose that G(s) has a RHP-zero z and let wp(s) be any stable weight function.
Then for closed-loop stability the weighted sensitivity function must satisfy

[wpSlloo = |wp(2)] (5.14)

o If wp(s) =1, we have ||S]loc > 1, which we know must hold since |S(jw)|

must approach 1 at high frequencies.
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Weighted complementary sensitivity peak.
Suppose that G(s) has a RHP-pole p and let wr(s) be any stable weight function.

Then for closed-loop stability the weighted complementary sensitivity function
must satisfy

[wrT oo > [wr(p)] (5.15)

@ The basis for this result is that if G(s) has a RHP-pole at s = p, then for

internal stability S(p) must have a RHP-zero at s = p and from (5.11) we
have T'(p) = 1.

o If wr(s) =1, we have || T||oo > 1, and illustrates that some control is indeed
needed to stabilize an unstable plant (since no control, K = 0, makes T' = 0).
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Combined RHP-poles and RHP-zeros.
Suppose that G(s) has N, RHP-zeros zj, and N, RHP-poles p;. Then for

closed-loop stability the weighted sensitivity function must satisfy for each
RHP-zero z;

N, _
|25 + Dil
JwrSle > exshup(z)l, ey =[] 2200

i=1

>1 (5.16)

and the weighted complementary sensitivity function must satisfy for each
RHP-pole p;

lwrT|loo > coslwr(ps)l, c2i = 5t >1 (5.17)
i 7 =il
o Ifwp =wp =1t ||F]|eo > max;cij, ||T|loc > max;co;

= Large peaks for S and T are unavoidable if a RHP-zero and a RHP-pole
are close to each other.
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Integral Square Error (ISE) optimal control [5.4]

Let us consider the “ideal” controllers that minimizes

ISE :/Ooo ly(t) — r(t)|*dt (5.18)

The controller is “ideal” in the sense that if may not be realizable in practice
because the cost function includes no penalty on the input u(¢). For stable plants
with RHP zeros at z; (real or complex) and a time delay 6, the “ideal” response
y = Tr when r(t) is a unit step is:

H Sy, (5.19)

erzj

where Z; is the complex conjugate of z;.
Optimal ISE for three simple stable plants are:

1. with a delay 0: ISE =40
2. with a RHP-zero z: ISE = 2/z
3. with complex RHP-zeros z = = + jy: ISE = 4x/(22 + y?)
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Limitations imposed by time delays [5.5]

Consider a plant G(s) that contains a time delay e~ (and no RHP zeros). Even

the “ideal” controller cannot remove this delay (we need to wait). From (5.19),
T =e%, and

S=1-T=1-¢" (5.20)

3

=N

Magnitude |S]|

w=1/0

2 = 0

5\
=%

| 10
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Figure 6: “ldeal” sensitivity function (5.20) for a plant with delay

At low frequency (w8 < 1), we have 1 — e™% =~ @s. |S(jw)| in Figure 6 crosses 1
at 4 =1.05/0. Because here |S| = 1/|L|, we have:

we < 1/8 (5.21)
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Limitations imposed by RHP-zeros [5.6]
RHP-zeros typically appear when we have competing effects of slow and fast
dynamics:

1 2 —s5+8

G = T T 510 I DG L10)

(a) Inverse response [5.6.1]:

For a stable plant with n, RHP-zeros, it may be proven that the output in
response to a step change in the input will cross zero (its original value) n times,
that is, we have inverse response behaviour.

(a) High-gain instability [5.6.2]:

From classical root analysis, as the feedback gain increases towards infinity, the
closed-loop poles migrates to the positions of the open-loop RHP zeros =
High-gain instability.
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(b) Bandwidth limitation | [5.6.3]:

T’
@
<
2
-
EDI[) E
=
z/2
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10~ 1 10 10 107
Frequency X 1/2z
(a) Real RHP-zero.
y/z=0.1 y/r=10 y/z=>50

Magnitude |S|

E) = o T >
Frequency X 1/z

(b) Complex pair of RHP-zeros, z = @ % jy.

Figure 7: “Ideal” sensitivity for plants with RHP-zeros
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For a single real RHP-zero the “ideal”, i.e. ISE optimal, sensitivity function is

2
S=1-T=-"" (5.22)
s+ z
From Figure 7(a):
wp R we < g (5.23)
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Bandwidth limitation 11 [5.6.4]:
Performance requirement:
1SGw)l < 1/lwp(jw)| Vw = [lwpSlle <1 (5.24)

However, from (5.14) we have that ||wpS||e > |wp(2)], so the weight must
satisfy

lwp(z)] < 1 (5.25)

For performance weight M *
wp(s) = LM+ b (5.26)

s+whA

and a real zero at z we get: wh(1 —A) <z (1— )

For example, A =0,M =2: wp < 3
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Limitations imposed by RHP-poles [5.8]
Specification:
TGw)| <1/|wr(jw)| Yw = |wrT]e <1 (5.27)
However, from (5.15) we have that:
[wrT |l = [wr(p)] (5.28)

so the weight must satisfy
jwr(p)] <1 (5.29)
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For:
r wr(s) = S ! (5.30)
r W*BT MT '
we get:
B M
Wi > Py . (5.31)
eg. Mp=2:
wpp > 2p (5.32)
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Combined RHP-poles and RHP-zeros [5.9]
RHP-zero:

we < 2/2
RHP-pole:

we > 2p

RHP-pole and RHP-zero:
z > 4p for acceptable performance and robustness.

Sensitivity peaks.
From Theorem 6 for a plant with a single real RHP-pole p and a single real
RHP-zero z, we always have:

|z +pl

[Slloe > ¢, ITljoo > ¢, c=
|z — pl

(5.33)
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Example

Balancing a rod. The objective is to keep the rod upright by movement of the cart,
based on observing the rod either at its far end (output y.) or the cart position (output

Y2).
Y .

x I [m] = length of rod
m [kg] = mass of rod
L M [kg] = mass of hand

g~ 10 m/s2 = acceleration due to gravity.
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The linearized transfer functions for the two cases are

_ —g ) _ s> — g
Gals) = s2 (Mis? — (M +m)g)’ Gals) = s2 (Mis? — (M +m)g)

Poles: p=0,0,+4/ %. For output y1(G1(s)) stabilization requires

minimum bandwidth (5.32). For output y2(Ga(s)) zero at z = /7
@ For light rod m << M, pole =~ zero — “impossible” to stabilize
@ For heavy rod (m large) difficult to stabilize because p > z

Example: m/M = 0.1 = [|S]lco > 42 ; ||T|lcc > 42 = poor control
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Non-causal controllers [5.7]

Perfect control can be achieved for a plant with a time delay or RHP-zero if we
use a non-causal controller, i.e. a controller which uses information about the
future (relevant for servo problems, e.g. in robotics and for batch processing.)

G(s) = _SS:ZZ; 20 r(t) = {

0 t<O0
1 t>0

(5.34)

Stable non-causal controller generates the input

2e*t t <0
“(t):{l t>0

(See (Figure 8))
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Input: unstable controller Output: unstable controller
0 1 I
-5 0
-10 -1
-5 0 5 -5 0 5
Input: non-causal controller Output: non-causal controller
2 1 _I—
1 0
0 -1
-5 0 5 -5 0 5
Input: practical controller Output: practical controller
2 1
1 I 0
0 -1
-5 0 5 -5 0
Time [sec] Time [sec]

Figure 8: Feedforward control of plant with RHP-zero
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Limitations imposed by input constraints [5.11]
For perfect control (e = 0), the required input is
u=G 'r -G 'Gyd (5.35)
Disturbance rejection. r =0, |[d(w)]| = 1; Ju(w)| < 1 =
|G (jw)Ga(jw)| <1 <= |G| > |Gq| Yw (5.36)
Command tracking. d =0, |r(w)| = RVw < w, |u(w)| < 1=
IGT'(jw)R| <1 <= |G| >R VYw < w, (5.37)

For acceptable control (namely |e(jw)| < 1) we need:

|G| > |Gq| — 1| at frequencies where |Gg4| > 1 (5.38)

1G] > [R—1<1| Yw<w, (5.39)
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Summary: Controllability analysis with feedback control [5.14]

Gld
B

+

Gm

Figure 9: Feedback control system
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y=G(s)u+Ga(s)d;  ym = Gm(s)y (5.40)

G (0) =1 (perfect steady-state measurement);

d, u, y and r are assumed to be scaled;

w. = gain crossover frequency (frequency where |L(jw)| crosses 1 from above);
wq = frequency where |G4(jwg)| first crosses 1 from above.
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The following rules apply:

Rule 1. Speed of response to reject disturbances. We require w. > wy.
More specifically, |S(jw)| < |1/Gqa(jw)| Yw.

Rule 2. Speed of response to track reference changes. We require
|S(jw)| < 1/R up to the frequency w, where tracking is required.

Rule 3. Input constraints arising from disturbances. For acceptable
control (le| < 1) we require |G(jw)| > |Gq(jw)| — 1 at frequencies
where |G4(jw)| > 1.

Rule 4. Input constraints arising from setpoints. We require

|G(jw)| > R —1 up to the frequency w, where tracking is required.
(See (5.39)).
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Rule 5.

Rule 6.

Rule 7.

Rule 8.

Time delay 0 in G(s)G,,(s). We approximately require w. < 1/6.
(See (5.21)).

Tight control at low frequencies with a RHP-zero z in
G(5)Gm(s). For a real RHP-zero we require w. < z/2. (See
(5.23)).

Phase lag constraint. We require in most practical cases (e.g.
with PID control): w. < w,. Here the ultimate frequency w, is
where ZGG., (jw,) = —180°.

Real open-loop unstable pole in G(s) at s = p. We need high
feedback gains to stabilize the system and require w. > 2p.

In addition, for unstable plants we need |G| > |Gg4| up to the
frequency p (which may be larger than wq where |G4| = 1]).
Otherwise, the input may saturate when there are disturbances,
and the plant cannot be stabilized.
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